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The Mabinogion urn is a simple model of the spread of influences amongst versatile populations. It corresponds to
a non-standard urn with balls of two colours: each time a ball is drawn, it causes a ball of the other kind to switch
its colour. The process stops once unanimity has been reached. This note provides analytic expressions describing
the evolution of the Mabinogion urn, based on a time-reversal transformation applied to the classical Ehrenfest urn.
Consequences include a precise asymptotic analysis of the stopping-time distribution—it is asymptotically normal
in the “unfair” case and akin to an extreme-value (double exponential) distribution in the “fair” case—as well as a
characterization of the exponentially small probability of reversing a majority.
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1 Introduction
The purpose of this paper is to introduce and study a simple model of the stochastic spread of influence
in populations. Say a country consists of a population of N sheep, each of which can, at any given time,
be in either one of two states of mind, denoted by A and B. At discrete instants 1, 2, 3, . . ., a randomly
chosen sheep in the population bleats in accordance with its current state of mind: if this sheep bleats
A[aah], then one of the B–sheep changes to state A; if this sheep bleats B[eeh], then one of the A–sheep
changes to state B. The process stops when unanimity has been reached; that is, all sheep are in one
and the same state. We call this model the Mabinogion urn process, following Williams [38, §15.3], who
analysed a rather specific “controlled” version. The name itself comes from a Welsh medieval tale, The
Mabinogion, where one excerpts the following piece:

“And he came towards a valley, through which ran a river; and the borders of the valley were wooded,
and on each side of the river were level meadows. And on one side of the river he saw a flock of white
sheep, and on the other a flock of black sheep. And whenever one of the white sheep bleated, one of the
black sheep would cross over and become white; and when one of the black sheep bleated, one of the
white sheep would cross over and become black.”

(See http://www.sacred-texts.com/neu/celt/mab/mab10.htm.) The problem is to de-
termine the stopping time of the process as well as the probability that unanimity of either type is eventu-
ally reached, when given a certain initial condition of the population.

1365–8050 c© 2008 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
http://www.dmtcs.org/proceedings/dmAIind.html


550 Philippe Flajolet and Thierry Huillet

The Mabinogion urn was studied by us during the 2007 presidential election campaign in France, where
two candidates were running for president. To model this situation, one can take N = 6 · 107. Say one
sheep bleats every second. If initially, the population is equally divided between the two candidates, what
is the expected time needed to reach eventual unanimity? We shall determine the answer to be about 8
years. If the initial proportions of A–sheep correspond to a minority of 47%, 49%, and 49.9%, what
is the probability of an eventual unanimity of type A? Answer: about 10−46,000, 10−5,000, and 10−50,
respectively. These are typical questions addressed in this paper.

The Mabinogion model described above fits into the category of (generalized) Pólya urn models, for
which Johnson and Kotz [21] provide an elementary introduction. An urn may contain balls of two
colours, say A and B, and a 2× 2 matrix(

α β
γ δ

)
, α, β, γ, δ ∈ Z,

is given. At discrete instants, 1, 2, . . . , n, a random ball in the urn is chosen and its colour is inspected:
if that colour is A, then α balls of type A and β balls of type B are inserted; if the colour is B, then γ
balls of type A and δ balls of type B are inserted. Negative entries in the matrix are interpreted as taking
out balls of the corresponding colour. The initial composition (a0, b0) of the urn at time 0 being fixed, the
goal is to characterize its (random) composition (An, Bn) at time n.

The Mabinogion model is then seen to be a Pólya urn corresponding to the matrix

M =
(

1 −1
−1 1

)
.

The presence of off-diagonal entries that are negative precludes an appeal to the standard theory of urn
processes, which is well-exemplified by Janson’s recent studies [19, 20]. Our approach consists in relating
the evolution of the Mabinogion urn to that of the classical Ehrenfest urn(i), which is described by the
matrix

E =
(
−1 1
1 −1

)
,

and we do so by means of a time-reversal transformation (note that M = −E). Although the stochastic
evolutions of both urns are radically different, the analytic formulae available for the Ehrenfest urn can
be recycled: our treatment starts precisely from this observation. The methods we develop are entirely
analytic, being based on explicit integral representations of the quantities of interest and classical asymp-
totic methods like the Laplace and saddle-point methods—our treatment follows the general principles
of analytic combinatorics, as presented in the forthcoming book [13]. Our results then supplement the
recent study by Flajolet, Dumas, and Puyhaubert [12], which is dedicated to exactly solvable models of
urn process theory, by providing a new urn that admits of explicit formulae.

The Mabinogion urn can also, broadly speaking, be viewed as a special process with reinforcement in
the sense of Pemantle’s survey [30]. In this context, it appears as a peaceful alternative to the OK Corral
urn defined by the matrix,

O =
(

0 −1
−1 0

)
,

(i) The Ehrenfest urn [7] serves to model particle (or heat) transfer between two chambers. As it is well known, it has played
an important historical rôle in resolving the apparent contradiction between recurrence in Markov chains and irreversibility in
statistical thermodynamics [5, 22].
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Fig. 1: Left: Trajectories of the Mabinogion urn for N = 1000 and sizes of the initial A–population ranging from
50 to 950, with four simulations for the fair case k = N/2 = 500. Right: A sample path of the urn for N = 104,
initialized with 4000 elements of type A, compared to the deterministic approximation (2). (Horizontal axis: time n
in units of N ; vertical axis: size An of the A–population in proportion to N .)

under which a B–sheep disappears (is killed!) whenever an A–sheep bleats, and vice-versa. That urn was
introduced by Williams and McIlroy in [39] and further studied by Kingman in [25], who observed that it
constitutes one of the simplest cases of Lanchester’s theory of conflicts [26]. Kingman and Volkov [27]
(see also [12, 18, 31]) then showed that the OK Corral urn can be described as a time-reversed version of
the classical Friedman urn, determined by the matrix

F =
(

0 1
1 0

)
,

which can itself be viewed as modelling “adverse-campaign effects” [14]. Our reduction of the Mabino-
gion urn to the Ehrenfest urn parallels Kingman and Volkov’s reduction (note that O = −F) and was
clearly inspired by it.

2 The physics of the Mabinogion urn
To get a feel of what goes on, we started by simulating the Mabinogion urn for various values of the
initial size of the A–population (at time 0) and for some fixed total population N ; see Figure 1. Several
properties of the model are already apparent there.

