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Abstract. We analyze the structure of the algebtéx)© of symmetric polynomials in non-commuting variables in
so far as it relates tB[x]®, its commutative counterpart. Using the “place-actiontra symmetric group, we are
able to realize the latter as the invariant polynomialsdaeghe former. We discover a tensor product decomposition
of K(x)®" analogous to the classical theorems of Chevalley, Shegfatd on finite reflection groups. In the case
|x| = oo, our techniques simplify to a form readily generalized tawnather familiar pairs of combinatorial Hopf
algebras.

Résune. Nous analysons la structure de I'algeBtéx) S des polyndmes symétriques en des variables non-commu-
tatives pour obtenir des analogues des résultats classiuncernant la structure de I'anndé&lx]° " des polyndmes
symeétriques en des variables commutatives. Plus grbest, au moyen de “l'action par positions”, on réalise
K[x]®" comme sous-module d&(x)®". On découvre alors une nouvelle decompositiofkds)®~ comme pro-

duit tensorial, obtenant ainsi un analogues des thé@aiassiques de Chevalley et Shephard-Todd. Dans le cas
|x| = oo, nos techniques se simplifient en une forme aisémentgksebles a beaucoup d’'autres paires d’'algebres
de Hopf familieres.
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1 Introduction

One of the more striking results of the invariant theory dfe@ion groups is certainly the following: if
W is a finite group of. x n matrices, then there is a gradéd-module decomposition of the polynomial
ring S = K[x], in variablesx = {1, 72, ...,2,}, as a tensor produt

S~ Sw sV, (1)

if and only if W is a group generated by (pseudo) reflections. As usuaffords the naturall’-module
structure obtained by considering it as the symmetric spadée defining vector spaceé* for W, e.g.,

() We assume throughout thitis a field containing.
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w- f(x) = f(w-x). Itis customary to denote by"" the ring of ¥ -invariant polynomials for this action.
To finish parsing (1), recall th&ty, stands for theoinvariant space i.e., thelW-module defined as

Sw = S/(SJVFV>, (2)

the quotient ofS by the ideal generated by constant-term fiéeinvariant polynomials. We givé, SV,
and Sy a grading by polynomial degree i (the latter being well-defined becau@&?) is a homo-
geneous ideal). The motivation behind the quotient in (29 isliminate redundant copies of irreducible
W-modules insideS. Indeed, ifV is such a module and(x) is any W-invariant polynomial with no
constant term, thelf f(x) is an isomorphic copy o¥ living within <SK/> As a result, the coinvariant
spaceSyy is the interesting part of the story.

The context for the present paper is the algebra K(x) of noncommutative polynomials, with’-
module structure off’ obtained by considering it as the tensor space on the defspaceX * for W. In
the special case whdi is the symmetric groug,,, we elucidate a relationship between the spse
and the subalgebf@" of W -invariants inT'. The subalgebra" was first studied in [14, 5] with the aim
of obtaining noncommutative analogs of classical resuteerning symmetric function theory. Recent
work in [12, 3] has extended a large part of the story surrium(ll) to this noncommutative context. In
particular, there is an explic&,,-module decomposition of the forffi ~ T, ® T», cf. [3, Theorem
8.7].

By contrast, our work proceeds in a somewhat complementeggtibn. We consideN = 7~ as a
tower of &4-modules under the “place-action” and real#é~ insideN as a subspace of invariants for
this action. This leads to a decompositiondfanalogous to (1). More explicitly, our main result is as
follows.

