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algebra of symmetric polynomials in
non-commuting variables
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Abstract. We analyze the structure of the algebraK〈x〉Sn of symmetric polynomials in non-commuting variables in
so far as it relates toK[x]Sn , its commutative counterpart. Using the “place-action” ofthe symmetric group, we are
able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition
of K〈x〉Sn analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. In the case
|x| = ∞, our techniques simplify to a form readily generalized to many other familiar pairs of combinatorial Hopf
algebras.

Résuḿe.Nous analysons la structure de l’algèbreK〈x〉Sn des polynômes symétriques en des variables non-commu-
tatives pour obtenir des analogues des résultats classiques concernant la structure de l’anneauK[x]Sn des polynômes
symétriques en des variables commutatives. Plus précis´ement, au moyen de “l’action par positions”, on réalise
K[x]Sn comme sous-module deK〈x〉Sn . On découvre alors une nouvelle décomposition deK〈x〉Sn comme pro-
duit tensorial, obtenant ainsi un analogues des théorèmes classiques de Chevalley et Shephard-Todd. Dans le cas
|x| = ∞, nos techniques se simplifient en une forme aisément généralisables à beaucoup d’autres paires d’algèbres
de Hopf familières.
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1 Introduction
One of the more striking results of the invariant theory of reflection groups is certainly the following: if
W is a finite group ofn× n matrices, then there is a gradedW -module decomposition of the polynomial
ring S = K[x], in variablesx = {x1, x2, . . . , xn}, as a tensor product(i)

S ≃ SW ⊗ SW , (1)

if and only if W is a group generated by (pseudo) reflections. As usual,S affords the naturalW -module
structure obtained by considering it as the symmetric spaceon the defining vector spaceX∗ for W , e.g.,

(i) We assume throughout thatK is a field containingQ.
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w ·f(x) = f(w ·x). It is customary to denote bySW the ring ofW -invariant polynomials for this action.
To finish parsing (1), recall thatSW stands for thecoinvariant space, i.e., theW -module defined as

SW := S/
〈

SW
+

〉

, (2)

the quotient ofS by the ideal generated by constant-term freeW -invariant polynomials. We giveS, SW ,
andSW a grading by polynomial degree inx (the latter being well-defined because

〈

SW
+

〉

is a homo-
geneous ideal). The motivation behind the quotient in (2) isto eliminate redundant copies of irreducible
W -modules insideS. Indeed, ifV is such a module andf(x) is anyW -invariant polynomial with no
constant term, thenVf(x) is an isomorphic copy ofV living within

〈

SW
+

〉

. As a result, the coinvariant
spaceSW is the interesting part of the story.

The context for the present paper is the algebraT = K〈x〉 of noncommutative polynomials, withW -
module structure onT obtained by considering it as the tensor space on the definingspaceX∗ for W . In
the special case whenW is the symmetric groupSn, we elucidate a relationship between the spaceSW

and the subalgebraT W of W -invariants inT . The subalgebraT W was first studied in [14, 5] with the aim
of obtaining noncommutative analogs of classical results concerning symmetric function theory. Recent
work in [12, 3] has extended a large part of the story surrounding (1) to this noncommutative context. In
particular, there is an explicitSn-module decomposition of the formT ≃ TSn

⊗ T Sn , cf. [3, Theorem
8.7].

By contrast, our work proceeds in a somewhat complementary direction. We considerN = T Sn as a
tower ofSd-modules under the “place-action” and realizeSSn insideN as a subspaceΛ of invariants for
this action. This leads to a decomposition ofN analogous to (1). More explicitly, our main result is as
follows.

Theorem 1 There is an explicitly constructed subspaceC of N so thatC and the place-action invariants
Λ exhibit a graded vector space isomorphism

N ≃ C ⊗ Λ. (3)

As an immediate corollary we derive the Hilbert series formula

Hilbt(C) = Hilbt(N)

n
∏

i=1

(1 − ti). (4)

Here, as usual, theHilbert series of a graded spaceV =
⊕

d≥0 Vd is the formal power series defined as

Hilbt(V) =
∑

d≥0

dimVd td,

whereVd is thehomogeneous degreed componentof V. The fact that (4) expands as a series inNJtK is
not at all obvious, as one may check that the Hilbert series ofN is

Hilbt(N) = 1 +

n
∑

k=1

tk

(1 − t)(1 − 2 t) · · · (1 − k t)
(5)

(takingn = |x|). We underline that the harder part of our work lies in working out the casen < ∞. This
is accomplished in Section 6. If we restrict ourselves to thecasen = ∞, bothN andΛ become Hopf



Noncommutative invariants and coinvariant space 545

algebras and things are much simpler. Our results are then consequences of a general theorem of Blattner,
Cohen and Montgomery. As we will see in Section 5, stronger results hold in this simpler context. For
example, (4) may be refined to a statement about “shape” enumeration.

