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Abstract. We describe a combinatorial model for the q-analogs of the generalized Stirling numbers in terms of bugs
and colonies. Using both algebraic and combinatorial methods, we derive explicit formulas, recursions and generating
functions for these q-analogs. We give a weight preserving bijective correspondence between our combinatorial model
and rook placements on Ferrer boards. We outline a direct application of our theory to the theory of dual graded graphs
developed by Fomin. Lastly we define a natural p, q-analog of these generalized Stirling numbers.
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1 Introduction
Generalized Stirling numbers appear as the coefficients of the normal ordering of a word in the boson cre-
ation and annihilation operators a† and a, satisfying the commutation rule [a, a†] = 1. An interpretation
of these coefficients as rook numbers was given by Navon [10]. In this paper we extend the combinatorial
model developed in [9] in terms of bugs, colonies and settlements, by adding weights to these combinato-
rial structures. Based on this model, we obtain formulas for the q-generalized Stirling numbers, defined as
the coefficients of the normal ordering of a word in the q-bosonic operators of typeM (see [6, 7, 8, 11, 12])
satisfying the commutation rule

[aq, a†q]q = aqa
†
q − qa†qaq = 1. (1)

In section 2 and 3 we use algebraic and combinatorial tools, respectively, to obtain explicit formulas,
generating functions and recursive formulas for the q-generalized Stirling and Bell numbers. In section 4
we give a weight preserving bijection between colonies and rook placements, which relates our combina-
torial model to the one described in [13]. In section 5 we show a direct application of the present theory
to the theory of duality of graded graphs introduced by Fomin [14]. In section 6 we define p, q-analogs of
the generalized Stirling numbers as a natural generalization of the q-analogs and derive a formula in terms
of the q-analogs. We have also obtained a natural extension of this work to the context of combinatorial
species. However, we will limit ourselves to elementary algebraic manipulations and basic combinatorial
results, as the species approach would be too long to be discussed in this abstract.
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2 q-analogs of the generalized Stirling numbers
Given two sequences of positive integers b = (b1, b2, . . . , bn) and f = (f1, f2, . . . , fn), define dj =∑j
i=1(bi − fi) for j = 1, 2, . . . , n, and set d0 = 0. Define the q-generalized Stirling numbers Sqb,f (k) as

the coefficients (polynomials in q) that appear in the straightening formula:

(a†q)
bnafn

q · · · (a†q)b1af1q =
|f |∑
k=f1

Sqb,f (k)(a
†
q)
dn+kakq . (2)

where |f | = f1 + · · ·+ fn. Note that expression (2) is normally ordered, and that the general problem of
normal ordering of a q-boson string is reduced to computing the coefficients Sqb,f (k). The q-analog of the
generalized exponential polynomials, sometimes also called Bell polynomials, are defined as

Φq
b,f (x) =

∑
k

Sqb,f (k)x
k (3)

In turn, the q-generalized Bell numbers are defined as

Bqb,f =
|f |∑
k=f1

Sqb,f (k) = Φq
b,f (1). (4)

Recall that the q-analog of the derivative Dq is given by:

Dqf(x) =
f(qx)− f(x)

(q − 1)x
. (5)

Now, denoting by X the operator that multiplies a function by the variable x, we easily verify that X and
Dq satisfy the relation

DqX = qXDq + I. (6)

Thus, since X and Dq satisfy the same commuting relation as a†q and aq , we get

XbnDfn
q . . . Xb2Db2

q X
b1Df1

q =
∑
k

Sqb,f (k)X
dn+kDk

q . (7)

As usual, the q-analog [m] of a natural number m is [m] = 1 + q + · · · + qm−1 = 1−qm

1−q , and the q-
analog of the falling factorial [m]k is defined as [m]k = [m][m − 1][m − 2] . . . [m − k + 1]. Clearly,
[m]m = [m]! = [m][m− 1] . . . 1. For integers n ≥ k ≥ 0, define the q-binomial coefficient[

m
k

]
=

[m]!
[k]![m− k]!

=
[m]k
[k]!