Theorem 1 There is an explicitly constructed subspdtef N so thatC and the place-action invariants
A exhibit a graded vector space isomorphism

Ne~C®A. @)
As an immediate corollary we derive the Hilbert series folanu
Hilb, (€) = Hilb,(N H (1—t%). (4)
=1
Here, as usual, thidilbert series of a graded spaceé = ®d20 V4 is the formal power series defined as
Hilb, (V) = dim V4 t,
d>0

whereV, is thehomogeneous degreé componentof V. The fact that (4) expands as a seried[] is
not at all obvious, as one may check that the Hilbert serié$ isf

Hil
ilb: (N kz:: 1- 01 —28)---(1 ki) ®)

(takingn = |x|). We underline that the harder part of our work lies in wogkaut the case < oo. This
is accomplished in Section 6. If we restrict ourselves todhgen = oo, bothN and A become Hopf
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algebras and things are much simpler. Our results are thesegoences of a general theorem of Blattner,
Cohen and Montgomery. As we will see in Section 5, strongsulte hold in this simpler context. For
example, (4) may be refined to a statement about “shape” enatiore

2 The algebra S® of symmetric polynomials

2.1 Vector space structure of S©

We specialize our introductory discussion to the grélip= &,, of permutation matrices. The action
on S = KIx] is simply thepermutation action o - z; = x,; andS®» comprises the usual symmetric
polynomials. We suppressin the notation and denote the subring of symmetric polymdsriy S©.
(Note that upon sending to oo, the elements 0§ become formal series i [x] of bounded degree;
we still call them polynomials to affect a uniform discussjo A monomial in.S of degreed may be
written as follows: given am-subsety = {y1,92,...,y,} of x and acomposition of d into r parts,
a = (ay,aq9,...,a;) (a; > 0), we writey® for y{'ys>---y2. We assume that the variablgsare
naturally ordered, so that whenevwgr= z; andy;.1 = x, we havej < k. Reordering the entries of
a compositiona in decreasing order results in a partitidte) called theshapeof a. Summing over
monomialsy® with the same shape leads to the monomial symmetric polyalomi

my, =my(x) = Z yve.
A(a)=p, yCx
Letting u = (u1, ..., ) run over all partitions ofl = |u| = u1 + - -+ + p, gives a basis fo6$. As
usual, we setn, := 1 and agree that, = 0 if  has too many parts (i.ez, < r).
2.2 Dimension enumeration

A fundamental result in the invariant theory &f, is thatS® is generated by a family fi }1<k<n Of
algebraically independent symmetric polynomials, haviegpective degreedeg f, = k. (One may
choose{my, }1<k<» for such a family.) It follows immediately that the Hilbegrges ofS® is

n

Hilb,(S€) = - (6)
=1
Recalling that the Hilbert series 6fis (1 — t)~™, we see from (1) and (6) that the Hilbert series for the

coinvariant spacés is the well-knownrt-analog ofn!:

ﬁlltzﬁ1+t+ ) @)

i=1

In particular, contrary to the situation in (4), the seii&ith, (S)/Hilb,(S®) in Z[t] is obviouslypositive.

2.3 Algebra and coalgebra structures of S©

Given partitiong: andv, there is an explicit formula for computing the producgt - m,. In lieu of giving
the formula, we refer the reader to [31.1] and simply give an example:

ma1 * M11 = 3Ma111 + 2Ma21 + 2m311 + M32. (8)
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The extremal terms above are relevant to our coming disoushiote that ifr < 4, then the first term dis-
appears. However, if is sufficiently large then analogs of these terms alwaysappith positive integer

coefficients for a given paifu, v). If p = (p1,...,ur) andv = (v1,...,v,) with < s, then the parti-
tion indexing the left-most term is denoted by v and is given by sorting the ligfey, . . ., r, 1, ..., Vs)
in increasing order; the right-most term is indexediby v := (1 + v1, ..oy fbr + Vpy Vpg1y e ooy Us).

Takingu = 31 andr = 221, we would have, U v = 32211 andyp + v = 531.
The ringS® is also afforded a coalgebra structure with coproduictSS — @f_, S° ® S , and
counite : S® — K given, respectively, by

A(my,) = Z mg®@m, and e(m,)=0d,0.

OUr=p

In the caser = 0o, A ande are algebra maps, makitf® a connected graded (by degree) Hopf algebra.

