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Quivers and the Euclidean algebra
(Extended abstract)

Alistair Savage†

University of Ottawa, Ottawa, Ontario, Canada

Abstract. We show that the category of representations of the Euclidean group E(2) is equivalent to the category of
representations of the preprojective algebra of the quiver of type A∞. Furthermore, we consider the moduli space
of E(2)-modules along with a set of generators. We show that these moduli spaces are quiver varieties of the type
considered by Nakajima. These identifications allow us to draw on known results about preprojective algebras and
quiver varieties to prove various statements about representations of E(2). In particular, we show that E(2) has
wild representation type but that if we impose certain combinatorial restrictions on the weight decompositions of a
representation, we obtain only a finite number of indecomposable representations.

Résumé. Nous montrons que la catégorie des représentations du groupe d’Euclide E(2) est équivalente à la catégorie
des représentations de l’algèbre préprojective de type A∞. De plus, nous considérons l’espace classifiant de modules
de E(2) avec un ensemble de générateurs. Nous montrons que ces espaces sont de variétés de carquois de Nakajima.
Cette identification nous permet d’utiliser des résultats des algèbres préprojectives et des variétés de carquois pour
prouver des affirmations sur des représentations de E(2). En particulier, nous montrons que le type de répresentations
de E(2) est sauvage mais si nous imposons des restrictions aux poids d’une représentation, il y a seulement un nombre
fini de représentations qui ne sont pas décomposables.
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1 Introduction
The Euclidean group E(n) = Rn o SO(n) is the group of isometries of n-dimensional Euclidean space.
The study of these objects, at least in cases n = 2, 3, predates even the concept of a group. In this paper we
will focus on the Euclidean group E(2). Even in this case, much is still unknown about the representation
theory.

All finite-dimensional irreducible unitary representations of E(2) are one-dimensional. The infinite-
dimensional unitary irreducible representations have received considerable attention (see [1, 2, 3]). There
also exist finite-dimensional nonunitary indecomposable representations and much less is known about
these. However, they play an important role in mathematical physics and the representation theory of the
Poincaré group. The group E(2) also appears in the Chern-Simons formulation of Einstein gravity in
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2 + 1 dimensions. In the case when the space-time has Euclidean signature and the cosmological constant
vanishes, the phase space of gravity is the moduli space of flat E(2)-connections.

In the current paper, we relate the representation theory of the Euclidean group E(2) to the represen-
tation theory of preprojective algebras of quivers of type A∞. In fact, we show that the categories of
representations of the two are equivalent. Furthermore, we consider the moduli space of representations
of E(2) along with a set of generators. We show that these moduli spaces are quiver varieties of the
type considered by Nakajima in [12, 13]. These identifications allow us to draw on known results about
preprojective algebras and quiver varieties to prove various statements about representations of E(2). In
particular, we show that the Lie algebra of E(2) is of wild representation type but that if we impose
certain restrictions on the weight decomposition of a representation, we obtain only a finite number of
indecomposable representations.

2 The Euclidean algebra
Let E(2) = R2 o SO(2) be the Euclidean group of motions in the plane and let e(2) be the complexifi-
cation of its Lie algebra. We call e(2) the (three-dimensional) Euclidean algebra. It has basis {p+, p−, l}
and commutation relations

[p+, p−] = 0, [l, p±] = ±p±.

Since SO(2) is compact, the category of finite-dimensional E(2)-modules is equivalent to the category
of finite dimensional e(2)-modules in which l acts semisimply with integer eigenvalues. Will will use the
term e(2)-module to refer only to such modules. For k ∈ Z, we shall write Vk to indicate the eigenspace
of l with eigenvalue k (the k-weight space). Thus, for an e(2)-module V , we have the weight space
decomposition

V =
⊕
k

Vk, Vk = {v ∈ V | l · v = kv}, k ∈ Z

and
p+Vk ⊆ Vk+1, p− ⊆ Vk−1.

We may form the tensor product of any representation V with the character χn for n ∈ Z. Here χn is
the one-dimensional module C on which p± act by zero and l acts by multiplication by n. Then a weight
space Vk of weight k becomes a weight space Vk ⊗ χn of weight k + n. In this way, we may “shift
weights” as we please.