Consider first, for large N , the evolution of the urn initialized with k = baNc balls of type A, when
a < 1

2 . The A–group is at a disadvantage initially, and each transition of the urn reinforces the chances
of an A–element to become a B. The A–population must be, with high probability, doomed to extinction,
with the time for this to happen being O(N) in probability. Indeed, with An the size of the A–population
at time n, consider the renormalized quantity

X(t) :=
1
N

E
[
AbNtc

]
.
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Heuristically, for large values of N , the evolution of the process should be well approximated by the
differential equation

d

dt
X(t) = 2X(t)− 1, X(0) = a, (1)

whose solution is

X(t) =
1
2
− e2t

(
a− 1

2

)
.

In particular, this curve hits the horizontal line at abscissa

τ(a) =
1
2

log
1

1− 2a
,

leading us to infer for the mean value of the time T to reach absorption:

E[TbaNc] ∼ τ(a)N. (2)

For instance, for a = 0.25 and a = 0.4, we expect the A–extinction time to be close to 0.35N and
0.8N , respectively. Figure 1 [right] shows the approximation to be stunningly close to reality, in the case
a = 0.4.

For an initial size a > 1
2 , it is symmetrically theBs that are doomed to disappear afterO(N) steps. That

theAs could still win can only occur as a long sequence of abnormally favorable choices, corresponding in
essence to a large deviation situation for a sequence of Bernoulli trials. We may thus expect the probability
of reversing the opinion of a majority (which initially dominates by a fixed percentage) to be exponentially
small.

For the fair Mabinogion urn where a = 1
2 , there are obviously equal chances for the A or B to win.

However, as is apparent from Figure 1 [left], where four such trajectories are plotted, the time till absorp-
tion becomes appreciably longer. There is a prolonged period of exchanges of influences, till eventually
irregularities in the distribution of a (nearly) fair coin give a definite advantage to one of the two groups,
which will from then on follow a deterministic trajectory. Indeed, we shall quantify the absorption time
in that case to be O(N logN) in probability.

In the sequel, we precisely justify these empirical observations and provide explicit asymptotic forms
for the various quantities involved. Everything is based on a combinatorial duality between the Mabino-
gion urn and the Ehrenfest urn, which is detailed in Section 3, resulting in Theorem 1. We then analyse the
“unfair” Mabinogion urn in Section 4, which corresponds to a fixed imbalance between the initial sizes of
the two populations. We prove in this case that the probability of reversing the majority is exponentially
small, with an explicit rate provided by Theorem 2. Also, the time till absorption is on average O(N),
with a standard deviation of O(

√
N) and a limit law of the Gaussian type; see Theorem 3. For the “fair”

Mabinogion urn, examined in Section 5, the scaling is different: the time till absorption turns out to be
O(N logN) on average, with a limit distribution akin to an extreme-value statistics; see Proposition 2 and
Theorem 4.

3 Analytic solution of the Mabinogion urn
The main purpose of this section is to provide explicit formulae for the probability distribution of the
stopping time of the Mabinogion urn process (Theorem 1 below). These arise, via a duality principle
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presented in Subsection 3.1, from generating function solutions associated to the Ehrenfest urn, which
are derived in Subsection 3.2. Such a generating function approach to the Ehrenfest urn departs from the
standard linear algebra methods introduced by Kac [22] and followed by most subsequent authors.

First a few notations. Under the Mabinogion model M, the size of the population (of sheep, balls)
remains a constant, which we consistently denote by N . At time n, i.e., after n transitions of the Markov
chain, the urn containsAn (respectivelyBn) elements of typeA (respectively, of typeB) and the (random)
vector (An, Bn) is called the urn composition at time n. The initial conditions are written as

A0 = k, B0 = N − k.

The main quantity of interest is the random variable T ≡ Tk representing the time needed to reach
absorption with all elements being of type B, and we agree that T = +∞ in case the system stabilizes
with all elements in state A. This quantity will be called the A–extinction time. It depends on N as well
as k, the event (T < +∞) corresponding to elements of type B winning the game under the election
metaphor. We state:

Theorem 1 (Extinction time distribution for M) The probability distribution of the A–extinction time
for the Mabinogion urn initialized with (A0, B0) = (k,N − k) satisfies for all n ∈ Z≥0

P(T = n+ 1) =
N − 1
Nn+1

(
N − 2
k − 1

)
n! [zn](sinh z)k−1(cosh z)N−k−1. (3)

An equivalent formulation is

P(T = n+ 1) =
(

1− 1
N

)
n!

2N−2

N−1∑
`=1

K
(N−1)
k−1,`−1

(
1− 2`

N

)n

, (4)

where the “Kac coefficients” are given by

K
(N+1)
k,` = [y`](1 + y)N−k(1− y)k =

∑
j

(−1)j

(
N − k

`− j

)(
k

j

)
. (5)

There the notation [zn]f(z), which is common in combinatorial mathematics [17], represents the coef-
ficient of zn in the expansion of f at 0; in other words:

fn ≡ [zn]
∑
m

fmz
m.

In fact, our subsequent developments rely on the generating function expression (3). (The equivalent
form (4), which is a double alternating sum, is given for completeness. It plainly results from the identity

(sinh z)k(cosh z)N−k = 2NeNz(1− e−2z)k(1 + e−2z)N−k,

upon expanding in powers of ez , then in powers of z.) Theorem 1 results directly from Lemmas 1 and 2
below: see the discussion surrounding Equation (13) at the end of this section.
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Fig. 2: The transition diagrams of the Ehrenfest urn with N = 3 particles (top) and of the Mabinogion urn with
N + 2 = 5 sheep (bottom) illustrate the duality between the two models under time reversal.

