# Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variables

# François Bergeron and Aaron Lauve

LaCIM, Université du Québec à Montréal, CP 8888, Succ. Centre-ville, Montréal (Québec) H3C 3P8, CANADA

Abstract. We analyze the structure of the algebra  $\mathbb{K}\langle \mathbf{x} \rangle^{\mathfrak{S}_n}$  of symmetric polynomials in non-commuting variables in so far as it relates to  $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ , its commutative counterpart. Using the "place-action" of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of  $\mathbb{K}\langle \mathbf{x} \rangle^{\mathfrak{S}_n}$  analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. In the case  $|\mathbf{x}| = \infty$ , our techniques simplify to a form readily generalized to many other familiar pairs of combinatorial Hopf algebras.

**Résumé.** Nous analysons la structure de l'algèbre  $\mathbb{K}\langle \mathbf{x} \rangle^{\mathfrak{S}_n}$  des polynômes symétriques en des variables non-commutatives pour obtenir des analogues des résultats classiques concernant la structure de l'anneau  $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$  des polynômes symétriques en des variables commutatives. Plus précisément, au moyen de "l'action par positions", on réalise  $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$  comme sous-module de  $\mathbb{K}\langle \mathbf{x} \rangle^{\mathfrak{S}_n}$ . On découvre alors une nouvelle décomposition de  $\mathbb{K}\langle \mathbf{x} \rangle^{\mathfrak{S}_n}$  comme produit tensorial, obtenant ainsi un analogues des théorèmes classiques de Chevalley et Shephard-Todd. Dans le cas  $|\mathbf{x}| = \infty$ , nos techniques se simplifient en une forme aisément généralisables à beaucoup d'autres paires d'algèbres de Hopf familières.

Keywords: Chevalley theorem, symmetric group, noncommutative symmetric polynomials, set partitions

# 1 Introduction

One of the more striking results of the invariant theory of reflection groups is certainly the following: if W is a finite group of  $n \times n$  matrices, then there is a graded W-module decomposition of the polynomial ring  $S = \mathbb{K}[\mathbf{x}]$ , in variables  $\mathbf{x} = \{x_1, x_2, \dots, x_n\}$ , as a tensor product<sup>(i)</sup>

$$S \simeq S_W \otimes S^W \,, \tag{1}$$

if and only if W is a group generated by (pseudo) reflections. As usual, S affords the natural W-module structure obtained by considering it as the symmetric space on the defining vector space  $X^*$  for W, e.g.,

 $<sup>^{(</sup>i)}$  We assume throughout that  $\mathbb K$  is a field containing  $\mathbb Q.$ 

<sup>1365-8050 © 2008</sup> Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

 $w \cdot f(\mathbf{x}) = f(w \cdot \mathbf{x})$ . It is customary to denote by  $S^W$  the ring of W-invariant polynomials for this action. To finish parsing (1), recall that  $S_W$  stands for the **coinvariant space**, i.e., the W-module defined as

$$S_W := S / \langle S^W_+ \rangle, \tag{2}$$

the quotient of S by the ideal generated by constant-term free W-invariant polynomials. We give  $S, S^W$ , and  $S_W$  a grading by polynomial degree in  $\mathbf{x}$  (the latter being well-defined because  $\langle S^W_+ \rangle$  is a homogeneous ideal). The motivation behind the quotient in (2) is to eliminate redundant copies of irreducible W-modules inside S. Indeed, if  $\mathcal{V}$  is such a module and  $f(\mathbf{x})$  is any W-invariant polynomial with no constant term, then  $\mathcal{V}f(\mathbf{x})$  is an isomorphic copy of  $\mathcal{V}$  living within  $\langle S^W_+ \rangle$ . As a result, the coinvariant space  $S_W$  is the interesting part of the story.

The context for the present paper is the algebra  $T = \mathbb{K} \langle \mathbf{x} \rangle$  of noncommutative polynomials, with Wmodule structure on T obtained by considering it as the tensor space on the defining space  $X^*$  for W. In the special case when W is the symmetric group  $\mathfrak{S}_n$ , we elucidate a relationship between the space  $S^W$ and the subalgebra  $T^W$  of W-invariants in T. The subalgebra  $T^W$  was first studied in [14, 5] with the aim of obtaining noncommutative analogs of classical results concerning symmetric function theory. Recent work in [12, 3] has extended a large part of the story surrounding (1) to this noncommutative context. In particular, there is an explicit  $\mathfrak{S}_n$ -module decomposition of the form  $T \simeq T_{\mathfrak{S}_n} \otimes T^{\mathfrak{S}_n}$ , cf. [3, Theorem 8.7].

By contrast, our work proceeds in a somewhat complementary direction. We consider  $\mathcal{N} = T^{\mathfrak{S}_n}$  as a tower of  $\mathfrak{S}_d$ -modules under the "place-action" and realize  $S^{\mathfrak{S}_n}$  inside  $\mathcal{N}$  as a subspace  $\Lambda$  of invariants for this action. This leads to a decomposition of  $\mathcal{N}$  analogous to (1). More explicitly, our main result is as follows.

**Theorem 1** There is an explicitly constructed subspace C of N so that C and the place-action invariants  $\Lambda$  exhibit a graded vector space isomorphism

$$\mathcal{N} \simeq \mathcal{C} \otimes \Lambda.$$
 (3)

As an immediate corollary we derive the Hilbert series formula

$$\operatorname{Hilb}_{t}(\mathcal{C}) = \operatorname{Hilb}_{t}(\mathcal{N}) \prod_{i=1}^{n} (1 - t^{i}).$$
(4)

Here, as usual, the **Hilbert series** of a graded space  $\mathcal{V} = \bigoplus_{d>0} \mathcal{V}_d$  is the formal power series defined as

$$\operatorname{Hilb}_t(\mathcal{V}) = \sum_{d \ge 0} \dim \mathcal{V}_d t^d,$$

where  $\mathcal{V}_d$  is the **homogeneous degree** d **component** of  $\mathcal{V}$ . The fact that (4) expands as a series in  $\mathbb{N}[\![t]\!]$  is not at all obvious, as one may check that the Hilbert series of  $\mathcal{N}$  is

$$\operatorname{Hilb}_{t}(\mathcal{N}) = 1 + \sum_{k=1}^{n} \frac{t^{k}}{(1-t)(1-2t)\cdots(1-kt)}$$
(5)

(taking  $n = |\mathbf{x}|$ ). We underline that the harder part of our work lies in working out the case  $n < \infty$ . This is accomplished in Section 6. If we restrict ourselves to the case  $n = \infty$ , both  $\mathcal{N}$  and  $\Lambda$  become Hopf

algebras and things are much simpler. Our results are then consequences of a general theorem of Blattner, Cohen and Montgomery. As we will see in Section 5, stronger results hold in this simpler context. For example, (4) may be refined to a statement about "shape" enumeration.