(8)

We denote by exq and Exq , the well known q-analogs of the exponential function, given by

exq =
∞∏
k=0

1
1 + (q − 1)qkx

(9)
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Exq =
∞∏
k=0

(1− (q − 1)qkx) (10)

Equivalently exq =
∑∞
m=0

xm

[m]! and Exq =
∑∞
m=0 q

(m
2 ) xm

[m]! . It is immediate from this that (exq )
−1 =

E−xq and Dqe
x
q = exq .

The result below follows from equation (7):

Proposition 1 LetX andDq be operators acting on functions on a single variable x, defined byXf(x) =
xf(x) and Dqf(x) = f(qx)−f(x)

(q−1)x . Let b = (b1, . . . , bn), f = (f1, . . . , fn) be finite sequences of non-

negative integers. Set dj =
∑j
i=1(bi − fi), d0 = 0 and pqb,f (m) =

∏n
j=1[m+ dj−1]fj . We have

XbnDfn
q · · ·Xb1Df1

q x
m = pqb,f (m)xm+dn (11)

pqb,f (m) =
∑
k

Sqb,f (k)[m]k (12)

where the Sqb,f (k) are the q-generalized Stirling numbers, uniquely determined by the equality

XbnDfn
q . . . Xb2Db2

q X
b1Df1

q =
∑
k

Sqb,f (k)X
dn+kDk

q .

This immediately implies the following statement

Corollary 1 (Dobinsky relations) Let Φq
b,f (x) be the q-generalized exponential polynomial, given by

Φq
b,f (x) =

∑
k

Sqb,f (k)x
k

We have the identity

Φq
b,f (x)e

x
q =

∑
m

pqb,f (m)
xm

[m]!
. (13)

We now obtain explicit formulas for the q-generalized Stirling and Bell numbers.

Corollary 2 (Explicit formulas) Let Bqb,f denote the q-generalized Bell numbers, defined by

Bqb,f = Φq
b,f (1)

We have the formulas

Sqb,f (k) =
1

[k]!

k∑
j=0

[
k
j

]
(−1)k−jq(

k−j
2 )pqb,f (j) (14)

Bqb,f =
∞∏
k=1

(1 + (q − 1)qk)
∑
m

pqb,f (m)
[m]!

. (15)
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Fig. 1: Bug of type (b, f) = (4, 5).
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Fig. 2: Placement p with E(p) = 4, I(p) = 3, and w(p) = q7.

3 The combinatorial approach
Varvak points out in [13] that the general coefficient in the normal ordered form of a generic q-bosonic
word can be interpreted as a q-rook number. A different approach is described in [8] in terms of q-
weighted Feynman diagrams. In this section we introduce an alternative combinatorial model that gives a
combinatorial interpretation of the q-generalized Stirling numbers in terms of colonies of bugs. Using this
model we give a simple combinatorial proof of a recursive formula for the q-generalized Stirling numbers.

Definition 1 A bug of type (b, f) consists of a body and f legs (see figure 1). The body is formed by b
linearly ordered empty cells. The legs are arcs attached to the body, but not related to its cells. Each foot
(bottom end) of the f legs is labelled with one number of an integer segment (m,m+ f ] = {m+ 1,m+
2, . . . ,m+ f}. A worm is a bug with no legs (f = 0) and a ghost is a bug with no body cells (b = 0).

Definition 2 Consider two totally ordered sets (A,≤A) and (B,≤B), where |A| ≤ |B|. A placement p
of the elements of A into the elements of B is an injective function p : A→ B.

An internal crossing of p is a pair of elements a1 and a2 inA, such that a1 <A a2 and p(a1) >B p(a2).
An external crossing of p is a pair (a, b), a ∈ A and b ∈ B, such that p−1(b) = ∅ and p(a) >B b. A
placement could be represented as one of the possible ways of placing each of the elements of the set A of
feet of a ghost bug, into the elements of the set B of cells of a worm. The internal crossings are pictorially
represented as the crossings between legs of the ghost. The external crossings as the crossings of the legs
of this ghost with the legs of an additional ghost bug whose unlabelled feet are placed in the empty cells
(see figure 2). The weight of a placement p is defined to be

w(p) = qI(p)+E(p), (16)

where I(p) and E(p) respectively denote the number of internal and external crossings of p. For a set P
of placements, define the q-cardinality of P as |P |q =