3.1 The Ehrenfest–Mabinogion duality
The Mabinogion urn with N balls, M[N ] , is a Markov chain with transition probabilities

P(An+1 = `+ 1 | An = `) =
`

N
, P(An+1 = `− 1 | An = `) = 1− `

N
(0 < ` < N). (6)

For the Ehrenfest urn with N balls, E [N ], the transition probabilities are

P(Ãn+1 = `+ 1 | Ãn = `) = 1− `

N
, P(Ãn+1 = `− 1 | Ãn = `) =

`

N
(0 ≤ ` ≤ N), (7)

where Ãn represents the number of balls of the first type at time n. There is an obvious symmetry in these
formula, which is evident in the transition diagrams of Figure 2, adapted from [12, §6]. There is also a
difference due to boundary conditions(ii) in (6) and (7), which explains the fact that the correspondence
links E [N ] to M[N + 2]. Precisely, we have, regarding transitions between states, i.e., sizes of the A–
population:

Lemma 1 The Mabinogion and Ehrenfest urns are related through:

PM[N+2] (σ + 1 7→ 0 in n+ 1 steps) =
Nn(N + 1)
(N + 2)n+1

PE[N ] (0 7→ σ in n steps) . (8)

Proof: Consider the directed multigraph Γ[N ] whose vertices are the set {0, 1, . . . , N} and whose edges
are all the possible pairs of the form (j, j + 1) and (j, j − 1). Multiplicities are attached to edges, the
multiplicity of an edge (j, j + 1) being N − j, that of an edge (j, j − 1) being j. Diagrammatically, for
N = 3:

310 2 . (9)

Let W (N)
σ,n be the number of paths in Γ[N ] comprised of n steps, starting from vertex 0, and ending in

vertex σ. From the definition of the Markov chain E [N ] that underlies the Ehrenfest urn, we have

PE[N ] (0 7→ σ in n steps) =
1
Nn

·W (N)
σ,n ,

(ii) Extreme states are reflecting for the E–urn, absorbing for theM–urn.
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since the probability of any particular path is 1/Nn. Similarly, consider a sample path of length n+ 1 in
the Markov chain M[N + 2], starting from state σ + 1 and ending in state 0. Its last step has probability
(N + 1)/(N + 2). The path stripped of its last step is then such that its mirror image (this corresponds
to a time reversal transformation) is a path in Γ[N ] from 0 to σ, each such stripped path having weight
1/(N + 2)n. Thus, we have

PM[N+2] (σ + 1 7→ 0 in n+ 1 steps) =
N + 1
N + 2

· 1
(N + 2)n

·W (N)
σ,n .

The comparison of the last two displayed equations proves the statement. 2

3.2 Analysis of the Ehrenfest urn
Following Kac, the analysis of the Ehrenfest urn is traditionally developed from an explicit diagonalization
of the (N + 1)× (N + 1) “Kac matrix”,

Kac[N+1] =


0 N
1 0 N − 1

2 0 N − 2
. . . . . . . . .

N 0

 ,

which, up to normalization, is the matrix of the Markov chain E [N ]. Our approach relies instead on
properties exponential generating functions (EGFs). We believe that it provides the simplest possible
solution (via just two equations, (11) and (12) below) to the Ehrenfest urn, one on which our subsequent
developments are entirely based.

Lemma 2 The Ehrenfest urn with N balls satisfies

PE[N ] (0 7→ ` in n steps) =
n!
Nn

(
N

`

)
[zn] (sinh z)`(cosh z)N−`. (10)

Proof: For the urn E [N ], consider theN (distinguishable) balls to be numbered by integers of {1, . . . , N}.
Now let en be 1 if n is even and 0 otherwise, and set on = 1− en. Under the initial condition (Ã0, B̃0) =
(0, N), the probability of reaching at time n the state where balls numbered 1 to ` are in state A, the other
ones being in state B, is

πn =
1
Nn

∑
n1+···+nN=n

(
n

n1, . . . , nN

)
(on1 · · · on`

) ·
(
en`+1 · · · enN

)
. (11)

Reason: the multinomial counts the partitions of {1, . . . , n} into N possibly empty subsets, where the jth
subset corresponds to the instants at which ball j changes states; the product (on1 · · · on`

)·
(
en`+1 · · · enN

)
restricts the summation to those cases where balls 1 to ` change an odd number of times, the other balls
changing an even number of times. Now the key device is to appeal to exponential generating functions,

π(z) :=
∑
n≥0

πn
zn

n!
, cosh(z) =

∑
n≥0

en
zn

n!
, sinh(z) =

∑
n≥0

on
zn

n!
.
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The convolution equation (11) then translates into the EGF relation

π(z) =
[
(sinh z)`(cosh z)N−`

]
z→z/N

. (12)

The statement finally follows upon introducing the multiplier
(
N
`

)
, which counts the possible choices for

the identities of those ` balls that remain in state A. 2

We can now complete the proof of Theorem 1 as follows:
P(Tk = n+ 1) ≡ PM[N ] (k 7→ 0 in n+ 1 steps)

=
(N − 2)n(N − 1)

Nn+1
PE[N−2] (0 7→ k − 1 in n steps)

=
N − 1
Nn+1

(
N − 2
k − 1

)
· n![zn](sinh z)k−1(cosh z)N−k−1.

(13)

The first line expresses the definition of Tk. The second line results from the duality of Lemma 1. The
last line is a consequence of the analytic solution of the Ehrenfest urn in Lemma 2.

Note 1. (i) Modern theories of combinatorial analysis [13, 15, 34], especially the “labelled product” construction,
make it possible to write directly (12) as the EGF of ordered partitions having their first k blocks even and the other
blocks odd, this without ever a need to develop explicitly the convolution relations (11). In this way other parameters
of the Ehrenfest urn can be swiftly analysed [16].

(ii) The general analytic approach to balanced urn models developed in [12] is applicable. In that case the analysis
of the Ehrenfest urn is reduced to properties of the linear partial-differential operator

D = y∂x + x∂y

and its associated non-linear ordinary differential systemn
Ẋ = Y, Ẏ = X

o
,

leading directly to hyperbolic functions.
(iii) The bridge to solutions expressed in terms of ordinary, rather than exponential, generating functions is pro-

vided by the Laplace transform. The former are amenable to Flajolet’s theory of continued fractions [11]. One obtains
in this way a combinatorial interpretation of the identity,Z ∞

0

e−t(cosh zt)−N dt =
1

1− 1 ·N z2

1− 2 · (N − 1) z2

. . .