For k ∈ Z, let ek be the element of (Z≥0)Z with kth component equal to one and all others equal to
zero. For an e(2)-module V we define

dimV =
∑
k∈Z

(dimVk)ek.

3 Preprojective algebras
For a, b ∈ Z with a ≤ b, let Qa,b be the quiver with vertex set I = {k ∈ Z | a ≤ k ≤ b} and arrows
H = {hi | a ≤ i ≤ b − 1} with out(hi) = i and in(hi) = i + 1. The quiver Q∞ has vertex set I = Z
and arrows H = {hi | i ∈ Z} with out(hi) = i and in(hi) = i+ 1.
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Let Q = (I,H, out, in) be a quiver without loops and let Q∗ = (I,H∗, out∗, in∗) be the double quiver
of Q. By definition,

H∗ = {h | h ∈ H} ∪ {h̄ | h ∈ H},
out∗(h) = out(h), in∗(h) = in(h), out∗(h̄) = in(h), in∗(h̄) = out(h).

From now on, we will write in and out for in∗ and out∗ respectively. Since in∗ |H = in and out∗ |H =
out, this should cause no confusion.

For i ∈ I let
ri =

∑
h∈H, out(h)=i

h̄h−
∑

h∈H, in(h)=i

hh̄

be the Gelfand-Ponomarev relation associated to i. The preprojective algebra P (Q) corresponding to Q
is defined to be

P (Q) = CQ∗/J

where J is the two-sided ideal generated by the relations ri for i ∈ I .
Let V(I) denote the category of finite-dimensional I-graded vector spaces with morphisms being linear

maps respecting the grading. A representation of the quiver Q∗ is an element V ∈ V(I) along with a
linear map xh : Vout(h) → Vin(h) for each h ∈ H∗. We let

rep(Q∗, V ) =
⊕
h∈H∗

HomC(Vout(h), Vin(h))

be the affine variety consisting of representations of Q∗ with underlying vector space V. A representation
of a quiver can be naturally interpreted as a CQ∗-module structure on V. For a path p = hnhn−1 . . . h1

in Q∗, we let
xp = xhnxhn−1 · · ·xh1 .

We say a representation x ∈ rep(Q∗, V ) satisfies the relation
∑k
j=1 ajpj , if

k∑
j=1

ajxpj
= 0.

If R is a set of relations, we denote by rep(Q∗, R,V) the set of all representations in rep(Q∗,V) satisfy-
ing all relations in R. This is a closed subvariety of rep(Q∗,V). Every element of rep(Q∗, J,V) can be
naturally interpreted as a P (Q)-module structure on V and so we also write

mod(P (Q),V) = rep(Q, J,V)

for the affine variety of P (Q)-modules with underlying vector space V.
The algebraic group GV =

∏
i∈I GL(Vi) acts on mod(P (Q),V) by

g · x = (gi) · (xh) = (gin(h)xhg
−1
out(h))h.
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Two P (Q)-modules are isomorphic if and only if they lie in the same orbit. For a dimension vector
v ∈ (Z≥0)I , let

Vv =
⊕
i∈I

Cvi , mod(P (Q),v) = mod(P (Q),Vv), Gv = GVv .

Then we have that mod(P (Q),V) ∼= mod(P (Q),dim V) for all V ∈ V(I). Therefore, we will blur the
distinction between mod(P (Q),V) and mod(P (Q),dim V).

We say an element x ∈ mod(P (Q),V) is nilpotent if there exists an N ∈ Z>0 such that for any
path p of length greater than N , we have xp = 0. Denote the closed subset of nilpotent elements of
mod(P (Q),V) by ΛV,Q and let Λv,Q = ΛVv,Q. The varieties ΛV,Q are called nilpotent varieties or
Lusztig quiver varieties. Lusztig [11] has shown that the ΛV,Q have pure dimesion dim(rep(Q,V)) and
that their irreducible components are in one-to-one correspondence with a basis of a certain weight space
of the lower half of the enveloping algebra of g, the Kac-Moody algebra whose Dynkin graph is the
underlying graph of Q.