3 The algebra N of noncommutative symmetric polynomials

3.1 Vector space structure of N

Suppose now that denotes a set of non-commuting variables. The alg€braK (x) of noncommutative
polynomials is graded by degree. A degreeoncommutative monomialz € Ty is simply a lengthd
“word”:

7z = z129 24, Witheach z; € x.
In other termsz is a functionz : [d] — x, with [d] denoting the sefl, ..., d}. The permutation-action
onx clearly extends td@’, giving rise to the subspa®é= 7'® of noncommutative-invariants. With the
aim of describing a linear basis for the homogeneous comgdfig we next introduce set partitions of
[d] and the type of a monomial: [d] — x. We write A | [d] whenA = {A4,,..., A, } is aset partition
of [d],i.e.,A1U...UA, = [d], with A; # 0 andA; N A; = ) whenever # j. Thetype 7(z) of a degree
d monomialz : [d] — x is the set partition

7(z) == {z"'(2) |z €x} \ {0} of [d],

whose parts are the non-empty fibers of the functioRor instance,

T(x1zsrixsas) = {{1,3},{2,5},{4}}.

In the sequel, we lighten the heavy notation for set partitjowriting, e.g.,{{1,3},{2,5},{4}} as
13.25.4. Clearly the type of a monomial is a finite set partition withnaostrn parts. Note that we
may always order the parts in increasing order of their mimmelements. ThehapeA(A) of a set
partitionA = {44, ..., A, } is the (integer) partition\(| 44|, . . ., |A,.|) obtained by sorting the part sizes
of A inincreasing order. Observing that the permutation-adstype preservingwe are led to consider
themonomial linear basis for the spadé;:

ma = ma(x) := Z z

T(z)=A

For example, withh = 2, we havemg = 1, m1 = 1 + 22, mia = 27 + 23, m1.2 = 2172 + 12771,
mios = 1% + 23, mi23 = 21222 + 22221, M132 = T1T2T1 + T2T1T2, M123 = T1T22 + o112,
mi.23 = 0, ... (Note that we setig := 1, taking® as the unique set partition of the empty set, and we
agree thaina = 0if A is a set partition with more tham parts.)
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3.2 Dimension enumeration and shape grading

Above, we determined thatim N, is the number of set partitions @finto at mostn parts. These are
counted by the (length restricteBell numbers Bd(”). Then (5) follows from the fact that its right-hand
side is the ordinary generating function for length retddBell numbers. See [§2]. We next highlight
a finer enumeration, where we gradeby shape rather than degree.

For each partition:, we may consider the submodig, spanned by those:a for which A\(A) = p.
This results in a direct sum decompositiip = @Wd N,,. A simple dimension description fo¥, takes
the form of ashape Hilbert seriesin the following manner. View commuting variablgsas marking
parts of size and sefg,, := g, qu, -+ - qu,.- Then

Hilbg(Ng) = Y dimN, q,,,= Y ax(a)- 9)
pkd AH[d]

Here,q,, is a marker for set partitions of shapeA ) = x and the sum is over all partitions into at mast
parts. Such a shape grading also makes sens&ffoSumming over alil > 0 and allu, we get

Hilby(S°) => "q, =] ! (10)
n

i1 1—4q

Using classical combinatorial arguments (cf. Chapter 2[2]JpExample 13), we see that the enumerator
polynomialsHilb, (Ng) are naturally collected in thexponential generating function

%) ' td n %) tk m
> Hilbg(Na) 7= Y~ — <Z qkﬁ> . (11)
d=0 m=0 k=1
For example, witlm = 3, we have
Hilby(N6) = g6 + 6 gsq1 + 15 qag2 + 15 qui + 10 g3 + 60 g3q2q1 + 15 ¢2°,

thusdim Nag2 = 15 whenn > 3. Evidently, theg-polynomialsHilbg (N4) specialize to the length

restricted Bell numberB;") when we set alf;, equal tol.
In view of (10), (11), and Theorem 1, we are led to claim théfeing refinement of (4).