∑
p∈P w(p).
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Proposition 2 Denote by Pm, k the set of placements (injective functions) of a partially ordered k-element
set A into a partially ordered m-element set B, and by P̃m, k the subset of Pm, k containing only place-
ments with no internal crossings. We have

|Pm, k|q = [m]k (17)

|P̃m, k|q =
[
m
k

]
. (18)

Proof: To prove (17) observe that |Pm,1|q = 1 + q + q2 + · · · + qm−1 = [m]. Therefore, all we have
to prove is that |Pm, k|q = [m]|Pm−1,k−1|q for k > 1. Denote by P (r)

m, k the subset of Pm, k where the

first element of A is placed into the rth element of B. It is easy to see that |P (r)
m, k|q = qr−1|Pm−1,k−1|q .

Equation (17) follows because Pm, k =
⊎m
r=1 P

(r)
m, k. Notice that every element p ∈ Pm, k can be identified

with a pair (p̂, p′), where p̂ ∈ P̃m, k and p′ is a placement in Pk,k. Since w(p) = w(p̂)w(p′), we have that
|P̃m, k|q|Pk,k|q = |Pm, k|q which concludes the proof of (18). 2 2

Definition 3 Consider a set of n bugs, the first one of type (b1, f1) and feet labelled with labels in (0, f1],
the second one of type (b2, f2) with labels in (f1, f1 + f2], the third one of type (b3, f3) with labels in
(f1 + f2, f1 + f2 + f3] and so on. A colony is one of the possible ways of organizing the bugs using
the following procedure. The first bug stands on the ground. Once the (j − 1)th bug is placed, the jth is
placed by putting some of its fj feet on the ground and each one of the rest in one of the empty cells of the
bodies of the preceding bugs. The pair of sequences (b, f), b = (b1, b2, . . . , bn), f = (f1, f2, . . . , fk), is
called the type of the colony. The legs of the colony standing on the ground are called free (see figure 3).

A settlement is a colony with no free legs. As a consequence of the definition of settlement, its first
bug has to be a worm (placed on the ground). The subjacent colony of a settlement is the one obtained
by deleting the worm and placing the corresponding feet on the ground in increasing order of the labels.
A settlement whose first bug has exactly m cells will be referred to as an m-settlement. The type of a
settlement is defined to be the type of its subjacent colony (see figure 4).

In order to q-enumerate colonies (and settlements) in a convenient way we shall follow these conven-
tions when drawing them:

1. The body of each new bug is put above all the bugs already placed.

2. Each new free leg is placed at the right hand side of the free legs already placed.

3. If one foot of the jth bug is placed in one cell of the ith bug, the arc of its leg goes to the right hand
side of the bodies of the bugs j − 1, j − 2, . . . , i+ 1.

4. The upper ends of the legs of each bug are placed from left to right following the order of the feet
labels.

5. After having placed all the bugs, a ghost bug is placed in such a way that its legs do not cross among
themselves and they occupy all the empty cells of the colony. The cells occupied by this ghost’s
legs are called free cells.
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Fig. 3: Colony of type (b, f) = ((2, 3, 1), (3, 2, 3)), 5 free legs, and weight q9.

! " # $%& ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?@ABCDEFGH I J K LMNOPQRSTUVWXYZ [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

1 23 4

58

6

7

Fig. 4: A 6-settlement of type (b, f) = ((2, 3, 1), (3, 2, 3)) and weight q13.

Definition 4 The weight of a colony C, w(C), is defined to be q]C , where ]C is the total number of
crossings in the colony. Observe that the weight of anm-settlement S, w(S), is the weight of the subjacent
colony times the weight of the placement of the free legs into the m ground cells. Denote respectively
by Cb,f (k) and by Tb,f (m) the set of colonies of type (b, f) with exactly k free legs and the set of m-
settlements of type (b, f). The q-cardinal of each of them is defined as the sum of the weights of their
respective elements,

|Cb,f (k)|q =
∑

C∈Cb,f (k)

w(C) (19)

|Tb,f (m)|q =
∑

S∈Tb,f (m)

w(S) (20)

The following is the main result of this section. Its proof is omitted in this abstract due to restrictions
on its size.