2 The algebra S
S of symmetric polynomials

2.1 Vector space structure of SS

We specialize our introductory discussion to the groupW = Sn of permutation matrices. The action
on S = K[x] is simply thepermutation action σ · xi = xσ(i) andSSn comprises the usual symmetric
polynomials. We suppressn in the notation and denote the subring of symmetric polynomials bySS.
(Note that upon sendingn to ∞, the elements ofSS become formal series inKJxK of bounded degree;
we still call them polynomials to affect a uniform discussion.) A monomial inS of degreed may be
written as follows: given anr-subsety = {y1, y2, . . . , yr} of x and acomposition of d into r parts,
a = (a1, a2, . . . , ar) (ai > 0), we write ya for ya1

1 ya2
2 · · · yar

r . We assume that the variablesyi are
naturally ordered, so that wheneveryi = xj andyi+1 = xk we havej < k. Reordering the entries of
a compositiona in decreasing order results in a partitionλ(a) called theshapeof a. Summing over
monomialsya with the same shape leads to the monomial symmetric polynomial

mµ = mµ(x) :=
∑

λ(a)=µ, y⊆x

ya.

Letting µ = (µ1, . . . , µr) run over all partitions ofd = |µ| = µ1 + · · · + µr gives a basis forSS

d . As
usual, we setm0 := 1 and agree thatmµ = 0 if µ has too many parts (i.e.,n < r).

2.2 Dimension enumeration
A fundamental result in the invariant theory ofSn is thatSS is generated by a family{fk}1≤k≤n of
algebraically independent symmetric polynomials, havingrespective degreesdeg fk = k. (One may
choose{mk}1≤k≤n for such a family.) It follows immediately that the Hilbert series ofSS is

Hilbt(S
S) =

n
∏

i=1

1

1 − ti
. (6)

Recalling that the Hilbert series ofS is (1 − t)−n, we see from (1) and (6) that the Hilbert series for the
coinvariant spaceSS is the well-knownt-analog ofn!:

n
∏

i=1

1 − ti

1 − t
=

n
∏

i=1

(1 + t + · · · + ti−1). (7)

In particular, contrary to the situation in (4), the seriesHilbt(S)/Hilbt(S
S) in ZJtK is obviouslypositive.

2.3 Algebra and coalgebra structures of SS

Given partitionsµ andν, there is an explicit formula for computing the productmµ ·mν . In lieu of giving
the formula, we refer the reader to [3,§4.1] and simply give an example:

m21 · m11 = 3 m2111 + 2 m221 + 2 m311 + m32. (8)
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The extremal terms above are relevant to our coming discussion. Note that ifn < 4, then the first term dis-
appears. However, ifn is sufficiently large then analogs of these terms always appear with positive integer
coefficients for a given pair(µ, ν). If µ = (µ1, . . . , µr) andν = (ν1, . . . , νs) with r ≤ s, then the parti-
tion indexing the left-most term is denoted byµ∪ν and is given by sorting the list(µ1, . . . , µr, ν1, . . . , νs)
in increasing order; the right-most term is indexed byµ + ν := (µ1 + ν1, . . . , µr + νr, νr+1, . . . , νs).
Takingµ = 31 andν = 221, we would haveµ ∪ ν = 32211 andµ + ν = 531.

The ringSS is also afforded a coalgebra structure with coproduct∆ : SS

d →
⊕d

k=0 SS

k ⊗ SS

d−k and
counitε : SS → K given, respectively, by

∆(mµ) =
∑

θ∪ν=µ

mθ ⊗ mν and ε(mµ) = δµ,0.

In the casen = ∞, ∆ andε are algebra maps, makingSS a connected graded (by degree) Hopf algebra.

3 The algebra N of noncommutative symmetric polynomials
3.1 Vector space structure of N

Suppose now thatx denotes a set of non-commuting variables. The algebraT = K〈x〉 of noncommutative
polynomials is graded by degree. A degreed noncommutative monomialz ∈ Td is simply a length-d
“word”:

z = z1z2 · · · zd, with each zi ∈ x.