Corollary 2 For n = oo, the shape Hilbert series of the spatés given by the expression

© k
Hilbg(€) = > d! exp (Z an %) 110 - ), (12)
k=1 ’

d>0 pd i>1

with (-)|,« standing for the operation of taking the coefficientf
Thus we have the expansion
Hilbg(€) = 1+2¢q + Baa +2¢° +3¢a’)
+(4qaq +9q3q2 + 631 + 102 g1 + 4 qe®) + ...

Corollary 2 will follow immediately from the explicit desigtion of € and the isomorphisr@ @ A — N
in Section 5, which is not only degree preserving, but shapsguving as well.
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3.3 Algebra and coalgebra structures of N

Since the action o6& on T is multiplicative, it is straightforward to see thatis an subalgebra df'.
Themultiplication rulein N, expressing a produat s - mg as a sum of basis vectops - mc, is easy
to describe. Since we make heavy use of the rule later, wdafeitecarefully here. We begin with an
example (the digits correspondingl= 1.2 appear in bold):

mi3.2 * M12 = M13.2.4.5 +Mi134.2.5 T M135.2.4

+ Mi13.24.5 + M13.25.4 + M135.24 + M134.25 (13)

Compare this to (8). Notice that the shapes indexing the dinsit last terms in (13) are the partitions
A(13.2)UA(1.2) andA(13.2) + A(1.2). As was the case if®, one of these shapes, namaiA ) +\(B),
will always appear in the product, while appearance of tiapsh(A) U A(B) depends on the cardinality
of x.

Let us now describe the multiplication rule. Given abyC N andk € N, we write D** for the set

D™ :={a+k|ac D}.

By extension, for any set partitoA = {A4,,..., A} we setA+* = {A7* AT* ... AtF). These
definitions allow for the introduction of a bilinear (nonfomutative) operation denoted by." on formal

linear combinations of set partitions. Given partitioAs= {A;, As,..., A, } of [¢] and a partition
B = {Bi, Bs,..., B} of [d], the summands cA w B are set partitions dt: + d]. The operationu is

recursively defined by the rules:

(@ Awd=0w A=A, with @ denoting the unique set partition of the empty set;

(b) A wB={4}U(A"wB*)+ i{Al UBFIU (A" w (B\{B:})"),

with unionU extended bilinearly and’ denoting{ Ao, ..., A, }.

As shown in [3, Prop. 3.2], the multiplication rule fota andmg in N, is

mA - MB = Z mc . (14)
CeAwB

The subalgebra, like its commutative analog, is freely generated by camadnomial symmetric poly-
nomials{ma }ac.4, whereA is some carefully chosen collection of set partitions. Thkishe main
theorem of Wolf [14]. See also [37]. We use two such collections later, our choice dependimg o
whether or not < oo.

The operatior(-)** has a left inverse called tretandardization operator and denoted bY(—“)l". It
maps set partitiona of any cardinalityd subsetD C N to set partitions ofd], with A! defined as the
pullback of A along the unique increasing bijection frdai to D. For example(18.4)l = 13.2 and
(18.4.67)l = 15.2.34. The coproducf\ and counit onN are given, respectively, by

A(ma) = Z mg| ® Mg and e(ma) = 0A.0
BuC=A

whereBUC = A means thaB andC form complementary subsets Af. In the caser = oo, the maps
A ande are algebra maps, makifga graded connected Hopf algebra.
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4 The place-action of G on N
4.1 Swapping places in T; and N,

On top of the permutation-action of the symmetric gr@ip on 7', we also consider the “place-action”
of &4 on the degred homogeneous componéfii. Observe that the permutation-actiorroE Gy on a
monomialz corresponds to the functional composition

ocoz:[d 2 x T x.
By contrast, thelace-actionof p € &, onz gives the monomial
zop:[d L [d = x

composing with z on the right. In the linear extension of this action to allfgf it is easily seen thav,
(even eaclN),) is an invariant subspace ©f. Indeed, for any set partitioA = {A4:,..., A, } - [d] and
p € &4, 0ne has (see [132])

mA P =y (15)
where as usual™ - A := {p71(A41),p7 1 (A2),...,p (A}

4.2 The place-action structure of N

Notice that the action in (15) is transitive on set partii@md is shape-preserving. It follows that a basis
for the place-action invariants N, is indexed by partitions. For such a basis we choose the poliais

My = dlmN Z A (16)
/\(A) =p
with 1! = aylas! - - - wheneven = 121292 . ... The normalizing coefficient will be explained in (19).