Theorem 1 The q-cardinal of the set of colonies of type (b, f) = ((b1, . . . , bn), (f1, . . . , fn)) and k free
legs is equal to the q-generalized Stirling number Sqb,f (k), and the q-cardinal of the set of m-settlements
of type (b, f) is equal to

pqb,f (m) =
n∏
j=1

[m+ dj−1]fj
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Fig. 5: Schematic drawing representing a colony of type (b ] bn+1, f ] fn+1) .

where dj =
∑j
i=1(bi − fi) and d0 = 0. In other words, we have the following identities:

|Cb,f (k)|q = Sqb,f (k) (21)

|Tb,f (m)|q = pqb,f (m) (22)

Theorem 2 Let b = (b1, . . . , bn) and f = (f1, . . . , fn) be finite sequences of non-negative integers, and
set dn =

∑n
i=1(bi − fi). We introduce the notation b ] bn+1 = (b1, b2, . . . , bn, bn+1) and f ] fn+1 =

(f1, f2, . . . , fn, fn+1). The q-generalized Stirling numbers satisfy the following recursive formula

Sqb]bn+1,f]fn+1
(k) =

∑
j

[
fn+1

j

]
[dn + k − j]fn+1−j q

j(dn+k−fn+1)Sqb,f (k − j) (23)

Proof: Every colony Cn+1 in Cb]bn+1,f]fn+1(k) is obtained by placing a bug Bn+1 of type (bn+1, fn+1)
on a colony Cn of type (b, f). If the bug has exactly j legs on the ground, Cn has to be in Cb,f (k − j).
The number of crossings in Cn+1 is equal to w(Cn)qnc(p(Bn+1)), where nc(p(Bn+1)) is the number of
new crossing produced by the placement p of the feet of the bug Bn+1. Hence

Sqb]bn+1,f]fn+1
= |Cb]bn+1,f]fn+1(k)|q =

fn+1∑
j=0

∑
Cn∈Cb,f (k−j)

∑
p

w(Cn)qnc(p(Bn+1))

=
fn+1∑
j=0

|Cb,f (k − j)|q
∑
p

qnc(p(Bn+1))

=
fn+1∑
j=0

Sqb,f (k − j)
∑
p

qnc(p(Bn+1)),

where the internal sum ranges over the set of all possible placements p of fn+1 − j feet of Bn+1 into the
free cells of Cn. The number of free cells in each colony Cn ∈ Cb,f (k − j) is equal to (

∑n
i=1 bi − fi) +
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k− j = dn + k− j (Number of cells−Number of legs + Number of free legs). The number of free cells
in each colony Cn after placing the feet of Bn+1 is equal to dn + k − j − (fn+1 − j) = dn + k − fn+1.
We claim that ∑

p q
nc(p(Bn+1)) = |P̃fn+1,j |q|Pfn+1−j,dn+k−j |q qj(dn+k−fn+1)

=
[
fn+1

j

]
[dn + k − j]fn+1−j q

j(dn+k−fn+1).

This is because |P̃fn+1,j |q q-counts the crossings when choosing the set of j legs to be placed on the
ground (a placement without internal crossings). |Pfn+1−j,dn+k−j |q q-counts the crossings when placing
the fn+1 − j feet into the dn + k − j free cells of Cn. Finally, qj(dn+k−fn+1) is the number of crossings
of the j ground legs of Bn+1 with the ghost legs that occupy the dn + k − fn+1 free cells of Cn after
placing Bn+1 (see figure 5).

2 Using a similar argument, we obtain a more general recursive formula:

Theorem 3 Let b = (b1, . . . , bn), f = (f1, . . . , fn), b′ = (b′1, . . . , b
′
m) and f ′ = (f ′1, . . . , f

′
m) be finite

sequences of non-negative integers. Set dn =
∑n
i=1(bi − fi). We introduce the notation b ] b′ =

(b1, . . . , bn, b′1, . . . , b
′
m) and f ] f ′ = (f1, . . . , fn, f ′1, . . . , f

′
m). We have the following recursive relation

for the q-generalized Stirling numbers

Sqb]b′,f]f ′(k) =
∑
l

∑
j

[
l
j

]
[dn + k − j]l−j qj(dn+k−l)Sqb,f (k − j)S

q
b′,f ′(l) (24)

Example 1 Consider the case all the bugs are of type (1, 1), (b, f) = ((1, 1, . . . , 1), (1, 1, . . . , 1)). The
Stirling numbers Sqb,f (k) = Sq(n, k) are one of the two types of the classical q-Stirling numbers of the
second kind studied in the literature (see [4]). We recover the recursive formulas