, (14)

first discovered by Stieltjes and Rogers [3, 16, 32, 36], themselves, to some extent, anticipated by Euler [8]. From
there, or from the expanded forms (4), it is apparent that the spectrum of the matrix Kac[N+1] is {−N,−N +

2, . . . , N − 2, N}. (Further interesting matrix connections are presented in [6, 9].) �
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4 The unfair Mabinogion urn
In accordance with previous notations, we consider the time T till A–extinction of the Mabinogion urn
M[N ] (all the elements have become of B–type), given that the initial composition of the urn is A0 = k,
B0 = N − k. We take T = +∞ to mean that no A–extinction takes place: the As win! We adopt
k = bxNc. In this section, the quantity x will invariably assume a fixed value different from 1/2: this
is the unfair case. Proceeding according to increasing calculational complexity, we first show that the
probability of reversing a majority (i.e., reaching A–extinction, when 1

2 < x < 1) is quantifiable and
exponentially small (Theorem 2); then that, for x < 1/2, the time till A–extinction is asymptotically
normal (Theorem 3).

4.1 Reversing a majority
If f(z) =

∑
fnz

n/n! is an exponential generating function, the Laplace transform integral provides a
representation of the corresponding ordinary generating function:∑

fnu
n =

∫ ∞

0

e−zf(zu) dz. (15)

On the other hand, the probabilities of the extinction time are described by Equation (3) of Theorem 1 as
coefficients of an exponential generating function. The probability generating function (PGF) of the finite
part of T , which is

φN,k(u) := E(uT ) ≡
∑
n≥0

P(T = n+ 1)un+1, (16)

equals then, by (15):

φN,k(u) = u
N − 1
N

(
N − 2
k − 1

) ∫ ∞

0

e−z sinh
(uz
N

)k−1

cosh
(uz
N

)N−k−1

dz. (17)

This representation is convergent when |<(u)| < N/(N − 2), for any k ∈ 1, . . . , N − 1. It can in partic-
ular be used to analyse the probability ωN,k of A–extinction. This probability, obtained by setting u = 1
in (17), is:

ωN,k ≡ φN,k(1) =
N − 1
N

(
N − 2
k − 1

) ∫ ∞

0

e−z sinh
( z

N

)k−1

cosh
( z

N

)N−k−1

dz. (18)

We have, when x = k/N satisfies x > 1/2:

Theorem 2 (Unfair urn: majority reversal) Consider the Mabinogion urn M[N ] with initial compo-
sition (A0, B0) = (k,N − k) and k = bxNc, where 1

2 < x < 1. The probability ωN,k of eventual
A–extinction is exponentially small:

− lim
N→∞

1
N

logωN,bxNc = log 2 + x log x+ (1− x) log(1− x). (19)

Proof: With the the change of variables y = e−2z/N , the representation (18) is first expressed as

ωN,k = 2−N+1(N − 1)
(
N − 2
k − 1

) ∫ 1

0

(1− y)k−1(1 + y)N−k−1 dy. (20)
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Set ξ = k/N , so that, for large N , the quantity ξ is very nearly equal to x, and define

JN (ξ) :=
∫ 1

0

(1− y)ξN (1 + y)(1−ξ)N dy

1− y2
.

The function (1− y)ξ(1 + y)1−ξ is decreasing over (0, 1), since ξ > 1/2.
The estimation of JN is a textbook application of the Laplace method for integrals involving large

powers, in the situation where the maximum of the integrand is located at one of the end-points—then
only a small neighbourhood of that end-point is expected to contribute significantly. Indeed, let E S (N)
denote any function that is exponentially small in N in the sense that

h(N) = E S (N) iff h(N) = O
(
exp(−CND)

)
, (21)

for some C,D > 0. Choose δ ≡ δ(N) such that Nδ → ∞ and Nδ2 → 0; we may for instance adopt
δ = N−3/5. We have, by monotonicity of the integrand:

JN (ξ) =
∫ δ

0

(1− y)ξN (1 + y)(1−ξ)N dy

1− y2
(1 + E S (N)) .

The integrand is of the form eNg(y), where the function

g(y) := ξ log(1− y) + (1− ξ) log(1 + y)

satisfies g(y) = (1− 2ξ)y +O(y2) for small y. Thus, locally expanding then completing the tails yields:

JN (ξ) =
∫ δ

0

e−N(2ξ−1)y dy
(
1 +O(Nδ2)

)
=

∫ ∞

0

e−N(2ξ−1)y dy
(
1 +O(N−1/5)

)
=

1
N(2ξ − 1)

(1 +O(N−1/5)).

It then proves safe to replace ξ by x, since error terms can be checked to be uniform with respect to ξ,
once ξ is confined to a small interval excluding 1

2 (we shall freely do so in what follows). We have thus
found that

ωN,k = 2−N+1

(
N − 2
k − 1

)
1

2x− 1
(1 + o(1)) . (22)

The stated estimate (19) results from here by the usual asymptotic approximation of the binomial coeffi-
cients

(
N
k

)
, whenever N and k are proportional. (Stirling’s formula leads classically and elementarily to

the entropy function.) 2

Note 2. (i) The expressions degenerate, as they should, as x approaches 1
2

.
(ii) Let eωN,k be the rough approximation (19) of the statement, namely,

eωN,k := exp (−N (log 2 + x log(x) + (1− x) log(1− x))) , x =
k

N
,
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and ω?
N,k the approximation of (22), namely,

ω?
N,k := 2−N+1

 
N − 2

k − 1

!
1

2x− 1
, x =

k

N
.

Here are typical numerical data, obtained for N = 104:

x 0.6 0.7 0.8 0.9

ωN,k 6.958 · 10−90 4.080 · 10−360 4.424 · 10−840 9.847 · 10−1602eωN,k 3.569 · 10−88 4.466 · 10−358 8.320 · 10−838 3.291 · 10−1559

ω?
N,k 6.976 · 10−90 4.083 · 10−360 4.426 · 10−840 9.850 · 10−1602.

The discrepancy for eωN,k, corresponds to a comparatively small factor that, in accordance with previous calculations,
is of polynomial growth in N . The binomial approximation ω?

N,k is extremely good. The merit of eωN,k is to provide
a simple-to-use formula that predicts the right order of the probabilities involved.