To simplify our dlSCUSSlon of the structureXfin this context, we will say tha® acts orN rather than
being fastidious about underlying in each situation thdivildual N;'s are being acted upon on the right
by the corresponding grou,. We also denote the sdt® of place-invariantsby A. To summarize,

A = span{m,, : 1 a partition ofd, d € N} . a7)

The pair(N, A) begins to look like the paifS, S€) from the introduction. This was the observation that
originally motivated our search for Theorem 1.

We next decomposy¥ into irreducible place-action representations. Althotigk can be worked out
for any value ofn, the results are more elegant when we sertd infinity. Recall that thé=robenius
characteristic of a G ;-moduleV is the symmetric function

Frob(V) = Z Uy Sps

pkd

wheres,, is a Schur function—the character of “the” irreducildlg representatioi¥,, indexed byu—and
v, is the multiplicity ofV,, in V. To reveal the5 ;-module structure diV,, we may use (15) and standard
techniques from the theory of combinatorial species, df. The Frobenius characteristic df, is given
by the following lemma.
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Lemma 3 For a partitiony = 19122 . . . k% havinga; parts of size, we have
FI“Ob(NM) = hd1 [hl] th [hg] s hdk [hk], (18)

with f[g] denoting plethysm of andg, andh; denoting theth homogeneous symmetric function.

Recall that theplethysm f[g] of two symmetric functions is obtained by linear and muitigtive exten-
sion of the rulepy[pe] := pr ¢, where thep,’s denote the usual power sum symmetric functions (see [10,
1.8] for notations and more details). For instance, one fthdshs[ha] = s + S42 + S222. That is,Nago
decomposes int®irreducible components, with the trivial representatigimoming frommeso, insideA.

4.3 A meets S©

We begin by explaining the choice of coefficient in (16). Frfi@, Thm. 2.1], one learns that the
restriction toN of theabelianizationmapab : T' — S (the map making the variables commute) satisfies:

(@) ab(N) = S, and
(b) ab(ma ) is a multiple ofm ) depending only om = A(A), more precisely
ab(m,) = m,,. (19)
Formula (19) suggests that a natural right-inversatt@-) is given by
1:8% N, with «(m,):=m,. (20)

The fact that the image of® in N is exactly the subspaceaffords us a quick proof of Theorem 1 in the
casen = oo. The isomorphism we construct far< oo still uses the map, but in a less essential way.

5 The coinvariant space of N (Case: n = o)

5.1 Proof of main result

Supposer = co. Combining results of [3] and a theorem of Blattner, Coherd Blontgomery [6], we
may immediately deduce the existence of a subsgaoEN together with a vector space isomorphism
N ~ C® A. Indeed, from Propositions 4.3 and 4.5 of [3], we get thattiag@. is acoalgebra splitting
ofab: N — S% =0, i.e,

abo:=1id and Axor=(t®t)oAgs.

Moreoverab is a morphism of Hopf algebras. In this context, Theorem 48] suggests that we |ét
be theleft Hopf kernel of the Hopf mapab,

C={heN:(idwab)oA(h) =h@1}.