Sq(n+ 1, k) = [k]Sq(n, k) + qk−1Sq(n, k − 1). (25)

Sq(n+m, k) =
min{m,k}∑

l=1

l∑
j=0

[
l
j

]
[k − j]l−j qj(k−l)Sq(n, k − j)Sq(m, l) (26)

The combinatorial interpretation of Sq(n, k) in terms of colonies of n bugs of type (1, 1) with k free
legs is equivalent to the intertwining combinatorial interpretation in [2], and also to the definition by
Garsia and Remmel in [3].

Example 2 In the case where all the bugs are of type (r, 1), the colonies can be represented as forests
of r-ary increasing trees (see [9], section v). Using the notation Sq(r,1)n(k) = Sq(r,r,...,r),(1,1,...,1)(k), the
recursive formulas give us

Sq(r,1)n+1(k) = [n(r − 1) + k]Sq(r,1)n(k) + q(n(r−1)+k−1)Sq(r,1)n(k − 1). (27)

Sq(r,1)n+m(k) =
∑
l

l∑
j=0

[
l
j

]
[n(r − 1) + k − j]l−j qj(n(r−1)+k−l)Sq(r,1)n(k − j)Sq(r,1)m(l) (28)
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4 Bijection with q-rook placements
Each colony C of type (b, f) = ((b1, b2, . . . , bn), (f1, f2, . . . , fn)) with exactly k free legs, can be
uniquely identified with a placement of |f | − k = f1 + · · · + fn − k rooks on a Ferrers board Fb,f .
The board Fb,f is outlined (using the French convention) by successively drawing fj unitary segments
downwards and bj unitary segments to the right, for j = 1, 2, . . . , n. We number the horizontal segments
in the order we draw them, as well as the vertical segments. We then assign to each row of the board,
the number of its corresponding vertical segment, and to each column, the number of its corresponding
horizontal segment. Flat sections of the board corresponding to f1 and bn can be ignored. Assuming that
the cells of the bugs of the colony are numbered from right to left and from bottom to top, we place a
rook on the cell (r, c) (row r, column c) of Fb,f if and only if the foot r is in the cell c in C. This forms a
(|f | − k)-rook placement on Fb,f . This relation is well defined and bijective.

Theorem 4 The bijection defined above preserves the q-weight of the structures, defined for rook place-
ments as ql where l is the number of empty cells in the Ferrers board that do not have a rook above or to
their right (See [13] and [3]). Notice that the convention used here to draw the Ferrers board and define
the q-weight of rook placements is the French one. Other authors might prefer other coventions.

This bijection gives a combinatorial interpretation of the equality

Rf1+f2+···+fn−k(Fb,f , q) = Sqb,f (k) (29)

where Rm(B, q) is defined as in [13].

5 Dual graded graphs
In this section we relate our work to that of Fomin [14]. For this we shall introduce some notation

Definition 5 A graded graph is a triple G = (P, ρ,E) where P is a discrete set of vertices, ρ : P → Z is
a rank function, and E is a multiset of edges (x, y) where ρ(y) = ρ(x)+1. The set Pn = {x : ρ(x) = n}
is called a level of G.

As in Fomin’s work, levels are assumed to be finite. Some levels could be empty. In case

P0 = {0̂}, P−1 = P−2 = · · · = ∅

we say G is a graph with a zero 0̂.
For x, y ∈ P , let e(x → y) denote the number of shortest (passing through at most one vertex in each

level) non-oriented paths between x and y. In a graph with a zero, denote e(y) = e(0̂→ y). Define

α(n→ m) =
∑
x∈Pn

∑
y∈Pm

e(x→ y) (30)

This is, the number of paths connecting the nth and mth levels. One could similarly define α(n →
m→ l), e(x→ y → z), etc.

In his work, Fomin obtains remarkable combinatorial results regarding path counting in graded graphs,
through the use of two operators called up and down operators that act over the freely generated vector
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space KP (K being a field). In the main special case of his work, these operators satisfy commutation
relations very similar to the one satisfied by the operators Dq and X .