In other terms,z is a functionz : [d] → x, with [d] denoting the set{1, . . . , d}. The permutation-action
onx clearly extends toT , giving rise to the subspaceN = T S of noncommutativeS-invariants. With the
aim of describing a linear basis for the homogeneous component Nd, we next introduce set partitions of
[d] and the type of a monomialz : [d] → x. We writeA ⊢ [d] whenA = {A1, . . . , Ar} is aset partition
of [d], i.e.,A1 ∪ . . .∪Ar = [d], with Ai 6= ∅ andAi ∩Aj = ∅ wheneveri 6= j. Thetype τ(z) of a degree
d monomialz : [d] → x is the set partition

τ(z) := {z−1(x) | x ∈ x} \ {∅} of [d],

whose parts are the non-empty fibers of the functionz. For instance,

τ(x1x8x1x5x8) = {{1, 3}, {2, 5}, {4}}.

In the sequel, we lighten the heavy notation for set partitions, writing, e.g.,{{1, 3}, {2, 5}, {4}} as
13.25.4. Clearly the type of a monomial is a finite set partition with at mostn parts. Note that we
may always order the parts in increasing order of their minimum elements. Theshapeλ(A) of a set
partitionA = {A1, . . . , Ar} is the (integer) partitionλ(|A1|, . . . , |Ar|) obtained by sorting the part sizes
of A in increasing order. Observing that the permutation-action is type preserving, we are led to consider
themonomial linear basis for the spaceNd:

mA = mA(x) :=
∑

τ(z)=A

z

For example, withn = 2, we havem∅ = 1, m1 = x1 + x2, m12 = x2
1 + x2

2, m1.2 = x1x2 + x2x1,
m123 = x1

3 + x2
3, m12.3 = x1

2x2 + x2
2x1, m13.2 = x1x2x1 + x2x1x2, m1.23 = x1x2

2 + x2x1
2,

m1.2.3 = 0, . . . (Note that we setm∅ := 1, taking∅ as the unique set partition of the empty set, and we
agree thatmA = 0 if A is a set partition with more thann parts.)
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3.2 Dimension enumeration and shape grading
Above, we determined thatdimNd is the number of set partitions ofd into at mostn parts. These are
counted by the (length restricted)Bell numbers B

(n)
d . Then (5) follows from the fact that its right-hand

side is the ordinary generating function for length restricted Bell numbers. See [9,§2]. We next highlight
a finer enumeration, where we gradeN by shape rather than degree.

For each partitionµ, we may consider the submoduleNµ spanned by thosemA for whichλ(A) = µ.
This results in a direct sum decompositionNd =

⊕

µ⊢d Nµ. A simple dimension description forNd takes
the form of ashape Hilbert seriesin the following manner. View commuting variablesqi as marking
parts of sizei and setqµ := qµ1qµ2 · · · qµr

. Then

Hilbq(Nd) =
∑

µ⊢d

dimNµ qµ, =
∑

A⊢[d]

qλ(A). (9)

Here,qµ is a marker for set partitions of shapeλ(A) = µ and the sum is over all partitions into at mostn

parts. Such a shape grading also makes sense forSS

d . Summing over alld ≥ 0 and allµ, we get

Hilbq(SS) =
∑

µ

qµ =
n
∏

i≥1

1

1 − qi
. (10)

Using classical combinatorial arguments (cf. Chapter 2.3 of [2], Example 13), we see that the enumerator
polynomialsHilbq(Nd) are naturally collected in theexponential generating function

∞
∑

d=0

Hilbq(Nd)
td

d!
=

n
∑

m=0

1

m!

(

∞
∑

k=1

qk
tk

k!

)m

. (11)

For example, withn = 3, we have

Hilbq(N6) = q6 + 6 q5q1 + 15 q4q2 + 15 q4q
2
1 + 10 q23 + 60 q3q2q1 + 15 q2

3,

thusdimN222 = 15 whenn ≥ 3. Evidently, theq-polynomialsHilbq(Nd) specialize to the length

restricted Bell numbersB (n)
d when we set allqk equal to1.

In view of (10), (11), and Theorem 1, we are led to claim the following refinement of (4).

Corollary 2 For n = ∞, the shape Hilbert series of the spaceC is given by the expression

Hilbq(C) =
∑

d≥0

d! exp

(

∞
∑

k=1

qk
tk

k!