This theorem gives an algebra isomorphism betwéemd thecrossed product #, S€. In fact, since
A is cocommutative, it is an isomorphism of Hopf algebras. ferrthe interested reader to [#]

for the technical details. We mention only that: (i) the sp@ds actually a Hopf subalgebra of by
construction; (ii) the crossed produet#, S€ is a certain algebra structure built on the tensor product
C ® S using a cocyler : S® x S© — €; and (iii) the isomorphism amounts to a cocyle twisting of
simple multiplication:€ ® S® +— @ - A. This completes the proof of Theorem 1. Moreover, since all
spaces and morphisms are graded by degree, the Hilbers §@ri@is the quotient of that foN by that

for A. This demonstrates (4).
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5.2 Atomic set partitions.

Recall the result of Wolf thal' is a polynomial algebra, i.€N is freely generated by some collection of
polynomials. We announce our first choice for this collettow, following the terminology of [4]. Let
IT denote the set of all set partitions (of, Vd > 0). We introduce thetomic set partitionsII. A set
partition A = {A;,..., A} of [d] is atomic if there does not exist a pair,c) (1 < s<r1<e<d)
such that{ Ay, ..., As} is a set partition ofc]. ConverselyA is not atomic if there are set partitions
B of [¢'] andC of [d”] splitting A in two: A = B U C*t?. We write A = BJ|C in this situation.
A maximal splitting A = A’|A”|---|A(") of A is one where eacA(?) is atomic. For example, the
partition 17.235.4.68 is atomic, while12.346.57.8 is not. The maximal splitting of the latter would be
12]124.35|1, but we abuse notation and writ|346.57|8 to improve legibility.

It is proven in [4] thatN is freely generated by the atomic polynomials. To get a bettase of the
structure, let us orddi by giving IT a total order <” and then extending lexicographically. Given two
atomic set partitions\ andB, we demand thaA < B if A + [¢] andB F [d] with ¢ < d. In case
A, B are partitions of the same déf, then any ordering will do for the current purpose. .. oneriesting
choice is to ordeA andB by ordering lexicographically their associatdtyyme scheme words") Our
convention for writing set partitions provides a bijectioetween set partitions and this special class of
words, sendindA = {A1, 4s,..., A} € Ijtow(A) = wyws - - - wy defined byw; := k if and only if
i € Ag. For examplew(13.2) = 121 andw(17.235.4.68) = 12232414. Using this ordering odl, we
have the following chain within the set partitions of shape1:

1]23[45|678 < 13.2|456(78 < 13.24]578.6 < 14.23|578.6 < 17.235.4.68 < 17.236.4.58.

Infact, 1/123|45/678 is the unique minimal element ©f 325, .

Define theleading term of a sum)_ - ac mc to be the monomiat:c, such thatCy is lexicograph-
ically least among alC with ac # 0. Combined with (14), our choice fok makes it clear that the
leading term ofma - mp is ma . Thatis, multiplication inN is shape-filtered.Since the left Hopf
kernelC is a subalgebra, it is shape-filtered as well. Finally, tloenigrphismC @ A — N respects the
shape structures on either side. This completes the prddduadllary 2.

It is proven in [8] that\ is not only freely generated by tretomic ponnomiaI%mA|A € H} but

co-freely generated by them as well. By a classic theoremitfdviand Moore [11], this means that
N is isomorphic to the universal enveloping algetf&(IT)) of the free Lie algebr&(IT) on the sefl.
This description will be useful in the next subsection. Leffinish this section with a few final remarks
on atomic set partitions. First, note that set partitionthwine part are trivially atomic. The set of these
is denoted byil,. They are analogs of the generatorgs for the algebra5®. The remaining atomic set
partitions

Il ::{{Al,...,AT}Gﬁ:T>1}

are more interesting. They index a large portion of the gatoes forC. They are also the subject of an
open question formulated at the end of Section 5.3.

() Quoting Bill Blewett from [13, A000110], “a rhyme scheme istaing of letters (egabba) such that the leftmost letter is always
a and no letter may be greater than one more than the greattesttieits left. Thusaac is not valid sincec is more than one
greater tham. For example,§ 113 = 5] because there are 5 rhyme schemes on 3 letters; aab, aba, abb, abc.”
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5.3 Explicit description of the Hopf algebra structure of C

It is not too hard to find elements in the left Hopf kernel of tidgelianization mam@b. Consider the
following simple calculation. The sum of monomiailg s o := mi3.2 — mi2 3 iS primitive. Indeed,

A(Mmiz2) = 1®@miza+mi2®@my+mi @ mia+myz2®1
—1®mi23 —mi2 @m1 —my @miz —mi23® 1
= 1®miz2+mi32® 1.