Proposition 3.1 For a quiver Q, the following are equivalent:

1. P (Q) is finite-dimensional,

2. ΛV,Q = mod(P (Q),V) for all V = V(I),

3. Q is a Dynkin quiver (i.e. its underlying graph is of ADE type).

Proof: The equivalence of (1) and (3) is well-known (see for example [14]). That (2) implies (3) was
proven by Crawley-Boevey [4] and the converse was proven by Lusztig [11, 14.2]. 2

Thus, for a Dynkin quiver Q, nilpotency holds automatically and ΛV,Q is just the variety of represen-
tations of the preprojective algebra P (Q) with underlying vector space V.

The representation type of the preprojective algebras is known.

Proposition 3.2 ([5, 9]) Let Q be a finite quiver. Then the following hold:

1. P (Q) is of finite representation type if and only if Q is of Dynkin type An, n ≤ 4,

2. P (Q) is of tame representation type if and only if Q is of Dynkin type A5 or D4.

Thus P (Q) is of wild representation type if Q is not of Dynkin type An, n ≤ 5, or D4.

In the sequel, we will refer to the preprojective algebra P (Q∞). While Q∞ is not a finite quiver, any
finite-dimensional representation is supported on finitely many vertices and thus is a representation of a
quiver of type An for sufficiently large n. Thus we deduce the following.

Corollary 3.3 All finite-dimensional representations of Q∞ are nilpotent and P (Q∞) is of wild repre-
sentation type.
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4 Representations of the Euclidean algebra and preprojective al-
gebras

In this section we examine the close relationship between representations of the Euclidean algebra e(2)
and the preprojective algebras of type An. Let Mod e(2) be the category of e(2)-modules. For a ≤ b, let
Moda,b e(2) be the full subcategory consisting of representations V such that Vk = 0 for k < a or k > b.
Then Mod e(2) is the limit of the categories Moda,b e(2). For v ∈ (Z≥0)Z, we also define Modv

a,b e(2)
to be the full subcategory of Moda,b e(2) consisting of representations V such that dimV = v.

Let ModP (Q) be the category of finite-dimensionalP (Q)-modules and for v ∈ (Z≥0)I , let Modv P (Q)
be the full subcategory consisting of modules of graded dimension v.

Proposition 4.1 We have the following equivalences of categories.

1. Modv
a,b e(2) ∼= Modv P (Qa,b), Moda,b e(2) ∼= ModP (Qa,b),

2. Modv e(2) ∼= Modv P (Q∞) Mod e(2) ∼= ModP (Q∞).

Theorem 4.2 The following statements hold.

1. The Euclidean algebra e(2) has wild representation type, and

2. for a, b ∈ Z with 0 ≤ b− a ≤ 3, there are a finite number isomorphism classes of indecomposable
e(2)-modules V whose weights lie between a and b; that is, such that Vk = 0 for k < a or k > b.

Corollary 4.3 Let A be a finite subset of Z with the property that A does not contain any five consecutive
integers. Then there are a finite number of isomorphism classes of indecomposable e(2)-modules V with
the property that Vk = 0 if k 6∈ A.

Douglas [7] has shown that there are finitely many indecomposable e(2)-modules (up to isomorphism)
of dimensions five and six. Corollary 4.3 can be used to simply such proofs by allowing one to restrict
attention to modules with certain weight space dimensions. We also point out that the graphs appearing in
[7] roughly correspond, under the equivalence of categories in Proposition 4.1, to the diagrams appearing
in the enumeration of irreducible components of quiver varieties given in [8].

5 Nakajima quiver varieties
Let Q be the quiver Q∞ or Qa,b for some a ≤ b. For V,W ∈ V(I) define

LQ(V,W) = ΛV,Q ⊕
⊕
i∈I

HomC(Wi, Vi).

We denote points ofLQ(V,W) by (x, s) where x = (xh)h∈H∗ ∈ ΛV,Q and s = (si)i∈I ∈ HomC(Wi, Vi).
We say an I-graded subspace U of V is x-invariant if xh(Uout(h)) ⊆ Uin(h) for all h ∈ H∗. We say
a point (x, s) ∈ LQ(V,W) is stable if the following property holds: If U is an I-graded x-invariant
subspace of V containing im s, then U = V. We denote by LQ(V,W)st the set of stable points.