(iii) For the French sheep system evoked in the introduction (N = 6 · 107), the probability of winning against
a majority of 53%, 51%, and 50.1% are estimated by (22) to be respectively about 2 · 10−46,935, 8 · 10−5,215, and
4 · 10−54. �

4.2 Time till absorption

The analysis of the limit law of extinction time, in the unfair case x < 1
2 , again involves Laplace’s method,

albeit with a different geometry. The starting point is the integral representation (17) of the probability
generating function φN,k(u). When u = 1 and x < 1

2 , there is a unique maximum of the integrand, but
it is now located at an interior point of (0, 1). As in Subsection 4.1, only a small interval around this
maximum matters; one can then approximate the integrand by the exponential of a quadratic form. Next,
when u = eiτ , it proves possible to develop a perturbative analysis and estimate the value of φN,k(eiτ ).
With a suitable normalization, namely, τ = t/

√
N with t fixed, one gains access in this way to the

characteristic function of the (properly scaled) A–extinction time T . Convergence to the characteristic
function e−t2/2 of a standard normal variable is then sufficient to conclude. We carry out this programme
in the proof of the following statement:

Theorem 3 (Unfair urn: Gaussian limit law) Consider the Mabinogion urn M[N ] with initial compo-
sition (A0, B0) = (k,N − k) and k = bxNc, where 0 < x < 1

2 . The A–extinction time T converges in
distribution to a normal: for all t ∈ R, one has

lim
N→∞

P
(
T − τ(x)N
σ(x)

√
N

≤ t

)
=

1√
2π

∫ t

−∞
e−w2/2 dw, (23)

where the normalizing quantities σ(x), τ(x) are

τ(x) :=
1
2

log
1

1− 2x
, σ(x)2 =

1
2

log(1− 2x) +
x(1− x)
(1− 2x)2

. (24)



560 Philippe Flajolet and Thierry Huillet

Proof: The change of variable y = e−2zu/N in (17) yields an integral representation of φN,k(u), which
is valid for u ∈ (0, 1) and, by analytic continuation, to larger regions of the complex u-plane:

φN,k(u) =
N − 1
2N−1

(
N − 2
k − 1

)
Jn(x, u)

JN (x, u) :=
∫ 1

0

yN(1/u−1)/2(1− y)xN (1 + y)(1−x)N dy

1− y2
.

(25)

(We consider directly the case k/N = x.) We propose to estimate the characteristic function

E
[
eitT/

√
N

]
= φN,k

(
eit/

√
N

)
,

for an arbitrary fixed t ∈ R; this forces the quantity u = eit/
√

N in the PGF to be close to 1.
First, we rewrite the main integral as

JN (x, u) =
∫ 1

0

yN(1/u−1)/2eNg(y) dy

1− y2
,

where the function g(y) is

g(y) = x log(1− y) + (1− x) log(1 + y).

A calculation of the derivative shows that g(y) is unimodal, with a maximum at

y0 = 1− 2x,

which, for x < 1
2 , is interior to the interval (0, 1).

For u = 1, we have (with the notation (21))

JN (x, 1) =
∫ y0+δ

y0−δ

eNg(y) dy

1− y2
+ eNg(y0)E S (N), (26)

which, by unimodality, holds for fixed δ and remains valid as long as Nδ2 → ∞ sufficiently rapidly.
Imposing nextNδ3 → 0 makes it possible to reduce g(y) to its quadratic expansion near y0. Accordingly,
we choose δ = N−2/5, which satisfies both previous requirements. We have, for |y − y0| < δ,

eNg(y) = eNg(y0)+N(y−y0)
2g′′(y0)/2

(
1 +O(N−1/5)

)
, (27)

where g′′(y0) = −(4x(1 − x))−1. Setting y − y0 = w/
√
N and completing the tails then provides the

asymptotic form

JN (x, 1) =
√

2π√
−Ng′′(y0)

eNg(y0)

1− y2
0

(
1 +O(N−1/5)

)
.

Observe finally that, when u = 1, Theorem 1 implies the estimate φN,k(1) = 1− o(1) (in fact, the error
term o(1) is exponentially small by Theorem 2). Thus, we also have, without new computations:

N − 1
2N−1

(
N − 2
k − 1

) √
2π√

−Ng′′(y0)
eNg(y0)

1− y2
0

=
(
1 +O(N−1/5)

)
. (28)
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We can now proceed with the case u = eit/
√

N and adopt the same split of the integration domain
into the small interval [y0 − δ, y0 + δ] and its complement, with (still) δ = N−2/5. For y restricted to
[y0 − δ, y0 + δ], the powers of y are estimated by

yN(u−1−1)/2 = exp
(
N

2
(e−it/

√
N − 1) log y

)
= y−it

√
N/2y−t2/4

(
1 +O(N−1/2)

)
,

(29)

as follows from a three-term expansion of eit/
√

N . In the second line of (29), the first factor is of modulus
equal to 1, no matter what the values of y ∈ (0, 1) and t ∈ R are. The second one remains O(1). Thus,
proceeding as in (26), we obtain

JN

(
x, eit/

√
N

)
=

∫ y0+δ

y0−δ

y−it
√

N/2y−t2/4(1 +O(N−1/2))eNg(y) dy

1− y2
+ eNg(y0)E S (N).

Making use of (27) and (29) gives

JN

(
x, eit/

√
N

)
=

eNg(y0)

1− y2
0

∫ y0+δ

y0−δ

y−it
√

N/2y−t2/4eN(y−y0)
2g′′(y0)/2(1 + εN )

dy

1− y2

+ eNg(y0)E S (N),
(30)

where εN = O(N−1/5).
We are now ready for the final move. Set y − y0 = w/

√
N , which implies that w varies in the interval

[−N−1/10, N−1/10]. We only need to expand again the integrand of (30) (with some care) and collect
the main terms:

y−t2/4−it
√

N/2 = y
−t2/4−it

√
N/2

0 exp
(
− itw

2y0

) (
1 +O(N−1/10)

)
.

Inserting this last approximation into (30) and completing the tails then yields

JN

(
x, eit/

√
N

)
∼

[
eNg(y0)y

−t2/4−it
√

N/2
0

(1− y2
0)
√
N

]
·
∫ +∞

−∞
exp

(
− itw

2y0
+
w2

2
g′′(y0)

)
dw .