We conclude thatid ® ab) o A(1m13.2) = m13.2 ® 1. In other termsyig 3.2 € €. The linear map\ may
be splitasA = A" + A", the sum of itrimitive andimprimitive parts respectively. What we have just
done in the example is to find a modification s » of mi3 o satisfyingA'(ms3.2) = 0. This suggests the
following proposition.

Proposition 4 There is a primitive element

MA = MA + Z aB MB
B:A(B)=A(A)

associated to eacA ¢ 11, such thaty p ag = —1andB € 11 = ag = 0.

The existence of primitives comes from the Milnor-Moorengmphism ofN with $((£(IT)). Showing
that they can be chosen with the above properties is a simfilalation, inducting on the number of parts
r of an atomic set partitiod = {44,..., A, } and applying A")".

The ideas behind the proposition and the preceding exaniglig several immediate corollaries: (i)
eachma from Proposition 4 belongs t6; (ii) C is shape-graded, i.e.,if € C is written aszu hy, then
eachh,, belongs taC as well; (iii) for anyg € N andh € €, we have thalg, h] = gh — hg also belongs
to C; (iv) if A andB belong toll,, then [mA,mB] belongs toC. These points essentially account for
all of ©, as the next result suggests. First, recall #&tis also a universal enveloping algebra of a Lie
algebra. Namely, the abelian Lie algeX&{mi,mo,...}), where all Lie bracketén;, m;] are zero.
Since the integers = 1,2, ... are in 1-1 correspondence with,, we have a natural map frof(II) to
A({m1,m2...}). Our final characterization d is as follows.

Corollary 5 Let € be the kernel of the map from the free Lie algebra offl to the free abelian Lie
algebra onll,. Then the coinvariant spacgis the universal enveloping algebra of the Lie algelira

Before turning to the case < oo, we remark that we have left unanswered the question of findin
systematic procedure (e.g., a closed formula in the sdiMabius inversion) that constructs a primitive
elementn, for eachA < II;.

6 The coinvariant space of N (Case: n < c0)

We repeat our example of Section 3.3 in the case 3. The leading term with respect to our previous
order would bem;s.5 4.5, except that this term does not appear becdgdse4.5 has more tham = 3
parts. Fortunately, the rhyme scheme bijectioreveals a more useful leading term:

mio1 » M1z = 04 Mmi2113 +Mi2131 + Mi2123 + Mi2132 + Mi2121 + Mi2112 -
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The concatenatioh21|12 is the lexicographically smallest word appearing aboves Ehgenerally true:

if w(A) = vwandw(B) = v, thenuv is the smallest element of(A w B). Let us call a rhyme scheme
word averseif it cannot be written as the concatenation of two shortenre schemes. Theplitting

of a rhyme scheme is the maximal deconcatenatian = w’|w” |- - - |w(") of w into versesw®. For
example 12314 is a verse whilel 1232411 is a string of four versu$|12324/1|1. It is easy to see that if
a,b, ¢, andd are verses, themc = b|d if and only if « = b andc = d. The preceding observations make it
clear that\ is verse-filteredand that\ is freely generated by the monomigls a) | w(A) is a versg.
This is the collection of monomials originally chosen by ¥ef. [3, §7] for details.