)
∣

∣

∣

∣

∣

td

∏

i≥1

(

1 − qi

)

, (12)

with (–)|td standing for the operation of taking the coefficient oftd.

Thus we have the expansion

Hilbq(C) = 1 + 2 q2q1 +
(

3 q3q1 + 2 q2
2 + 3 q2q1

2
)

+
(

4 q4q1 + 9 q3q2 + 6 q3q1
2 + 10 q2

2q1 + 4 q2q1
3
)

+ . . .

Corollary 2 will follow immediately from the explicit description of C and the isomorphismC ⊗ Λ → N

in Section 5, which is not only degree preserving, but shape preserving as well.
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3.3 Algebra and coalgebra structures of N

Since the action ofS on T is multiplicative, it is straightforward to see thatN is an subalgebra ofT .
Themultiplication rulein N, expressing a productmA · mB as a sum of basis vectors

∑

C mC, is easy
to describe. Since we make heavy use of the rule later, we develop it carefully here. We begin with an
example (the digits corresponding toB = 1.2 appear in bold):

m13.2 · m1.2 = m13.2.4.5 + m134.2.5 + m135.2.4

+ m13.24.5 + m13.25.4 + m135.24 + m134.25 (13)

Compare this to (8). Notice that the shapes indexing the firstand last terms in (13) are the partitions
λ(13.2)∪λ(1.2) andλ(13.2)+λ(1.2). As was the case inSS, one of these shapes, namelyλ(A)+λ(B),
will always appear in the product, while appearance of the shapeλ(A)∪λ(B) depends on the cardinality
of x.

Let us now describe the multiplication rule. Given anyD ⊆ N andk ∈ N, we writeD+k for the set

D+k := {a + k | a ∈ D}.

By extension, for any set partitionA = {A1, . . . , Ar} we setA+k := {A+k
1 , A+k

2 , . . . , A+k
r }. These

definitions allow for the introduction of a bilinear (non-commutative) operation denoted by “∪∪” on formal
linear combinations of set partitions. Given partitionsA = {A1, A2, . . . , Ar} of [c] and a partition
B = {B1, B2, . . . , Bs} of [d], the summands ofA ∪∪ B are set partitions of[c + d]. The operation∪∪ is
recursively defined by the rules:

(a) A ∪∪ ∅ = ∅ ∪∪ A = A, with ∅ denoting the unique set partition of the empty set;

(b) A ∪∪ B = {A1} ∪ (A′
∪∪ B+c) +

s
∑

i=1

{A1 ∪ B+c
i } ∪ (A′

∪∪ (B \ {Bi})
+c),

with union∪ extended bilinearly andA′ denoting{A2, . . . , Ar}.

As shown in [3, Prop. 3.2], the multiplication rule formA andmB in N, is

mA · mB =
∑

C∈A∪∪ B

mC . (14)

The subalgebraN, like its commutative analog, is freely generated by certain monomial symmetric poly-
nomials{mA}A∈A, whereA is some carefully chosen collection of set partitions. Thisis the main
theorem of Wolf [14]. See also [3,§7]. We use two such collections later, our choice depending on
whether or notn < ∞.

The operation(–)+k has a left inverse called thestandardization operator and denoted by “(–)
↓”. It

maps set partitionsA of any cardinality-d subsetD ⊆ N to set partitions of[d], with A↓ defined as the
pullback ofA along the unique increasing bijection from[d] to D. For example,(18.4)↓ = 13.2 and
(18.4.67)

↓
= 15.2.34. The coproduct∆ and counitε onN are given, respectively, by

∆(mA) =
∑

B ·∪C=A

m
B↓ ⊗ m

C↓ and ε(mA) = δA,∅,

whereB ·∪C = A means thatB andC form complementary subsets ofA. In the casen = ∞, the maps
∆ andε are algebra maps, makingN a graded connected Hopf algebra.
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4 The place-action of S on N

4.1 Swapping places in Td and Nd

On top of the permutation-action of the symmetric groupSx on T , we also consider the “place-action”
of Sd on the degreed homogeneous componentTd. Observe that the permutation-action ofσ ∈ Sx on a
monomialz corresponds to the functional composition

σ ◦ z : [d]
z

−→ x
σ

−→ x.