(31)

The integral can be evaluated by shifting vertically the integration line and making use of Cauchy’s The-
orem. To wit: ∫ +∞

−∞
e−γw2/2+iξw dw = e−ξ2/(2γ)

√
2π
γ

(γ > 0). (32)

In summary, from (25), (28), (31), and (32), we find:

φN,k

(
eit/

√
N

)
∼ exp

(
it
√
Nτ(x)

)
· exp

(
− t

2

2

[
1
2

log y0 +
1

4y2
0 |g′′(y0)|

])
.
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Fig. 3: The histograms of the distribution of the A–extinction time in the case N = 400, for k = 80, x = 0.2 [left]
and k = 120, x = 0.3 [right], compared to a Gaussian density with matching mean and variance.

This last estimate is enough to guarantee that the random quantity (with τ as in (24))

T ? :=
T −Nτ(x)√

N
,

has its characteristic function satisfying

E
(
eitT ?

)
∼ exp

(
− t

2

2

[
1
2

log(1− 2x) +
x(1− x)
(1− 2x)2

])
.

The continuity theorem for characteristic functions [2], then implies that T ? is asymptotically normally
distributed. The proof is now complete. 2

Note 3. (i) The speed of convergence to the Gaussian limit, as measured by the distance betwen the distribution
functions in (23) can be bounded from above thanks to the Berry-Esseen inequalities [28]: our proof implies a speed
of O(N−1/10). It is probably the case that, by pushing all expansions one step further, one could obtain the actual
speed as being about O(N−1/2).

(ii) Numerical calculations indicate that a local limit law holds: see Figure 3. In other words, the individual prob-
abilities P(T = Nτ(x) + λσ(x)

√
N) are asymptotically expressible in terms of the Gaussian density e−λ2/2/

√
2π:

histograms converge to the famous bell-shaped curve. A plausible path to the proof is the saddle point method applied
to Cauchy coefficient integrals, in the style of what is done in the next section for the fair case.

(iii) Moments can be obtained by differentiating under the integral sign in (25), then setting u = 1. What results
are integral representations akin to the ones treated in the previous subsection (with extra polynomial factors in z

now entering the integrand). Laplace’s method is again instrumental in analysing these. For instance, we find in this
way that E(T ) ∼ τ(x)N , E(T 2) ∼ τ(x)2N2, V(T ) ∼ σ(x)2N , and so on. Thus, the constants τ, σ are not just
normalizing constants for the Gaussian limit law; they also occur in the asymptotic form of the moments. �
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5 The fair Mabinogion urn
We now analyse the case of a fair urn, which has a total population of even size,N = 2ν, and is initialized
with an equal number of balls of each type: (A0, B0) = (ν, ν). The random variable of interest is now
the random variable T̂ , which represents the “absolute” time till absorption, corresponding to extinction
of either the A–balls or the B–balls. The quantity T̂ is finite with probability 1 (contrary to the time T
till A-extinction, considered previously, which is a defective random variable). In Subsection 5.1, we
characterize the distribution of T̂ as a sum of geometrics with quadratically varying rates (Proposition 1).
In Subsection 5.2, we establish the existence of a limit distribution, which is of a double-exponential type
and prove a local limit theorem (Theorem 4); this limit law can also be described as a sum with harmonic
weights of exponential variables.

5.1 Exact distribution of the absolute extinction time.
By the symmetry inherent in the fair case, we have

φ̂2ν,ν(u) := E(eu bT ) = 2φ2ν,ν(u). (33)

As we are going to see the distribution of T̂ admits of a surprising form. A random variable X is said
to be geometric with rate λ if

P(X = k) =
λk

1− λ
, k ∈ Z≥0.

The PGF of such a variable is

E(uX) ≡
∑
k≥0

P(X = k)uk =
1− λ

1− λu
;

it has mean E(X) = λ/(1− λ) and variance V(X) = λ/(1− λ)2. We state:

Proposition 1 In the fair case N = 2ν even and an initial composition (A0, B0) = (ν, ν), the PGF of
the absolute extinction time T̂ is

φ̂2ν,ν(u) =



uν

ν/2∏
j=1

(
1−

(
2j−1

ν

)2
)

(
1−

(
2j−1

ν

)2
u2

) ν even

uν

(ν−1)/2∏
j=1

(
1−

(
2j
ν

)2
)

(
1−

(
2j
ν

)2
u2

) ν odd.

Equivalently, with G[λ] representing a geometric random variable of rate λ, the following distributional
equivalence holds (with independence of the various geometric variables involved):

T̂
d≡


ν + 2

ν/2∑
j=1

G

[(
2j − 1
ν

)2
]

ν even

ν + 2
(ν−1)/2∑

j=1

G

[(
2j
ν

)2
]

ν odd.
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Proof: The generating function of T̂ is obtained by setting N = 2ν and k = N − k = ν in (25), then
making use of (33):

φ̂2ν,ν (u) =
2ν − 1
22ν−2

(
2ν − 2
ν − 1

) ∫ 1

0

yν(u−1−1) (
1− y2

)ν−1
dy.

The change of variable Y = y2 reduces the integral to an Eulerian Beta function [37],

B(α, β) :=
∫ 1

0

tα−1(1− t)β−1 dt =
Γ(α)Γ(β)
Γ(α+ β)

,

so that

φ̂2ν,ν (u) =
2ν − 1
22ν−1

(
2ν − 2
ν − 1

)
B

(
ν

2
(
u−1 − 1

)
+

1
2
, ν

)
=

2ν − 1
22ν−1

(
2ν − 2
ν − 1

)Γ
(
− (ν−1)

2 + ν
2u

)
Γ(ν)

Γ
(

ν+1
2 + ν

2u

) .

The basic functional property of the Gamma function, Γ(s+ 1) = sΓ(s), then gives us a rational form

φ̂2ν,ν (u) =
2ν − 1
22ν−1

(2ν − 2)! 2νuν

(ν − 1)!