Toward locating® within N, we first locateS®. Consider the partitiop = 32211. Note that the
lexicographically least rhyme scheme word of shapew (123.45.67.8.9) = 111223345. We are led to
introduce the words

W(,u) = (H1QH2 L LMk

asociated to partitions = (u1, u2, - - , ux); we call thesedescending rhymessincep, > -+ > py.
Finally, we want to viewC as the rhymes that don't involve a descending rhyme. Thethéyact that
N is verse-filtered, we will get an easy vector space isomarmpki® A — N given by multiplication.
Toward that end, we introduce the notion of vexillary rhymes

A vexillary rhyme is a word that begins with a maximal (but possibly empty) dasging rhyme,
followed by one extra verse. Thexillary decompositionof a rhyme scheme is the expression af as
aproducty = w'|w” |- - - [w™ w1, wherew’, ..., w") are vexillary rnymes and("*+1) is a possibly
empty descending rhyme (which we caliaél). For a given wordu, this decomposition is accomplished
by first splittingw into verses, then recombining, from left to right, consaeuterses to form vexillary
rhymes. For instance, the splitting bf2212 is 1/1222|12. The first two factors combine to make one

vexillary rhyme; the last factor is a descending t&il22212 +— 11222 12. Similarly,
—— T T\
1231231411122311 +— 123]12314/1|1]|1223|1]|1 — 123 12314 11 1223 1 1.

Suppose now that andv are rhyme schemes and that the vexillary decomposition isf tail-free.
Then by construction, the vexillary decompositionaf is the concatenation of the respective vexillary
decompositions ofi andv. We are ready to identif¢ as a subalgebra of.

Theorem 6 Let C be the subalgebra Gf generated by vexillary rhymes. Thérhas a basis indexed by
rhyme scheme words whose vexillary decompositions are tail-free. Moreovieg mapC @ A — N
given BY M M =+ M) @ MYy ooopi) F Moyt (W) 1S @ VECLOT space isomorphism.

7 Other directions

We conclude with another advertisement for the Blattnelré@sMontgomery theorem. The authors’
present investigation into coinvariant spaces began byingoxertically within the commuting diagram
(cube) of Hopf algebras depicted in Figure 1 (whereas iniptesawork, it was customary to move from
left to right, cf. [1]). One may just as well move in other ditens within the cube. To illustrate, we apply
the Blattner-Cohen-Montgomery theorem to two other eddesterest (leaving aside any comments
on group actions). The first of these concerns the downwaivasn the front-right side of the cube.
Recall that, from a purely combinatorial perspective, bas& (x)~® are indexed by “set compositions”
(ordered set partitions), and thosekifx]~© by integer compositions (here-” indicates the quasi-action



554 Francois Bergeron and Aaron Lauve

K[x]® —— K[x]~®

FIG. 1: The Hopf algebras of symmetric and quasisymmetric fanstin one and
two sets of commuting and noncommuting variables.

of Hivert, cf. [7,§3]). One may find a coalgebra splitting froix]~® to K(x)~® and an associated
coinvariant subalgebra in the spirit of o@d¥, S€) investigation.

Another direction is to consider the Hopf algebra morphigm: K[x,y]~® —+K[x]~® (the bottom-
right arrow going from NW to SE in Figure 1). These aredmegonally quasi-symmetric functionsand
quasi-symmetric functionsrespectively. For details omitted below, we refer the re¢al§l]. The space
K[x,y]® is defined as thé&-invariants, insidék[x, y], under the diagonal embedding &fin & x &.
(The quasi-action of Hivert passes easily through this aliatjembedding.) A basis fd[x,y]~® is
given by the “monomial functionsin, p, indexed by “bicompositions”, i.e., elements, b) in N2x"
such thata; + b; > 0. Thesemq p conveniently map to the quasi-symmetric functieg ., under the
specialization mapp sendingy; to x;. It is straightforward to show that the map sending to mq o,
is a coalgebra splitting. We may thus analyze this situatioa manner analogous to our main result.
Perhaps more surprising than the fact that the quotient

Hilb (K[x, y] ™) / Hilb, (K[x]~©)
belongs taN[¢] is the fact that the objects it counts have already been naWledliscover a connection
between compositions, set compositions, and “L-convexgrolnoes.” See [13, A003480].
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