# 2 The algebra $S^{\mathfrak{S}}$ of symmetric polynomials

### 2.1 Vector space structure of $S^{\mathfrak{S}}$

We specialize our introductory discussion to the group  $W = \mathfrak{S}_n$  of permutation matrices. The action on  $S = \mathbb{K}[\mathbf{x}]$  is simply the **permutation action**  $\sigma \cdot x_i = x_{\sigma(i)}$  and  $S^{\mathfrak{S}_n}$  comprises the usual symmetric polynomials. We suppress n in the notation and denote the subring of symmetric polynomials by  $S^{\mathfrak{S}}$ . (Note that upon sending n to  $\infty$ , the elements of  $S^{\mathfrak{S}}$  become formal series in  $\mathbb{K}[\mathbf{x}]$  of bounded degree; we still call them polynomials to affect a uniform discussion.) A monomial in S of degree d may be written as follows: given an r-subset  $\mathbf{y} = \{y_1, y_2, \dots, y_r\}$  of  $\mathbf{x}$  and a **composition** of d into r parts,  $\mathbf{a} = (a_1, a_2, \dots, a_r)$  ( $a_i > 0$ ), we write  $\mathbf{y}^a$  for  $y_1^{a_1} y_2^{a_2} \cdots y_r^{a_r}$ . We assume that the variables  $y_i$  are naturally ordered, so that whenever  $y_i = x_j$  and  $y_{i+1} = x_k$  we have j < k. Reordering the entries of a composition  $\mathbf{a}$  in decreasing order results in a partition  $\lambda(\mathbf{a})$  called the **shape** of  $\mathbf{a}$ . Summing over monomials  $\mathbf{y}^a$  with the same shape leads to the monomial symmetric polynomial

$$m_{\mu} = m_{\mu}(\mathbf{x}) := \sum_{\lambda(\boldsymbol{a}) = \mu, \ \mathbf{y} \subseteq \mathbf{x}} \mathbf{y}^{\boldsymbol{a}}.$$

Letting  $\mu = (\mu_1, \dots, \mu_r)$  run over all partitions of  $d = |\mu| = \mu_1 + \dots + \mu_r$  gives a basis for  $S_d^{\mathfrak{S}}$ . As usual, we set  $m_0 := 1$  and agree that  $m_\mu = 0$  if  $\mu$  has too many parts (i.e., n < r).

#### 2.2 Dimension enumeration

A fundamental result in the invariant theory of  $\mathfrak{S}_n$  is that  $S^{\mathfrak{S}}$  is generated by a family  $\{f_k\}_{1 \le k \le n}$  of algebraically independent symmetric polynomials, having respective degrees  $\deg f_k = k$ . (One may choose  $\{m_k\}_{1 \le k \le n}$  for such a family.) It follows immediately that the Hilbert series of  $S^{\mathfrak{S}}$  is

$$\operatorname{Hilb}_{t}(S^{\mathfrak{S}}) = \prod_{i=1}^{n} \frac{1}{1-t^{i}}.$$
(6)

Recalling that the Hilbert series of S is  $(1 - t)^{-n}$ , we see from (1) and (6) that the Hilbert series for the coinvariant space  $S_{\mathfrak{S}}$  is the well-known t-analog of n!:

$$\prod_{i=1}^{n} \frac{1-t^{i}}{1-t} = \prod_{i=1}^{n} (1+t+\dots+t^{i-1}).$$
(7)

In particular, contrary to the situation in (4), the series  $\operatorname{Hilb}_t(S)/\operatorname{Hilb}_t(S^{\mathfrak{S}})$  in  $\mathbb{Z}[t]$  is *obviously* positive.

#### 2.3 Algebra and coalgebra structures of $S^{\mathfrak{S}}$

Given partitions  $\mu$  and  $\nu$ , there is an explicit formula for computing the product  $m_{\mu} \cdot m_{\nu}$ . In lieu of giving the formula, we refer the reader to [3, §4.1] and simply give an example:

$$m_{21} \cdot m_{11} = 3 \, m_{2111} + 2 \, m_{221} + 2 \, m_{311} + m_{32}. \tag{8}$$

The extremal terms above are relevant to our coming discussion. Note that if n < 4, then the first term disappears. However, if n is sufficiently large then analogs of these terms always appear with positive integer coefficients for a given pair  $(\mu, \nu)$ . If  $\mu = (\mu_1, \ldots, \mu_r)$  and  $\nu = (\nu_1, \ldots, \nu_s)$  with  $r \le s$ , then the partition indexing the left-most term is denoted by  $\mu \cup \nu$  and is given by sorting the list  $(\mu_1, \ldots, \mu_r, \nu_1, \ldots, \nu_s)$ in increasing order; the right-most term is indexed by  $\mu + \nu := (\mu_1 + \nu_1, \ldots, \mu_r + \nu_r, \nu_{r+1}, \ldots, \nu_s)$ . Taking  $\mu = 31$  and  $\nu = 221$ , we would have  $\mu \cup \nu = 32211$  and  $\mu + \nu = 531$ .

The ring  $S^{\mathfrak{S}}$  is also afforded a coalgebra structure with coproduct  $\Delta : S_d^{\mathfrak{S}} \to \bigoplus_{k=0}^d S_k^{\mathfrak{S}} \otimes S_{d-k}^{\mathfrak{S}}$  and counit  $\varepsilon : S^{\mathfrak{S}} \to \mathbb{K}$  given, respectively, by

$$\Delta(m_{\mu}) = \sum_{\theta \cup \nu = \mu} m_{\theta} \otimes m_{\nu} \text{ and } \varepsilon(m_{\mu}) = \delta_{\mu,0}.$$

In the case  $n = \infty$ ,  $\Delta$  and  $\varepsilon$  are algebra maps, making  $S^{\mathfrak{S}}$  a connected graded (by degree) Hopf algebra.

#### 3 The algebra $\mathcal{N}$ of noncommutative symmetric polynomials

#### 3.1 Vector space structure of N

Suppose now that x denotes a set of non-commuting variables. The algebra  $T = \mathbb{K} \langle \mathbf{x} \rangle$  of noncommutative polynomials is graded by degree. A degree d noncommutative monomial  $\mathbf{z} \in T_d$  is simply a length-d "word":

$$\mathbf{z} = z_1 z_2 \cdots z_d$$
, with each  $z_i \in \mathbf{x}$ .