ν∏
`=1

(ν − u (ν + 1− 2`))−1

= uν
ν∏

`=1

1− a`

1− ua`
, (34)

where a` = (2`− ν − 1) /ν varies in the interval −{(ν − 1) /ν, (ν − 1) /ν} ⊂ [−1, 1]. The terms
corresponding to values of a` that are symmetric around 0 can then be grouped together. This eventually
leads us to distinguish two cases, depending upon the parity of ν, and the statement follows by simple
algebra. 2

Note 4. It is a general theorem(iii) that, for a discrete-time birth-and-death chain on the state space {0, . . . , d}, started
at 0 and having d as an absorbing state, the absorption time has a probability generating function of the form

ud
d−1Y
j=0

1− θj

1− θju
, (35)

where the θj are real numbers of the interval (−1, 1) that are related to spectral properties of the chain’s kernel.
(Thus, the absorption time is distributed as a sum of “geometric” random variables, provided we allow “geometric”
random variables of negative rates.) This theorem is enunciated and proved by Fill in [10, Th. 2], who observes
that it constitutes the discrete-time analogue of a classical theorem relative to continuous-time processes and usually
attributed to Keilson (see [23, §1] and Theorem 5.1A of [24].) Our Proposition 1 can thus be regarded as a particular
incarnation of the Keilson–Fill Theorem.

We also observe that the Keilson–Fill Theorem is itself logically equivalent to the enumeration of weighted lattice
paths that cross a strip: by a general result of Flajolet [11, §3.1], the corresponding generating function is invariably
proportional to the inverse of a polynomial. In the case of the Ehrenfest–Mabinogion urn, the polynomials are none
other than the denominators of the convergents of the continued fraction (14). �

(iii) We are grateful to Jim Fill (private communication, April 2008) for these remarks.
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5.2 Limit distribution.
Based on the formulae of Proposition 1, it is now a simple task to derive explicit expressions for moments
of the absolute extinction time T̂ . The expressions involve either the usual ψ function [37, p. 241]

ψ(s) :=
d

ds
log Γ(s) = −γ − 1

s
+

∞∑
m=1

(
1
m
− 1
m+ s

)
,

or the generalized harmonic numbers

H(a)
n =

n∑
m=1

1
ma

,

for (small) integral values of the parameter a. In particular, Hn ≡ H
(1)
n is the usual harmonic number.

We have:

Proposition 2 In the fair case, N = 2ν, the mean and variance of the absolute absorption time T̂ satisfy:

E(T̂ ) =
ν

2

(
ψ

(
ν +

1
2

)
+ 2 log 2 + γ

)
= ν

[
H2ν −

1
2
Hν

]
∼

ν→∞

ν

2
(log ν + 2 log 2 + γ) +

1
48ν

+O

(
1
ν3

)
;

V(T̂ ) =
π2ν2

8
− ν

2

(
ψ

(
ν +

1
2

)
+ 2 log 2 + γ

)
− ν2

4
ψ′

(
ν +

1
2

)
= ν2

[
H

(2)
2ν − 1

4
H(2)

ν

]
− ν

[
H2ν −

1
2
Hν

]
∼

ν→∞

π2ν2

8
− ν

2

(
log ν + 2 log 2 + γ +

1
2

)
+O

(
1
ν3

)
.

Thus, the mean is asymptotic to 1
2ν log ν and the standard deviation is of the order of ν. This infor-

mation makes it possible to determine the region where most of the probability mass is concentrated, and
then, after a proper scaling, determine the shape of the limit law of absorption time.

Theorem 4 (Fair urn: local limit) Consider the Mabinogion urn M[2ν] in the fair case (A0, B0) =
(ν, ν). Let ν, n→∞ in such a way that

n =
1
2
ν log ν + tν. (36)

Then, the absolute extinction time T̂ satisfies, for t in a compact set of R and n− ν even,

P
(
T̂ = n+ 1

)
∼ 2
ν
· Ce−te−e−2t

, (37)

with C = 2/
√
π.
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Proof: For the sake of notational simplicity, we shall analyse the urn of size N = 2ν + 2, in the fair case
(A0, B0) = (ν + 1, ν + 1), the translation ν 7→ ν − 1 being then an easy task. The starting point is the
formula (3) of Theorem 1, which gives, relative to M[2ν + 2] with k = ν + 1:

P(T̂ = n+ 1) = 2 · 2ν + 1
2ν + 2

n!
(ν + 1)n2ν

(
2ν
ν

)
[zn](sinh z)ν . (38)

(The prefactor 2 takes care of the symmetry due to extinction of either the As or the Bs; also the dupli-
cation formula for hyperbolic sine has been used.) What is needed is thus an estimation of coefficients of
large index (n) in a large power (ν) of the fixed function sinh z, in the regime n ∼ 1

2ν log ν. This problem
is approached by means of Cauchy’s coefficient formula

[zn](sinh z)ν =
1

2iπ

∫
γ

(sinh z)ν

zn

dz

z
, (39)

where we choose γ to be a circle centred at the origin of a yet unspecified positive radius.
We henceforth impose that n is close enough to 1

2ν log ν and postulate at this stage the following crude
conditions:

2
5

log ν ≤ n

ν
≤ 3

5
log ν. (40)

Also, since n− ν is assumed to be even, we have, by symmetry,

[zn](sinh z)ν =
1
iπ

∫
γ+

(sinh z)ν

zn

dz

z
, (41)

where γ+ is the subset of γ contained in the half-plane <(z) ≥ 0. Since n and ν are not proportional, the
usual treatment of large coefficients in large powers (as in [13, §VIII.8]) is not applicable. Nonetheless, it
is still natural to opt for a saddle-point analysis, following the general principles of this classical method [4,
13, 29]. Accordingly, we shall integrate along a circle of radius λ such that

d

dz

(sinh z)ν

zn

∣∣∣∣
z=λ

= 0; that is: λ cothλ =
n

ν
. (42)

Given the range condition (40), we have λ→ +∞, and indeed

λ
(
1 + 2e−2λ +O

(
e−4λ

))
=
n

ν
, (43)

which implies that λ ∼ n/ν; in particular, λ = O(log ν) and λ = O(log n).
It will prove convenient to set

Kν,n(ϕ) :=
∫

γ(ϕ)

(sinh z)ν

zn

dz

z
, where γ(ϕ) =

{
λeiθ

∣∣ − ϕ ≤ θ ≤ ϕ
}
.