By contrast, theplace-actionof ρ ∈ Sd onz gives the monomial

z ◦ ρ : [d]
ρ

−→ [d]
z

−→ x

composingρ with z on the right. In the linear extension of this action to all ofTd, it is easily seen thatNd

(even eachNµ) is an invariant subspace ofTd. Indeed, for any set partitionA = {A1, . . . , Ar} ⊢ [d] and
ρ ∈ Sd, one has (see [12,§2])

mA · ρ = mρ−1·A , (15)

where as usualρ−1 · A := {ρ−1(A1), ρ
−1(A2), . . . , ρ

−1(Ar)}.

4.2 The place-action structure of N

Notice that the action in (15) is transitive on set partitions and is shape-preserving. It follows that a basis
for the place-action invariants inNd is indexed by partitions. For such a basis we choose the polynomials

mµ :=
1

(dim Nµ)µ!

∑

λ(A)=µ

mA, (16)

with µ! = a1!a2! · · · wheneverµ = 1a12a2 · · · . The normalizing coefficient will be explained in (19).
To simplify our discussion of the structure ofN in this context, we will say thatS acts onN rather than

being fastidious about underlying in each situation that individualNd’s are being acted upon on the right
by the corresponding groupSd. We also denote the setNS of place-invariantsby Λ. To summarize,

Λ = span{mµ : µ a partition ofd, d ∈ N} . (17)

The pair(N, Λ) begins to look like the pair(S, SS) from the introduction. This was the observation that
originally motivated our search for Theorem 1.

We next decomposeN into irreducible place-action representations. Althoughthis can be worked out
for any value ofn, the results are more elegant when we sendn to infinity. Recall that theFrobenius
characteristic of aSd-moduleV is the symmetric function

Frob(V) =
∑

µ⊢d

vµ sµ,

wheresµ is a Schur function—the character of “the” irreducibleSd representationVµ indexed byµ—and
vµ is the multiplicity ofVµ in V. To reveal theSd-module structure ofNµ we may use (15) and standard
techniques from the theory of combinatorial species, cf. [2]. The Frobenius characteristic ofNµ is given
by the following lemma.
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Lemma 3 For a partitionµ = 1a12a2 · · · kak , havingai parts of sizei, we have

Frob(Nµ) = hd1[h1] hd2[h2] · · ·hdk
[hk], (18)

with f [g] denoting plethysm off andg, andhi denoting theith homogeneous symmetric function.

Recall that theplethysm f [g] of two symmetric functions is obtained by linear and multiplicative exten-
sion of the rulepk[pℓ] := pk ℓ, where thepk ’s denote the usual power sum symmetric functions (see [10,
I.8] for notations and more details). For instance, one findsthath3[h2] = s6 + s42 + s222. That is,N222

decomposes into3 irreducible components, with the trivial representations6 coming fromm222 insideΛ.

4.3 Λ meets SS

We begin by explaining the choice of coefficient in (16). From[12, Thm. 2.1], one learns that the
restriction toN of theabelianizationmapab : T → S (the map making the variables commute) satisfies:

(a) ab(N) = SS, and

(b) ab(mA) is a multiple ofmλ(A) depending only onµ = λ(A), more precisely

ab(mµ) = mµ. (19)

Formula (19) suggests that a natural right-inverse toab(–) is given by

ι : SS →֒ N, with ι(mµ) := mµ. (20)

The fact that the image ofSS in N is exactly the subspaceΛ affords us a quick proof of Theorem 1 in the
casen = ∞. The isomorphism we construct forn < ∞ still uses the mapι, but in a less essential way.

5 The coinvariant space of N (Case: n = ∞)
5.1 Proof of main result
Supposen = ∞. Combining results of [3] and a theorem of Blattner, Cohen, and Montgomery [6], we
may immediately deduce the existence of a subspaceC of N together with a vector space isomorphism
N ≃ C ⊗ Λ. Indeed, from Propositions 4.3 and 4.5 of [3], we get that themapι is acoalgebra splitting
of ab : N → SS → 0, i.e.,

ab ◦ ι = id and ∆N ◦ ι = (ι ⊗ ι) ◦ ∆SS .

Moreoverab is a morphism of Hopf algebras. In this context, Theorem 4.14of [6] suggests that we letC
be theleft Hopf kernel of the Hopf mapab,

C = {h ∈ N : (id ⊗ ab) ◦ ∆(h) = h ⊗ 1}.