In other terms,  $\mathbf{z}$  is a function  $\mathbf{z} : [d] \to \mathbf{x}$ , with [d] denoting the set  $\{1, \ldots, d\}$ . The permutation-action on  $\mathbf{x}$  clearly extends to T, giving rise to the subspace  $\mathcal{N} = T^{\mathfrak{S}}$  of noncommutative  $\mathfrak{S}$ -invariants. With the aim of describing a linear basis for the homogeneous component  $\mathcal{N}_d$ , we next introduce set partitions of [d] and the type of a monomial  $\mathbf{z} : [d] \to \mathbf{x}$ . We write  $\mathbf{A} \vdash [d]$  when  $\mathbf{A} = \{A_1, \ldots, A_r\}$  is a **set partition** of [d], i.e.,  $A_1 \cup \ldots \cup A_r = [d]$ , with  $A_i \neq \emptyset$  and  $A_i \cap A_j = \emptyset$  whenever  $i \neq j$ . The **type**  $\tau(\mathbf{z})$  of a degree d monomial  $\mathbf{z} : [d] \to \mathbf{x}$  is the set partition

$$\tau(\mathbf{z}) := \{ \mathbf{z}^{-1}(x) \mid x \in \mathbf{x} \} \setminus \{ \emptyset \} \quad \text{of} \quad [d],$$

whose parts are the non-empty fibers of the function z. For instance,

$$\tau(x_1x_8x_1x_5x_8) = \{\{1,3\},\{2,5\},\{4\}\}\}$$

In the sequel, we lighten the heavy notation for set partitions, writing, e.g.,  $\{\{1,3\},\{2,5\},\{4\}\}$  as 13.25.4. Clearly the type of a monomial is a finite set partition with at most *n* parts. Note that we may always order the parts in increasing order of their minimum elements. The **shape**  $\lambda(\mathbf{A})$  of a set partition  $\mathbf{A} = \{A_1, \ldots, A_r\}$  is the (integer) partition  $\lambda(|A_1|, \ldots, |A_r|)$  obtained by sorting the part sizes of  $\mathbf{A}$  in increasing order. Observing that the permutation-action is *type preserving*, we are led to consider the **monomial** linear basis for the space  $\mathcal{N}_d$ :

$$m_{\mathbf{A}} = m_{\mathbf{A}}(\mathbf{x}) := \sum_{\tau(\mathbf{z}) = \mathbf{A}} \mathbf{z}$$

For example, with n = 2, we have  $m_{\emptyset} = 1$ ,  $m_1 = x_1 + x_2$ ,  $m_{12} = x_1^2 + x_2^2$ ,  $m_{1.2} = x_1x_2 + x_2x_1$ ,  $m_{123} = x_1^3 + x_2^3$ ,  $m_{12.3} = x_1^2x_2 + x_2^2x_1$ ,  $m_{13.2} = x_1x_2x_1 + x_2x_1x_2$ ,  $m_{1.23} = x_1x_2^2 + x_2x_1^2$ ,  $m_{1.2.3} = 0$ , ... (Note that we set  $m_{\emptyset} := 1$ , taking  $\emptyset$  as the unique set partition of the empty set, and we agree that  $m_{\mathbf{A}} = 0$  if  $\mathbf{A}$  is a set partition with more than n parts.)

#### 3.2 Dimension enumeration and shape grading

Above, we determined that  $\dim N_d$  is the number of set partitions of d into at most n parts. These are counted by the (length restricted) **Bell numbers**  $B_d^{(n)}$ . Then (5) follows from the fact that its right-hand side is the ordinary generating function for length restricted Bell numbers. See [9, §2]. We next highlight a finer enumeration, where we grade N by shape rather than degree.

For each partition  $\mu$ , we may consider the submodule  $\mathbb{N}_{\mu}$  spanned by those  $m_{\mathbf{A}}$  for which  $\lambda(\mathbf{A}) = \mu$ . This results in a direct sum decomposition  $\mathbb{N}_d = \bigoplus_{\mu \vdash d} \mathbb{N}_{\mu}$ . A simple dimension description for  $\mathbb{N}_d$  takes the form of a **shape Hilbert series** in the following manner. View commuting variables  $q_i$  as marking parts of size i and set  $q_{\mu} := q_{\mu_1}q_{\mu_2}\cdots q_{\mu_r}$ . Then

$$\operatorname{Hilb}_{\boldsymbol{q}}(\mathbb{N}_d) = \sum_{\mu \vdash d} \dim \mathbb{N}_{\mu} \, \boldsymbol{q}_{\mu}, = \sum_{\mathbf{A} \vdash [d]} q_{\lambda(\mathbf{A})}.$$
(9)

Here,  $q_{\mu}$  is a marker for set partitions of shape  $\lambda(\mathbf{A}) = \mu$  and the sum is over all partitions into at most n parts. Such a shape grading also makes sense for  $S_d^{\mathfrak{S}}$ . Summing over all  $d \ge 0$  and all  $\mu$ , we get

$$\operatorname{Hilb}_{\boldsymbol{q}}(S^{\mathfrak{S}}) = \sum_{\mu} \boldsymbol{q}_{\mu} = \prod_{i \ge 1}^{n} \frac{1}{1 - q_{i}}.$$
(10)

Using classical combinatorial arguments (cf. Chapter 2.3 of [2], Example 13), we see that the enumerator polynomials  $\operatorname{Hilb}_{q}(\mathcal{N}_{d})$  are naturally collected in the **exponential generating function** 

$$\sum_{d=0}^{\infty} \operatorname{Hilb}_{\boldsymbol{q}}(\mathbb{N}_d) \, \frac{t^d}{d!} = \sum_{m=0}^n \frac{1}{m!} \left( \sum_{k=1}^{\infty} q_k \frac{t^k}{k!} \right)^m. \tag{11}$$

For example, with n = 3, we have

$$\operatorname{Hilb}_{\boldsymbol{q}}(\mathcal{N}_6) = q_6 + 6 \, q_5 q_1 + 15 \, q_4 q_2 + 15 \, q_4 q_1^2 + 10 \, q_3^2 + 60 \, q_3 q_2 q_1 + 15 \, q_2^3,$$

thus dim  $\mathcal{N}_{222} = 15$  when  $n \geq 3$ . Evidently, the *q*-polynomials Hilb<sub>*q*</sub>( $\mathcal{N}_d$ ) specialize to the length restricted Bell numbers  $B_d^{(n)}$  when we set all  $q_k$  equal to 1.

In view of (10), (11), and Theorem 1, we are led to claim the following refinement of (4).

**Corollary 2** For  $n = \infty$ , the shape Hilbert series of the space  $\mathcal{C}$  is given by the expression

$$\operatorname{Hilb}_{\boldsymbol{q}}(\mathcal{C}) = \sum_{d \ge 0} d! \exp\left(\sum_{k=1}^{\infty} q_k \frac{t^k}{k!}\right) \bigg|_{t^d} \prod_{i \ge 1} (1 - q_i),$$
(12)

with  $(-)|_{t^d}$  standing for the operation of taking the coefficient of  $t^d$ .

Thus we have the expansion

$$\operatorname{Hilb}_{\boldsymbol{q}}(\mathbb{C}) = 1 + 2 q_2 q_1 + \left(3 q_3 q_1 + 2 q_2^2 + 3 q_2 q_1^2\right) \\ + \left(4 q_4 q_1 + 9 q_3 q_2 + 6 q_3 q_1^2 + 10 q_2^2 q_1 + 4 q_2 q_1^3\right) + \dots$$

Corollary 2 will follow immediately from the explicit description of  $\mathcal{C}$  and the isomorphism  $\mathcal{C} \otimes \Lambda \to \mathcal{N}$  in Section 5, which is not only degree preserving, but shape preserving as well.