The group GV acts on LQ(V,W) by

g · (x, s) = (gi)i∈I · ((xh)h∈H∗ , (si)i∈I) = ((gin(h)xhg
−1
out(h))h∈H∗ , (gisi)i∈I).
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The action of GV preserves the stability condition and the stabilizer in GV of a stable point is trivial. We
form the quotient

LQ(V,W) = LQ(V,W)st/GV.

The LQ(V,W) are called Nakajima quiver varieties. For v,w ∈ (Z≥0)I , we set

LQ(v,w) = LQ(Vv,Vw), LQ(v,w)st = LQ(Vv,Vw)st, LQ(v,w) = LQ(Vv,Vw).

We then have

LQ(V,W) ∼= LQ(dim V,dim W), LQ(V,W)st ∼= LQ(dim V,dim W)st,

LQ(V,W) ∼= LQ(dim V,dim W),

and so we often blur the distinction between these pairs of isomorphic varieties.

6 Moduli spaces of representations of the Euclidean algebra
Given that e(2) has wild representation type, it is prudent to restrict one’s attention to certain subclasses of
modules and to attempt a classification of the modules belonging to these classes. One possible approach
is to impose a restriction on the number of generators of a representation (see [6, 7]). In this section we
will examine the relationship between moduli spaces of representations of the Euclidean algebra along
with a set of generating vectors and Nakajima quiver varieties.

Let V be a finite-dimensional e(2)-module. For u1, u2, . . . , un ∈ V , we denote by 〈u1, . . . , un〉 the
submodule of V generated by {u1, . . . , un}. It is defined to be the smallest submodule of V containing
all the ui. A element u ∈ V is called a weight vector if it lies in some weight space Vk of V . For a weight
vector u, we let wtu = k where u ∈ Vk. We say that {u1, . . . , un} is a set of generators of V if each ui
is a weight vector and 〈u1, . . . , un〉 = V . For v ∈ (Z≥0)Z, we let |v| =

∑
k∈Z vk.

Definition 6.1 For v,w ∈ (Z≥0)Z, let E(v,w) be the set of all

(V, (ujk)k∈Z, 1≤j≤wk
)

where V is a finite-dimensional e(2)-module with dimV = v and (ujk)k∈Z, 1≤j≤wk
is a set of generators

of V such that wtujk = ek. We say that two elements (V, (ujk)) and (Ṽ , (ũjk)) of E(v,w) are equivalent
if there exists a e(2)-module isomorphism φ : V → Ṽ such that φ(ujk) = ũjk. We denote the set of
equivalence classes by E(v,w).

Theorem 6.2 There is a natural one-to-one correspondence between E(v,w) and LQ∞(v,w).

A partition is a sequence of non-increasing natural numbers λ = (λ1, λ2, . . . , λl). The corresponding
Young diagram is a collection of rows of square boxes which are left justified, with λi boxes in the ith
row, 1 ≤ i ≤ l. We will identify a partition and its Young diagram and we denote by Y the set of all
partitions (or Young diagrams). If b is a box in a Young diagram λ, we write x ∈ λ and we denote the box
in the ith column and jth row of λ by xi,j (if such a box exists). The residue of xi,j ∈ λ is defined to be
resxi,j = i− j. For λ ∈ Y and a ∈ Z, define vλ,a ∈ (Z≥0)Z by setting vλ,ai+a to be the number of boxes
in λ of residue i.
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Proposition 6.3 For λ ∈ Y , there exists a unique e(2)-module V (up to isomorphism) with a single
generator of weight a ∈ Z and dimV = vλ,a. It is given by

V = SpanC{x | x ∈ λ}
l(xi,j) = resxi,j = a+ i− j

p+(xi,j) = xi+1,j

p−(xi,j) = xi,j+1,

where we set xi,j = 0 if there is no box of λ in the ith column and jth row.
For v ∈ (Z≥0)Z such that v 6= vλ,a for all λ ∈ Y and a ∈ Z, there are no e(2)-modules V with a

single generator and dimV = vλ,a

Thus e(2)-modules with a single generator of a fixed weight are determined completely by the dimen-
sions of their weight spaces. This was proven directly by Gruber and Henneberger in [10]. However, our
knowledge of the precise relationship between quivers and the Euclidean algebra allows us to use known
results about quivers and quiver varieties to simplify such proofs.
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