This theorem gives an algebra isomorphism betweenN and thecrossed productC #σ SS. In fact, since
∆N is cocommutative, it is an isomorphism of Hopf algebras. We refer the interested reader to [6,§4]
for the technical details. We mention only that: (i) the space C is actually a Hopf subalgebra ofN by
construction; (ii) the crossed productC #σ SS is a certain algebra structure built on the tensor product
C ⊗ SS using a cocyleσ : SS × SS → C; and (iii) the isomorphism amounts to a cocyle twisting of
simple multiplication:C ⊗ SS 7→ C · Λ. This completes the proof of Theorem 1. Moreover, since all
spaces and morphisms are graded by degree, the Hilbert series for C is the quotient of that forN by that
for Λ. This demonstrates (4).
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5.2 Atomic set partitions.

Recall the result of Wolf thatN is a polynomial algebra, i.e.,N is freely generated by some collection of
polynomials. We announce our first choice for this collection now, following the terminology of [4]. Let
Π denote the set of all set partitions (of[d], ∀ d ≥ 0). We introduce theatomic set partitions Π̇. A set
partitionA = {A1, . . . , Ar} of [d] is atomic if there does not exist a pair(s, c) (1 ≤ s < r, 1 ≤ c < d)
such that{A1, . . . , As} is a set partition of[c]. Conversely,A is not atomic if there are set partitions
B of [d′] andC of [d′′] splitting A in two: A = B ∪ C+d′

. We write A = B|C in this situation.
A maximal splitting A = A′|A′′| · · · |A(r) of A is one where eachA(i) is atomic. For example, the
partition17.235.4.68 is atomic, while12.346.57.8 is not. The maximal splitting of the latter would be
12|124.35|1, but we abuse notation and write12|346.57|8 to improve legibility.

It is proven in [4] thatN is freely generated by the atomic polynomials. To get a better sense of the
structure, let us orderΠ by giving Π̇ a total order “≺” and then extending lexicographically. Given two
atomic set partitionsA andB, we demand thatA ≺ B if A ⊢ [c] andB ⊢ [d] with c < d. In case
A,B are partitions of the same set[d], then any ordering will do for the current purpose. . . one interesting
choice is to orderA andB by ordering lexicographically their associatedrhyme scheme words.(ii) Our
convention for writing set partitions provides a bijectionbetween set partitions and this special class of
words, sendingA = {A1, A2, . . . , Ar} ∈ Πd to w(A) = w1w2 · · ·wd defined bywi := k if and only if
i ∈ Ak. For example,w(13.2) = 121 andw(17.235.4.68) = 12232414. Using this ordering oṅΠ, we
have the following chain within the set partitions of shape3221:

1|23|45|678 ≺ 13.2|456|78 ≺ 13.24|578.6 ≺ 14.23|578.6 ≺ 17.235.4.68 ≺ 17.236.4.58.

In fact,1|23|45|678 is the unique minimal element ofΠ(3221).
Define theleading term of a sum

∑

C αC mC to be the monomialmC0 such thatC0 is lexicograph-
ically least among allC with αC 6= 0. Combined with (14), our choice for≺ makes it clear that the
leading term ofmA · mB is mA|B. That is, multiplication inN is shape-filtered.Since the left Hopf
kernelC is a subalgebra, it is shape-filtered as well. Finally, the isomorphismC ⊗ Λ → N respects the
shape structures on either side. This completes the proof ofCorollary 2.

It is proven in [8] thatN is not only freely generated by theatomic polynomials
{

mA|A ∈ Π̇
}

, but

co-freely generated by them as well. By a classic theorem of Milnor and Moore [11], this means that
N is isomorphic to the universal enveloping algebraU(L(Π̇)) of the free Lie algebraL(Π̇) on the setΠ̇.
This description will be useful in the next subsection. Let us finish this section with a few final remarks
on atomic set partitions. First, note that set partitions with one part are trivially atomic. The set of these
is denoted byΠ̇♭. They are analogs of the generatorsmk for the algebraSS. The remaining atomic set
partitions

Π̇♯ :=
{

{A1, . . . , Ar} ∈ Π̇ : r > 1
}

are more interesting. They index a large portion of the generators forC. They are also the subject of an
open question formulated at the end of Section 5.3.

(ii) Quoting Bill Blewett from [13, A000110], “a rhyme scheme is astring of letters (eg,abba) such that the leftmost letter is always
a and no letter may be greater than one more than the greatest letter to its left. Thusaac is not valid sincec is more than one
greater thana. For example, [#Π3 = 5] because there are 5 rhyme schemes on 3 letters:aaa, aab, aba, abb, abc.”