#### 3.3 Algebra and coalgebra structures of N

Since the action of  $\mathfrak{S}$  on T is multiplicative, it is straightforward to see that  $\mathfrak{N}$  is an subalgebra of T. The *multiplication rule* in  $\mathfrak{N}$ , expressing a product  $m_{\mathbf{A}} \cdot m_{\mathbf{B}}$  as a sum of basis vectors  $\sum_{\mathbf{C}} m_{\mathbf{C}}$ , is easy to describe. Since we make heavy use of the rule later, we develop it carefully here. We begin with an example (the digits corresponding to  $\mathbf{B} = 1.2$  appear in bold):

$$m_{13.2} \cdot m_{1.2} = m_{13.2.4.5} + m_{134.2.5} + m_{135.2.4} + m_{13.24.5} + m_{13.25.4} + m_{135.24} + m_{134.25}$$
(13)

Compare this to (8). Notice that the shapes indexing the first and last terms in (13) are the partitions  $\lambda(13.2) \cup \lambda(1.2)$  and  $\lambda(13.2) + \lambda(1.2)$ . As was the case in  $S^{\mathfrak{S}}$ , one of these shapes, namely  $\lambda(\mathbf{A}) + \lambda(\mathbf{B})$ , will always appear in the product, while appearance of the shape  $\lambda(\mathbf{A}) \cup \lambda(\mathbf{B})$  depends on the cardinality of  $\mathbf{x}$ .

Let us now describe the multiplication rule. Given any  $D \subseteq \mathbb{N}$  and  $k \in \mathbb{N}$ , we write  $D^{+k}$  for the set

$$D^{+k} := \{a + k \mid a \in D\}.$$

By extension, for any set partition  $\mathbf{A} = \{A_1, \dots, A_r\}$  we set  $\mathbf{A}^{+k} := \{A_1^{+k}, A_2^{+k}, \dots, A_r^{+k}\}$ . These definitions allow for the introduction of a bilinear (non-commutative) operation denoted by " $\omega$ " on formal linear combinations of set partitions. Given partitions  $\mathbf{A} = \{A_1, A_2, \dots, A_r\}$  of [c] and a partition  $\mathbf{B} = \{B_1, B_2, \dots, B_s\}$  of [d], the summands of  $\mathbf{A} \cup \mathbf{B}$  are set partitions of [c+d]. The operation  $\omega$  is recursively defined by the rules:

(a)  $\mathbf{A} = \emptyset = \emptyset = \mathbf{A}$ , with  $\emptyset$  denoting the unique set partition of the empty set;

(b) 
$$\mathbf{A} \sqcup \mathbf{B} = \{A_1\} \cup (\mathbf{A}' \sqcup \mathbf{B}^{+c}) + \sum_{i=1}^{s} \{A_1 \cup B_i^{+c}\} \cup (\mathbf{A}' \sqcup (\mathbf{B} \setminus \{B_i\})^{+c}),$$

with union  $\cup$  extended bilinearly and  $\mathbf{A}'$  denoting  $\{A_2, \ldots, A_r\}$ .

As shown in [3, Prop. 3.2], the multiplication rule for  $m_{\mathbf{A}}$  and  $m_{\mathbf{B}}$  in  $\mathcal{N}$ , is

$$m_{\mathbf{A}} \cdot m_{\mathbf{B}} = \sum_{\mathbf{C} \in \mathbf{A} \ \sqcup \ \mathbf{B}} m_{\mathbf{C}} \,. \tag{14}$$

The subalgebra  $\mathcal{N}$ , like its commutative analog, is freely generated by certain monomial symmetric polynomials  $\{m_{\mathbf{A}}\}_{\mathbf{A}\in\mathcal{A}}$ , where  $\mathcal{A}$  is some carefully chosen collection of set partitions. This is the main theorem of Wolf [14]. See also [3, §7]. We use two such collections later, our choice depending on whether or not  $n < \infty$ .

The operation  $(-)^{+k}$  has a left inverse called the **standardization** operator and denoted by " $(-)^{\downarrow}$ ". It maps set partitions **A** of any cardinality-*d* subset  $D \subseteq \mathbb{N}$  to set partitions of [d], with  $\mathbf{A}^{\downarrow}$  defined as the pullback of **A** along the unique increasing bijection from [d] to *D*. For example,  $(18.4)^{\downarrow} = 13.2$  and  $(18.4.67)^{\downarrow} = 15.2.34$ . The coproduct  $\Delta$  and counit  $\varepsilon$  on  $\mathbb{N}$  are given, respectively, by

$$\Delta(m_{\mathbf{A}}) = \sum_{\mathbf{B} \cup \mathbf{C} = \mathbf{A}} m_{\mathbf{B} \downarrow} \otimes m_{\mathbf{C} \downarrow} \qquad \text{and} \qquad \varepsilon(m_{\mathbf{A}}) = \delta_{\mathbf{A}, \emptyset}$$

where  $\mathbf{B} \cup \mathbf{C} = \mathbf{A}$  means that  $\mathbf{B}$  and  $\mathbf{C}$  form complementary subsets of  $\mathbf{A}$ . In the case  $n = \infty$ , the maps  $\Delta$  and  $\varepsilon$  are algebra maps, making  $\mathcal{N}$  a graded connected Hopf algebra.

548

## 4 The place-action of $\mathfrak{S}$ on $\mathfrak{N}$

#### 4.1 Swapping places in $T_d$ and $N_d$

On top of the permutation-action of the symmetric group  $\mathfrak{S}_{\mathbf{x}}$  on T, we also consider the "place-action" of  $\mathfrak{S}_d$  on the degree d homogeneous component  $T_d$ . Observe that the permutation-action of  $\sigma \in \mathfrak{S}_{\mathbf{x}}$  on a monomial  $\mathbf{z}$  corresponds to the functional composition

$$\sigma \circ \mathbf{z} : [d] \xrightarrow{\mathbf{z}} \mathbf{x} \xrightarrow{\sigma} \mathbf{x}.$$

By contrast, the **place-action** of  $\rho \in \mathfrak{S}_d$  on  $\mathbf{z}$  gives the monomial

$$\mathbf{z} \circ \rho : [d] \xrightarrow{\rho} [d] \xrightarrow{\mathbf{z}} \mathbf{x}$$

composing  $\rho$  with  $\mathbf{z}$  on the right. In the linear extension of this action to all of  $T_d$ , it is easily seen that  $\mathcal{N}_d$ (even each  $\mathcal{N}_{\mu}$ ) is an invariant subspace of  $T_d$ . Indeed, for any set partition  $\mathbf{A} = \{A_1, \ldots, A_r\} \vdash [d]$  and  $\rho \in \mathfrak{S}_d$ , one has (see [12, §2])

$$m_{\mathbf{A}} \cdot \rho = m_{\rho^{-1} \cdot \mathbf{A}},$$
(15)  
where as usual  $\rho^{-1} \cdot \mathbf{A} := \{\rho^{-1}(A_1), \rho^{-1}(A_2), \dots, \rho^{-1}(A_r)\}.$ 

#### 4.2 The place-action structure of N

Notice that the action in (15) is transitive on set partitions and is shape-preserving. It follows that a basis for the place-action invariants in  $N_d$  is indexed by partitions. For such a basis we choose the polynomials

$$\mathbf{m}_{\mu} := \frac{1}{(\dim \mathcal{N}_{\mu})\mu!} \sum_{\lambda(\mathbf{A})=\mu} m_{\mathbf{A}},\tag{16}$$

with  $\mu! = a_1!a_2!\cdots$  whenever  $\mu = 1^{a_1}2^{a_2}\cdots$ . The normalizing coefficient will be explained in (19).