Elementary trigonometry yields∣∣sinh(λeiθ)
∣∣2 = cosh2(λ cos θ)− cos2(λ sin θ). (44)
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Thus, for ν large enough, one has

Kν,n(π/2)−Kν,n(π/4) = O
((

0.51 eλ/
√

2
)ν

λ−n
)
, (45)

which is exponentially small compared to the value of the integrand at λ; namely, (sinhλ)νλ−n.
Next, we fix a small angle

θ0 = n−2/5,

chosen such that nθ20 → ∞ and nθ30 → 0. Trivial bound combined with the relation (44) provide the
estimate

Kν,n(π/4)−Kν,n(θ0) = O
(
coshν(λ cos θ0)λ−n

)
= (sinhλ)νλ−nE S (n), (46)

where the notation (21) for exponentially small terms is employed.
From (45) and (46), we thus expect that only the contribution along the small circular arc γ(θ0) should

matter. There, as it is typically the case, local expansions suffice to estimate the integral. We then define

h(z) = ν log sinh z − n log z,

so that
h′(z) = ν coth z − n

z
, h′′(z) = − ν

sinh2 z
+
n

z2
,

and, as we know, λ is defined by h′(λ) = 0. In addition, it is easily verified that h′′′(z) = O(n/λ3) on
γ(θ0). Consequently, for z ∈ γ(θ0),

h(z) = h(λ) +
1
2
h′′(λ)(z − λ)2 +O(nθ30), (47)

and the error term is O(n−1/5).
By analogy with (21), we let P S (n) denote any quantity that is polynomially small in n, in the sense

that
f(n) = P S (n) iff f(n) = O(n−L), (48)

for some L > 0. We then have, from (47):

Kν,n(θ0) = eh(λ)

∫
γ(θ0)

exp
(

1
2
h′′(λ)(z − λ)2

)
(1 + P S (n))

dz

z

=
sinhν λ

λn+1

∫
γ(θ0)

exp
(

1
2
h′′(λ)(z − λ)2

)
(1 + P S (n)) dz.

(49)

The integral in (49) is now estimated by setting z = λ+ it, and then completing the integration range to
t ∈ (−∞,+∞); this at the expense of exponentially small error terms. In this way, we obtain∫

γ(θ0)

exp
(

1
2
h′′(λ)(z − λ)2

)
dz = i

∫ +∞

−∞
exp

(
−1

2
h′′(λ)t2

)
dt(1 + E S (n))

= i

√
2π

h′′(λ)
(1 + E S (n)).

(50)
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Fig. 4: The histogram of the distribution of the absolute extinction time bT ?
ν of a fair urn, normalized according

to (54) for N = 2ν = 200 [polygonal line] and compared to the limit density [continuous curve] scaled according to
Eq. (37).

Then, (49) and (50) combined yield

Kν,n(θ0) =
sinhν λ

λn

√
2
πn

(1 + P S (n)). (51)

We can now complete the proof: by (38), (41), (45), (46), and (51), we find:

P(T̂ = n+ 1) = 2
n!

(ν + 1)n2ν

(
2ν
ν

)
sinhν λ

λn

√
2
πn

(1 + P S (n)). (52)

It is then a routine (but tedious) matter to verify the statement from (52), using the basic relations n =
1
2
ν log ν + tν

λ
(
1 + 2e−2λ +O(e−4λ)

)
=
n

ν
,

as well as standard asymptotic expansions like

log sinh z = z − log 2− e−2z +O
(
e−4z

)
and Stirling’s formula. 2

Figure 4 shows the excellent agreement between the exact probabilities and the continuous limit, even
for a value of ν as low as 100.
Note 5. (i) By summation of individual probabilities, the local limit law expressed by the statement implies conver-
gence in distribution of the normalized version of bT ≡ bTν ,

1

ν

„bTν −
1

2
ν log ν

«
d→ bT∞, (53)
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where bT∞ has the density Ce−te−e−2t

expressed by (37). (The factor 2 in (37) corresponds to the fact that only half
of the probabilities are nonzero, due to parity constraints.) As is apparent from the shape of this density, the limit law
is of an “exp-gamma(1/2)” type, in the sense that bT∞ = − 1

2
log X , where X is gamma(1/2) distributed:

P(X ∈ (x, x + dx)) =
1√
π

e−xx−1/2dx.

(ii) The weaker convergence-in-distribution result (53) can be directly derived from Proposition 2 by means of
characteristic functions. Indeed, by setting u = eit/ν in bφ2ν,ν(u) as given by (34) and normalizing, we find that the
random variable bT ?

ν :=
1

ν

„bTν −
1

2
ν log ν

«
(54)

has its characteristic function that satisfies

E
“
eit bT ?

ν

”
= ν−it/2bφ2ν,ν

“
eit/ν

”
∼

ν→∞
ν−it/2

νY
`=1

2`− 1

2`− 1− it
. (55)

On the other hand, a classical limit formula for the Gamma function is

Γ(s) = lim
ν→∞

ν! νs

s(s + 1) · · · (s + ν)
, s ∈ C \ Z≤0. (56)

A comparison of (55) and (56) then shows that

lim
ν→∞

E
“
eit bT ?

ν

”
= Φ(t), where Φ(t) =

Γ
`

1−it
2

´
Γ
`

1
2

´ . (57)

Thus, by the continuity theorem for characteristic functions, the normalized random variable bT ?
ν converges in distri-

bution to a random variable, which admits Φ(t) as its characteristic function. (It can be verified independently that
Φ(t) is the characteristic function of a variable whose density is Ce−te−e−2t

.)
(iii) From the developments of Part (ii), especially Eq. (55), there also results that bT∞ is characterized in distri-

bution as the limit of a weighted sum of independent identically distributed random variables E`,

νX
`=1

1

2`− 1
E` −

1

2
log ν

d→ bT∞,

where the E` are exponential of rate 1; that is, P(E` ≤ x) = 1 − e−x. This last expression implies that bT∞ has a
property known as self-decomposability(iv), which means that bT∞ is infinitely divisible; see [35, Prop. 6.2 and 6.3].
Note that a shifted version of 2bT∞ has the simple form

νX
`=1

w`(E` − 1), w` =
1

`− 1/2
.

Similar sums of exponentials appear in works by Simatos, Robert, and Guillemin [33], relative to weights w` = 1/`,
as well as by Biane, Pitman, and Yor [1], in the case of quadratic weights, w` = 1/`2. �

(iv) A random variable X is self-decomposable if, for each c ∈ (0, 1), there exists a random variable Rc such that X
d
≡ cX′ +

Rc, where X
d
≡X′ and X′, Rc are independent. This property, which is weaker than stability, is known to imply infinite

divisibility [35].
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