552 François Bergeron and Aaron Lauve

5.3 Explicit description of the Hopf algebra structure of C

It is not too hard to find elements in the left Hopf kernel of theabelianization mapab. Consider the
following simple calculation. The sum of monomialsm̃13.2 := m13.2 − m12.3 is primitive. Indeed,

∆(m̃13.2) = 1 ⊗ m13.2 + m12 ⊗ m1 + m1 ⊗ m12 + m13.2 ⊗ 1

− 1 ⊗ m12.3 − m12 ⊗ m1 − m1 ⊗ m12 − m12.3 ⊗ 1

= 1 ⊗ m̃13.2 + m̃13.2 ⊗ 1.

We conclude that(id⊗ ab) ◦∆(m̃13.2) = m̃13.2 ⊗ 1. In other terms,̃m13.2 ∈ C. The linear map∆ may
be split as∆ = ∆P + ∆I, the sum of itsprimitive andimprimitive parts respectively. What we have just
done in the example is to find a modificationm̃13.2 of m13.2 satisfying∆I(m̃13.2) = 0. This suggests the
following proposition.

Proposition 4 There is a primitive element

m̃A = mA +
∑

B : λ(B)=λ(A)

αB mB

associated to eachA ∈ Π̇♯ such that
∑

B αB = −1 andB ∈ Π̇ ⇒ αB = 0.

The existence of primitives comes from the Milnor-Moore isomorphism ofN with U(L(Π̇)). Showing
that they can be chosen with the above properties is a simple calculation, inducting on the number of parts
r of an atomic set partitionA = {A1, . . . , Ar} and applying(∆I)r.

The ideas behind the proposition and the preceding example yield several immediate corollaries: (i)
eachm̃A from Proposition 4 belongs toC; (ii) C is shape-graded, i.e., ifh ∈ C is written as

∑

µ hµ, then
eachhµ belongs toC as well; (iii) for anyg ∈ N andh ∈ C, we have that[g, h] = gh − hg also belongs
to C; (iv) if A andB belong toΠ̇♭, then

[

mA, mB

]

belongs toC. These points essentially account for
all of C, as the next result suggests. First, recall thatSS is also a universal enveloping algebra of a Lie
algebra. Namely, the abelian Lie algebraA({m1, m2, . . .}), where all Lie brackets[mj , mk] are zero.
Since the integersk = 1, 2, . . . are in 1-1 correspondence witḣΠ♭, we have a natural map fromL(Π̇) to
A({m1, m2 . . .}). Our final characterization ofC is as follows.

Corollary 5 Let C be the kernel of the mapπ from the free Lie algebra oṅΠ to the free abelian Lie
algebra onΠ̇♭. Then the coinvariant spaceC is the universal enveloping algebra of the Lie algebraC.

Before turning to the casen < ∞, we remark that we have left unanswered the question of finding a
systematic procedure (e.g., a closed formula in the spirit of Möbius inversion) that constructs a primitive
elementm̃A for eachA ∈ Π̇♯.

6 The coinvariant space of N (Case: n < ∞)
We repeat our example of Section 3.3 in the casen = 3. The leading term with respect to our previous
order would bem13.2.4.5, except that this term does not appear because13.2.4.5 has more thann = 3
parts. Fortunately, the rhyme scheme bijectionw reveals a more useful leading term:

m121 · m12 = 0 + m12113 + m12131 + m12123 + m12132 + m12121 + m12112 .
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The concatenation121|12 is the lexicographically smallest word appearing above. This is generally true:
if w(A) = u andw(B) = v, thenuv is the smallest element ofw(A ∪∪ B). Let us call a rhyme scheme
word averse if it cannot be written as the concatenation of two shorter rhyme schemes. Thesplitting
of a rhyme schemew is the maximal deconcatenationw = w′|w′′| · · · |w(r) of w into versesw(i). For
example,12314 is a verse while11232411 is a string of four versus1|12324|1|1. It is easy to see that if
a, b, c, andd are verses, thena|c = b|d if and only if a = b andc = d. The preceding observations make it
clear thatN is verse-filteredand thatN is freely generated by the monomials{mw(A) | w(A) is a verse}.
This is the collection of monomials originally chosen by Wolf, cf. [3, §7] for details.