To simplify our discussion of the structure of  $\mathbb{N}$  in this context, we will say that  $\mathfrak{S}$  acts on  $\mathbb{N}$  rather than being fastidious about underlying in each situation that individual  $\mathbb{N}_d$ 's are being acted upon on the right by the corresponding group  $\mathfrak{S}_d$ . We also denote the set  $\mathbb{N}^{\mathfrak{S}}$  of **place-invariants** by  $\Lambda$ . To summarize,

$$\Lambda = \operatorname{span}\{\mathbf{m}_{\mu} : \mu \text{ a partition of } d, d \in \mathbb{N}\}.$$
(17)

The pair  $(\mathcal{N}, \Lambda)$  begins to look like the pair  $(S, S^{\mathfrak{S}})$  from the introduction. This was the observation that originally motivated our search for Theorem 1.

We next decompose  $\mathcal{N}$  into irreducible place-action representations. Although this can be worked out for any value of n, the results are more elegant when we send n to infinity. Recall that the **Frobenius** characteristic of a  $\mathfrak{S}_d$ -module  $\mathcal{V}$  is the symmetric function

$$\operatorname{Frob}(\mathcal{V}) = \sum_{\mu \vdash d} v_{\mu} \, s_{\mu},$$

where  $s_{\mu}$  is a Schur function—the character of "the" irreducible  $\mathfrak{S}_d$  representation  $\mathcal{V}_{\mu}$  indexed by  $\mu$ —and  $v_{\mu}$  is the multiplicity of  $\mathcal{V}_{\mu}$  in  $\mathcal{V}$ . To reveal the  $\mathfrak{S}_d$ -module structure of  $\mathcal{N}_{\mu}$  we may use (15) and standard techniques from the theory of combinatorial species, cf. [2]. The Frobenius characteristic of  $\mathcal{N}_{\mu}$  is given by the following lemma.

François Bergeron and Aaron Lauve

**Lemma 3** For a partition  $\mu = 1^{a_1} 2^{a_2} \cdots k^{a_k}$ , having  $a_i$  parts of size *i*, we have

$$Frob(\mathcal{N}_{\mu}) = h_{d_1}[h_1] h_{d_2}[h_2] \cdots h_{d_k}[h_k],$$
(18)

with f[g] denoting plethysm of f and g, and  $h_i$  denoting the  $i^{th}$  homogeneous symmetric function.

Recall that the **plethysm** f[g] of two symmetric functions is obtained by linear and multiplicative extension of the rule  $p_k[p_\ell] := p_{k\,\ell}$ , where the  $p_k$ 's denote the usual power sum symmetric functions (see [10, I.8] for notations and more details). For instance, one finds that  $h_3[h_2] = s_6 + s_{42} + s_{222}$ . That is,  $\mathcal{N}_{222}$  decomposes into 3 irreducible components, with the trivial representation  $s_6$  coming from  $\mathbf{m}_{222}$  inside  $\Lambda$ .

#### 4.3 $\Lambda$ meets $S^{\mathfrak{S}}$

We begin by explaining the choice of coefficient in (16). From [12, Thm. 2.1], one learns that the restriction to  $\mathbb{N}$  of the **abelianization** map  $\mathbf{ab}: T \to S$  (the map making the variables commute) satisfies:

- (a)  $\mathbf{ab}(\mathcal{N}) = S^{\mathfrak{S}}$ , and
- (b)  $ab(m_A)$  is a multiple of  $m_{\lambda(A)}$  depending only on  $\mu = \lambda(A)$ , more precisely

$$\mathbf{ab}(\mathbf{m}_{\mu}) = m_{\mu}.\tag{19}$$

Formula (19) suggests that a natural right-inverse to ab(-) is given by

$$\iota: S^{\mathfrak{S}} \hookrightarrow \mathfrak{N}, \quad \text{with} \quad \iota(m_{\mu}) := \mathbf{m}_{\mu}.$$
 (20)

The fact that the image of  $S^{\mathfrak{S}}$  in  $\mathbb{N}$  is exactly the subspace  $\Lambda$  affords us a quick proof of Theorem 1 in the case  $n = \infty$ . The isomorphism we construct for  $n < \infty$  still uses the map  $\iota$ , but in a less essential way.

# 5 The coinvariant space of $\mathcal{N}$ (Case: $n = \infty$ )

#### 5.1 Proof of main result

Suppose  $n = \infty$ . Combining results of [3] and a theorem of Blattner, Cohen, and Montgomery [6], we may immediately deduce the existence of a subspace  $\mathcal{C}$  of  $\mathbb{N}$  together with a vector space isomorphism  $\mathbb{N} \simeq \mathcal{C} \otimes \Lambda$ . Indeed, from Propositions 4.3 and 4.5 of [3], we get that the map  $\iota$  is a **coalgebra splitting** of **ab** :  $\mathbb{N} \to S^{\mathfrak{S}} \to 0$ , i.e.,

$$\mathbf{ab} \circ \iota = \mathrm{id}$$
 and  $\Delta_{\mathcal{N}} \circ \iota = (\iota \otimes \iota) \circ \Delta_{S^{\mathfrak{S}}}$ 

Moreover **ab** is a morphism of Hopf algebras. In this context, Theorem 4.14 of [6] suggests that we let C be the **left Hopf kernel** of the Hopf map **ab**,

$$\mathcal{C} = \{h \in \mathcal{N} : (\mathrm{id} \otimes \mathbf{ab}) \circ \Delta(h) = h \otimes 1\}.$$

This theorem gives an algebra isomorphism between  $\mathbb{N}$  and the *crossed product*  $\mathcal{C} \#_{\sigma} S^{\mathfrak{S}}$ . In fact, since  $\Delta_{\mathbb{N}}$  is cocommutative, it is an isomorphism of Hopf algebras. We refer the interested reader to [6, §4] for the technical details. We mention only that: (i) the space  $\mathcal{C}$  is actually a Hopf subalgebra of  $\mathbb{N}$  by construction; (ii) the crossed product  $\mathcal{C} \#_{\sigma} S^{\mathfrak{S}}$  is a certain algebra structure built on the tensor product  $\mathcal{C} \otimes S^{\mathfrak{S}}$  using a cocyle  $\sigma : S^{\mathfrak{S}} \times S^{\mathfrak{S}} \to \mathfrak{C}$ ; and (iii) the isomorphism amounts to a cocyle twisting of simple multiplication:  $\mathcal{C} \otimes S^{\mathfrak{S}} \mapsto \mathfrak{C} \cdot \Lambda$ . This completes the proof of Theorem 1. Moreover, since all spaces and morphisms are graded by degree, the Hilbert series for  $\mathfrak{C}$  is the quotient of that for  $\mathbb{N}$  by that for  $\Lambda$ . This demonstrates (4).

550

#### 5.2 Atomic set partitions.

Recall the result of Wolf that  $\mathbb{N}$  is a polynomial algebra, i.e.,  $\mathbb{N}$  is freely generated by some collection of polynomials. We announce our first choice for this collection now, following the terminology of [4]. Let II denote the set of all set partitions (of  $[d], \forall d \ge 0$ ). We introduce the **atomic set partitions**  $\Pi$ . A set partition  $\mathbf{A} = \{A_1, \ldots, A_r\}$  of [d] is atomic if there does not exist a pair (s, c)  $(1 \le s < r, 1 \le c < d)$  such that  $\{A_1, \ldots, A_s\}$  is a set partition of [c]. Conversely,  $\mathbf{A}$  is not atomic if there are set partitions  $\mathbf{B}$  of [d'] and  $\mathbf{C}$  of [d''] splitting  $\mathbf{A}$  in two:  $\mathbf{A} = \mathbf{B} \cup \mathbf{C}^{+d'}$ . We write  $\mathbf{A} = \mathbf{B} | \mathbf{C}$  in this situation. A **maximal splitting**  $\mathbf{A} = \mathbf{A}' | \mathbf{A}'' | \cdots | \mathbf{A}^{(r)}$  of  $\mathbf{A}$  is one where each  $\mathbf{A}^{(i)}$  is atomic. For example, the partition 17.235.4.68 is atomic, while 12.346.57.8 is not. The maximal splitting of the latter would be 12|124.35|1, but we abuse notation and write 12|346.57|8 to improve legibility.

It is proven in [4] that  $\mathcal{N}$  is freely generated by the atomic polynomials. To get a better sense of the structure, let us order  $\Pi$  by giving  $\dot{\Pi}$  a total order " $\prec$ " and then extending lexicographically. Given two atomic set partitions  $\mathbf{A}$  and  $\mathbf{B}$ , we demand that  $\mathbf{A} \prec \mathbf{B}$  if  $\mathbf{A} \vdash [c]$  and  $\mathbf{B} \vdash [d]$  with c < d. In case  $\mathbf{A}$ ,  $\mathbf{B}$  are partitions of the same set [d], then any ordering will do for the current purpose... one interesting choice is to order  $\mathbf{A}$  and  $\mathbf{B}$  by ordering lexicographically their associated **rhyme scheme words**.<sup>(ii)</sup> Our convention for writing set partitions provides a bijection between set partitions and this special class of words, sending  $\mathbf{A} = \{A_1, A_2, \ldots, A_r\} \in \Pi_d$  to  $w(\mathbf{A}) = w_1 w_2 \cdots w_d$  defined by  $w_i := k$  if and only if  $i \in A_k$ . For example, w(13.2) = 121 and w(17.235.4.68) = 12232414. Using this ordering on  $\Pi$ , we have the following chain within the set partitions of shape 3221:

 $1|23|45|678 \prec 13.2|456|78 \prec 13.24|578.6 \prec 14.23|578.6 \prec 17.235.4.68 \prec 17.236.4.58.$ 

In fact, 1|23|45|678 is the unique minimal element of  $\Pi_{(3221)}$ .

Define the **leading term** of a sum  $\sum_{\mathbf{C}} \alpha_{\mathbf{C}} m_{\mathbf{C}}$  to be the monomial  $m_{\mathbf{C}_0}$  such that  $\mathbf{C}_0$  is lexicographically least among all  $\mathbf{C}$  with  $\alpha_{\mathbf{C}} \neq 0$ . Combined with (14), our choice for  $\prec$  makes it clear that the leading term of  $m_{\mathbf{A}} \cdot m_{\mathbf{B}}$  is  $m_{\mathbf{A}|\mathbf{B}}$ . That is, multiplication in  $\mathbb{N}$  is *shape-filtered*. Since the left Hopf kernel  $\mathcal{C}$  is a subalgebra, it is shape-filtered as well. Finally, the isomorphism  $\mathcal{C} \otimes \Lambda \to \mathbb{N}$  respects the shape structures on either side. This completes the proof of Corollary 2.

It is proven in [8] that  $\mathcal{N}$  is not only freely generated by the *atomic polynomials*  $\{m_{\mathbf{A}} | \mathbf{A} \in \Pi\}$ , but co-freely generated by them as well. By a classic theorem of Milnor and Moore [11], this means that  $\mathcal{N}$  is isomorphic to the universal enveloping algebra  $\mathfrak{U}(\mathfrak{L}(\Pi))$  of the free Lie algebra  $\mathfrak{L}(\Pi)$  on the set  $\Pi$ . This description will be useful in the next subsection. Let us finish this section with a few final remarks on atomic set partitions. First, note that set partitions with one part are trivially atomic. The set of these is denoted by  $\Pi_{\mathfrak{h}}$ . They are analogs of the generators  $m_k$  for the algebra  $S^{\mathfrak{S}}$ . The remaining atomic set partitions

$$\dot{\Pi}_{\sharp} := \left\{ \left\{ A_1, \dots, A_r \right\} \in \dot{\Pi} : r > 1 \right\}$$

are more interesting. They index a large portion of the generators for C. They are also the subject of an open question formulated at the end of Section 5.3.

<sup>&</sup>lt;sup>(ii)</sup> Quoting Bill Blewett from [13, A000110], "a rhyme scheme is a string of letters (eg, *abba*) such that the leftmost letter is always a and no letter may be greater than one more than the greatest letter to its left. Thus *aac* is not valid since c is more than one greater than a. For example, [# $\Pi_3 = 5$ ] because there are 5 rhyme schemes on 3 letters: *aaa*, *aab*, *aba*, *abb*, *abc*."

#### 5.3 Explicit description of the Hopf algebra structure of C

It is not too hard to find elements in the left Hopf kernel of the abelianization map **ab**. Consider the following simple calculation. The sum of monomials  $\tilde{m}_{13,2} := m_{13,2} - m_{12,3}$  is primitive. Indeed,

$$\begin{aligned} \Delta(\tilde{m}_{13.2}) &= 1 \otimes m_{13.2} + m_{12} \otimes m_1 + m_1 \otimes m_{12} + m_{13.2} \otimes 1 \\ &- 1 \otimes m_{12.3} - m_{12} \otimes m_1 - m_1 \otimes m_{12} - m_{12.3} \otimes 1 \\ &= 1 \otimes \tilde{m}_{13.2} + \tilde{m}_{13.2} \otimes 1. \end{aligned}$$

We conclude that  $(id \otimes ab) \circ \Delta(\tilde{m}_{13,2}) = \tilde{m}_{13,2} \otimes 1$ . In other terms,  $\tilde{m}_{13,2} \in \mathcal{C}$ . The linear map  $\Delta$  may be split as  $\Delta = \Delta^{P} + \Delta^{I}$ , the sum of its **primitive** and **imprimitive** parts respectively. What we have just done in the example is to find a modification  $\tilde{m}_{13,2}$  of  $m_{13,2}$  satisfying  $\Delta^{I}(\tilde{m}_{13,2}) = 0$ . This suggests the following proposition.