Toward locatingC within N, we first locateSS. Consider the partitionµ = 32211. Note that the
lexicographically least rhyme scheme word of shapeµ is w(123.45.67.8.9) = 111223345. We are led to
introduce the words

w(µ) := 1µ12µ2 · · · kµk

asociated to partitionsµ = (µ1, µ2, · · · , µk); we call thesedescending rhymessinceµ1 ≥ · · · ≥ µk.
Finally, we want to viewC as the rhymes that don’t involve a descending rhyme. Then, bythe fact that
N is verse-filtered, we will get an easy vector space isomorphismC ⊗ Λ → N given by multiplication.
Toward that end, we introduce the notion of vexillary rhymes.

A vexillary rhyme is a word that begins with a maximal (but possibly empty) descending rhyme,
followed by one extra verse. Thevexillary decompositionof a rhyme schemew is the expression ofw as
a productw = w′|w′′| · · · |w(r)|w(r+1), wherew′, . . . , w(r) are vexillary rhymes andw(r+1) is a possibly
empty descending rhyme (which we call atail ). For a given wordw, this decomposition is accomplished
by first splittingw into verses, then recombining, from left to right, consecutive verses to form vexillary
rhymes. For instance, the splitting of112212 is 1|1222|12. The first two factors combine to make one
vexillary rhyme; the last factor is a descending tail:1122212 7→ 1 1222 12. Similarly,

1231231411122311 7→ 123|12314|1|1|1223|1|1 7→ 123 12314 1 1 1223 1 1.

Suppose now thatu and v are rhyme schemes and that the vexillary decomposition ofu is tail-free.
Then by construction, the vexillary decomposition ofuv is the concatenation of the respective vexillary
decompositions ofu andv. We are ready to identifyC as a subalgebra ofN.

Theorem 6 Let C be the subalgebra ofN generated by vexillary rhymes. ThenC has a basis indexed by
rhyme scheme wordsw whose vexillary decompositions are tail-free. Moreover, the mapC ⊗ Λ → N

given bymw′mw′′ · · ·mw(r) ⊗ m(µ1···µk) 7→ mw′|w′′|···|w(r)|w(µ) is a vector space isomorphism.

7 Other directions
We conclude with another advertisement for the Blattner-Cohen-Montgomery theorem. The authors’
present investigation into coinvariant spaces began by moving vertically within the commuting diagram
(cube) of Hopf algebras depicted in Figure 1 (whereas in previous work, it was customary to move from
left to right, cf. [1]). One may just as well move in other directions within the cube. To illustrate, we apply
the Blattner-Cohen-Montgomery theorem to two other edges of interest (leaving aside any comments
on group actions). The first of these concerns the downward arrow on the front-right side of the cube.
Recall that, from a purely combinatorial perspective, bases inK〈x〉∼S are indexed by “set compositions”
(ordered set partitions), and those inK[x]∼S by integer compositions (here “∼” indicates the quasi-action
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FIG. 1: The Hopf algebras of symmetric and quasisymmetric functions in one and
two sets of commuting and noncommuting variables.

of Hivert, cf. [7, §3]). One may find a coalgebra splitting fromK[x]∼S to K〈x〉∼S and an associated
coinvariant subalgebra in the spirit of our(N, SS) investigation.

Another direction is to consider the Hopf algebra morphismsp : K[x,y]∼S
։K[x]∼S (the bottom-

right arrow going from NW to SE in Figure 1). These are thediagonally quasi-symmetric functionsand
quasi-symmetric functionsrespectively. For details omitted below, we refer the reader to [1]. The space
K[x,y]S is defined as theS-invariants, insideK[x,y], under the diagonal embedding ofS in S × S.
(The quasi-action of Hivert passes easily through this diagonal embedding.) A basis forK[x,y]∼S is
given by the “monomial functions”ma,b, indexed by “bicompositions”, i.e., elements(a, b) in N

2×r

such thatai + bi > 0. Thesema,b conveniently map to the quasi-symmetric functionma+b under the
specialization mapsp sendingyi to xi. It is straightforward to show that the map sendingma to ma,0,
is a coalgebra splitting. We may thus analyze this situationin a manner analogous to our main result.
Perhaps more surprising than the fact that the quotient

Hilbt

(

K[x,y]∼S
)

/

Hilbt

(

K[x]∼S
)

belongs toNJtK is the fact that the objects it counts have already been named. We discover a connection
between compositions, set compositions, and “L-convex polyominoes.” See [13, A003480].
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