**Proposition 4** There is a primitive element

$$\tilde{m}_{\mathbf{A}} = m_{\mathbf{A}} + \sum_{\mathbf{B} : \, \lambda(\mathbf{B}) = \lambda(\mathbf{A})} \alpha_{\mathbf{B}} \, m_{\mathbf{B}}$$

associated to each  $\mathbf{A} \in \dot{\Pi}_{\sharp}$  such that  $\sum_{\mathbf{B}} \alpha_{\mathbf{B}} = -1$  and  $\mathbf{B} \in \dot{\Pi} \Rightarrow \alpha_{\mathbf{B}} = 0$ .

The existence of primitives comes from the Milnor-Moore isomorphism of  $\mathbb{N}$  with  $\mathfrak{U}(\mathfrak{L}(\Pi))$ . Showing that they can be chosen with the above properties is a simple calculation, inducting on the number of parts r of an atomic set partition  $\mathbf{A} = \{A_1, \ldots, A_r\}$  and applying  $(\Delta^{I})^r$ .

The ideas behind the proposition and the preceding example yield several immediate corollaries: (i) each  $\tilde{m}_{\mathbf{A}}$  from Proposition 4 belongs to  $\mathbb{C}$ ; (ii)  $\mathbb{C}$  is shape-graded, i.e., if  $h \in \mathbb{C}$  is written as  $\sum_{\mu} h_{\mu}$ , then each  $h_{\mu}$  belongs to  $\mathbb{C}$  as well; (iii) for any  $g \in \mathbb{N}$  and  $h \in \mathbb{C}$ , we have that [g,h] = gh - hg also belongs to  $\mathbb{C}$ ; (iv) if  $\mathbf{A}$  and  $\mathbf{B}$  belong to  $\dot{\Pi}_{\flat}$ , then  $[m_{\mathbf{A}}, m_{\mathbf{B}}]$  belongs to  $\mathbb{C}$ . These points essentially account for all of  $\mathbb{C}$ , as the next result suggests. First, recall that  $S^{\mathfrak{S}}$  is also a universal enveloping algebra of a Lie algebra. Namely, the abelian Lie algebra  $\mathfrak{A}(\{m_1, m_2, \ldots\})$ , where all Lie brackets  $[m_j, m_k]$  are zero. Since the integers  $k = 1, 2, \ldots$  are in 1-1 correspondence with  $\dot{\Pi}_{\flat}$ , we have a natural map from  $\mathfrak{L}(\dot{\Pi})$  to  $\mathfrak{A}(\{m_1, m_2, \ldots\})$ . Our final characterization of  $\mathbb{C}$  is as follows.

**Corollary 5** Let  $\mathfrak{C}$  be the kernel of the map  $\pi$  from the free Lie algebra on  $\Pi$  to the free abelian Lie algebra on  $\dot{\Pi}_{\mathfrak{p}}$ . Then the coinvariant space  $\mathfrak{C}$  is the universal enveloping algebra of the Lie algebra  $\mathfrak{C}$ .

Before turning to the case  $n < \infty$ , we remark that we have left unanswered the question of finding a systematic procedure (e.g., a closed formula in the spirit of Möbius inversion) that constructs a primitive element  $\tilde{m}_{\mathbf{A}}$  for each  $\mathbf{A} \in \dot{\Pi}_{\sharp}$ .

# 6 The coinvariant space of $\mathcal{N}$ (Case: $n < \infty$ )

We repeat our example of Section 3.3 in the case n = 3. The leading term with respect to our previous order would be  $m_{13,2,4,5}$ , except that this term does not appear because 13.2.4.5 has more than n = 3 parts. Fortunately, the rhyme scheme bijection w reveals a more useful leading term:

 $m_{121} \cdot m_{12} = 0 + m_{12113} + m_{12131} + m_{12123} + m_{12132} + m_{12121} + m_{12112}$ 

The concatenation 121|12 is the lexicographically smallest word appearing above. This is generally true: if  $w(\mathbf{A}) = u$  and  $w(\mathbf{B}) = v$ , then uv is the smallest element of  $w(\mathbf{A} \cup \mathbf{B})$ . Let us call a rhyme scheme word a **verse** if it cannot be written as the concatenation of two shorter rhyme schemes. The **splitting** of a rhyme scheme w is the maximal deconcatenation  $w = w'|w''| \cdots |w^{(r)}$  of w into verses  $w^{(i)}$ . For example, 12314 is a verse while 11232411 is a string of four versus 1|12324|1|1. It is easy to see that if a, b, c, and d are verses, then a|c = b|d if and only if a = b and c = d. The preceding observations make it clear that  $\mathcal{N}$  is *verse-filtered* and that  $\mathcal{N}$  is freely generated by the monomials  $\{m_{W(\mathbf{A})} \mid w(\mathbf{A}) \text{ is a verse}\}$ . This is the collection of monomials originally chosen by Wolf, cf. [3, §7] for details.

Toward locating  $\mathcal{C}$  within  $\mathcal{N}$ , we first locate  $S^{\mathfrak{S}}$ . Consider the partition  $\mu = 32211$ . Note that the lexicographically least rhyme scheme word of shape  $\mu$  is w(123.45.67.8.9) = 111223345. We are led to introduce the words

$$w(\mu) := 1^{\mu_1} 2^{\mu_2} \cdots k^{\mu_k}$$

asociated to partitions  $\mu = (\mu_1, \mu_2, \dots, \mu_k)$ ; we call these **descending rhymes** since  $\mu_1 \ge \dots \ge \mu_k$ . Finally, we want to view  $\mathcal{C}$  as the rhymes that don't involve a descending rhyme. Then, by the fact that  $\mathcal{N}$  is verse-filtered, we will get an easy vector space isomorphism  $\mathcal{C} \otimes \Lambda \to \mathcal{N}$  given by multiplication. Toward that end, we introduce the notion of vexillary rhymes.

A vexillary rhyme is a word that begins with a maximal (but possibly empty) descending rhyme, followed by one extra verse. The vexillary decomposition of a rhyme scheme w is the expression of w as a product  $w = w'|w''| \cdots |w^{(r)}|w^{(r+1)}$ , where  $w', \ldots, w^{(r)}$  are vexillary rhymes and  $w^{(r+1)}$  is a possibly empty descending rhyme (which we call a tail). For a given word w, this decomposition is accomplished by first splitting w into verses, then recombining, from left to right, consecutive verses to form vexillary rhymes. For instance, the splitting of 112212 is 1|1222|12. The first two factors combine to make one vexillary rhyme; the last factor is a descending tail:  $1122212 \mapsto 11222 12$ . Similarly,

$$1231231411122311 \mapsto 123|12314|1|1|1223|1|1 \mapsto 12312314|1|1|1223|1|.$$

Suppose now that u and v are rhyme schemes and that the vexillary decomposition of u is tail-free. Then by construction, the vexillary decomposition of uv is the concatenation of the respective vexillary decompositions of u and v. We are ready to identify  $\mathcal{C}$  as a subalgebra of  $\mathcal{N}$ .

**Theorem 6** Let  $\mathbb{C}$  be the subalgebra of  $\mathbb{N}$  generated by vexillary rhymes. Then  $\mathbb{C}$  has a basis indexed by rhyme scheme words w whose vexillary decompositions are tail-free. Moreover, the map  $\mathbb{C} \otimes \Lambda \to \mathbb{N}$  given by  $m_{w'}m_{w''}\cdots m_{w^{(r)}} \otimes m_{(\mu_1\cdots\mu_k)} \mapsto m_{w'|w''|\cdots|w^{(r)}|W(\mu)}$  is a vector space isomorphism.

# 7 Other directions

We conclude with another advertisement for the Blattner-Cohen-Montgomery theorem. The authors' present investigation into coinvariant spaces began by moving vertically within the commuting diagram (cube) of Hopf algebras depicted in Figure 1 (whereas in previous work, it was customary to move from left to right, cf. [1]). One may just as well move in other directions within the cube. To illustrate, we apply the Blattner-Cohen-Montgomery theorem to two other edges of interest (leaving aside any comments on group actions). The first of these concerns the downward arrow on the front-right side of the cube. Recall that, from a purely combinatorial perspective, bases in  $\mathbb{K}\langle \mathbf{x} \rangle^{\sim \mathfrak{S}}$  are indexed by "set compositions" (ordered set partitions), and those in  $\mathbb{K}[\mathbf{x}]^{\sim \mathfrak{S}}$  by integer compositions (here "~" indicates the quasi-action



FIG. 1: The Hopf algebras of symmetric and quasisymmetric functions in one and two sets of commuting and noncommuting variables.

of Hivert, cf. [7, §3]). One may find a coalgebra splitting from  $\mathbb{K}[\mathbf{x}]^{\sim\mathfrak{S}}$  to  $\mathbb{K}\langle\mathbf{x}\rangle^{\sim\mathfrak{S}}$  and an associated coinvariant subalgebra in the spirit of our  $(\mathcal{N}, S^{\mathfrak{S}})$  investigation.

Another direction is to consider the Hopf algebra morphism  $sp : \mathbb{K}[\mathbf{x}, \mathbf{y}]^{\sim \mathfrak{S}} \to \mathbb{K}[\mathbf{x}]^{\sim \mathfrak{S}}$  (the bottomright arrow going from NW to SE in Figure 1). These are the **diagonally quasi-symmetric functions** and **quasi-symmetric functions** respectively. For details omitted below, we refer the reader to [1]. The space  $\mathbb{K}[\mathbf{x}, \mathbf{y}]^{\mathfrak{S}}$  is defined as the  $\mathfrak{S}$ -invariants, inside  $\mathbb{K}[\mathbf{x}, \mathbf{y}]$ , under the diagonal embedding of  $\mathfrak{S}$  in  $\mathfrak{S} \times \mathfrak{S}$ . (The quasi-action of Hivert passes easily through this diagonal embedding.) A basis for  $\mathbb{K}[\mathbf{x}, \mathbf{y}]^{\sim \mathfrak{S}}$  is given by the "monomial functions"  $m_{a,b}$ , indexed by "bicompositions", i.e., elements (a, b) in  $\mathbb{N}^{2\times r}$ such that  $a_i + b_i > 0$ . These  $m_{a,b}$  conveniently map to the quasi-symmetric function  $m_{a+b}$  under the specialization map sp sending  $y_i$  to  $x_i$ . It is straightforward to show that the map sending  $m_a$  to  $m_{a,0}$ , is a coalgebra splitting. We may thus analyze this situation in a manner analogous to our main result. Perhaps more surprising than the fact that the quotient

$$\operatorname{Hilb}_t(\mathbb{K}[\mathbf{x},\mathbf{y}]^{\sim\mathfrak{S}})/\operatorname{Hilb}_t(\mathbb{K}[\mathbf{x}]^{\sim\mathfrak{S}})$$

belongs to  $\mathbb{N}[t]$  is the fact that the objects it counts have already been named. We discover a connection between compositions, set compositions, and "L-convex polyominoes." See [13, A003480].

#### References

- [1] J.-C. Aval, F. Bergeron, and N. Bergeron. Diagonal Temperley-Lieb invariants and harmonics. *Séminaire Lotharingien de Combinatoire*, 54A (2005/07), Art. B54Aq, 19 pp. (electronic).
- [2] F. Bergeron, G. Labelle, P. Leroux. Combinatorial Species and Tree-like Structures. Cambridge University Press, 1998.
- [3] N. Bergeron, C. Reutenauer, M. Rosas, and M. Zabrocki. Invariants and coinvariants of the symmetric group in noncommuting variables. preprint, arXiv: math.CO/0502082.

- [4] N. Bergeron and M. Zabrocki. The Hopf algebras of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree. preprint, arXiv: math.CO/0509265.
- [5] G. M. Bergman and P. M. Cohn. Symmetric elements in free powers of rings. J. London Math. Soc. (2), 1:525–534, 1969.
- [6] R. J. Blattner, M. Cohen, and S. Montgomery. Crossed products and inner actions of Hopf algebras. *Trans. Amer. Math. Soc.*, 298(2):671–711, 1986.
- [7] F. Hivert. Hecke algebras, difference operators, and quasi-symmetric functions. *Adv. Math.*, 155(2):181–238, 2000.
- [8] F. Hivert, J.-C.Novelli, and J.-Y. Thibon. Commutative Hopf algebras of permutations and trees. preprint, arXiv: math.CO/0502456.
- [9] M. Klazar, Bell numbers, their relatives, and algebraic differential equations, *J. Combin. Theory Ser. A*, 102(1):63–87, 2003.
- [10] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications.
- [11] J. W. Milnor and J. C. Moore. On the structure of Hopf algebras. Ann. of Math. (2), 81:211–264, 1965.
- [12] M. H. Rosas and B. E. Sagan. Symmetric functions in noncommuting variables. *Trans. Amer. Math. Soc.*, 358(1):215–232 (electronic), 2006.
- [13] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences (2007). published electronically at www.research.att.com/njas/sequences/.
- [14] M. C. Wolf. Symmetric functions of non-commutative elements. *Duke Math. J.*, 2(4):626–637, 1936.

François Bergeron and Aaron Lauve