Let G = (P, ρ,E) be a graded graph and K be a field of characteristic zero. The formal linear combi-
nations of vertices in P with coefficients in K form the vector space KP . For any x, y ∈ P , let a(x, y)
denote the multiplicity of (x, y), i.e., the number of edges joining x and y. The linear operators U and U∗
are defined by

Ux =
∑

ρ(y)=ρ(x)+1

a(x, y)y

and

(U∗)y =
∑

ρ(x)=ρ(y)−1

a(x, y)x

Definition 6 Let G1 = (P, ρ,E1) and G2 = (P, ρ,E2) be a pair of graded graphs with a common
set of vertices and a common rank function. Define an oriented graded graph G = (P, ρ,E1, E2) by
directing the G1-edges up (in the direction of increasing rank) and the G2-edges down (in the direction of
decreasing rank). The up and down operators U ,D ∈ End(KP ) are defined by

Ux =
∑

ρ(y)=ρ(x)+1

a1(x, y)y (31)

and

Dy =
∑

ρ(x)=ρ(y)−1

a2(x, y)x (32)

where ai(x, y) is the multiplicity of the edge (x, y) in Gi.

Definition 7 Let G be as in definition 6. A path in G is an oriented path that respects the orientations of
the arcs. AssumeW is a word in the alphabet {U ,D}. A path in G is aW-path if its consecutive arcs are
directed up or down in accordance with the word W . The Us correspond to the up-directed arcs of G1

and the Ds to the down-directed arcs of G2. The wordW is to be read from right to left. We denote by
eW(x → y) and eW(y) the number ofW-paths from x to y and the number ofW-paths from 0̂ to y (in
case G is a graph with zero), respectively. The numbers αW(m→ n) are defined in a similar way.

The following proposition is immediate from the two previous definitions.

Proposition 3 The number of W-paths in G from x to y is the coefficient of y in the expansion of Wx.
This is,

Wx =
∑
y∈P

eW(x→ y)y (33)

We will focus on the following situation:
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Definition 8 Let G1 and G2 be graded graphs as in definition 6. Let q, r be elements of the field K. G1

and G2 are said to be q, r-dual if they satisfy

DU = qUD + rI (34)

where I is the identity operator over KP . In the case q, r = 1 we say G1 and G2 are simply dual. G1 is
said to be self-q, r-dual (respectively self-dual) if it is q, r-dual (respectively dual) to itself.

The commutation rule of equation (34) is the same satisfied by the operators rX and Dq . As a conse-
quence,

Wb,f = UbnDfn · · · Ub1Df1 =
∑
k

r|f |−kSqb,f (k)U
dn+kDk. (35)

Applying this operator to x ∈ P and taking the coefficient of y ∈ P on both sides of the equality, we
obtain the following theorem,

Theorem 5 Let G = (P, ρ,E1, E2) be a graph as in definition 6 such that G1 and G2 are q, r-dual. Set
b = (b1, . . . , bn), f = (f1, . . . , fn), dn = |b| − |f | =

∑n
i=1(bi − fi), and W = UbnDfn · · · Ub1Df1 .

Then,
eW(x→ y) =

∑
k

r|f |−kSqb,f (k)eUdn+kDk(x→ y) (36)

and
αW(l→ l + dn) =

∑
k

r|f |−kSqb,f (k)αUdn+kDk(l→ l + dn) (37)

for any integer l.

This result gives a formula for counting complicated paths in terms of simpler Udn+kDk-paths. In the
case G is a graph with zero we can set x = 0̂ and use W = UbnDfn · · · Ub1Df1Um for some m > 0
(otherwise there would be noW-paths starting in 0̂), obtaining,

eW(y) =
∑
k

r|f |−kSqm]b,0]f (k)eUdn+m+kDk(y) (38)

There are no D-paths starting in 0̂, so the only non-zero term in the sum of equation (38) is the one cor-
responding to k = 0. Also Sqm]b,0]f (0) = pqb,f (m) as a direct result of the combinatorial interpretations
of Sqb,f (k) and pqb,f (m) outlined in section 3. These observations yield the following result:

Corollary 3 Let G = (P, ρ,E1, E2) be a graph as in definition 6 such that G1 and G2 are q, r-dual.
Assume G has a zero. Set b = (b1, . . . , bn), f = (f1, . . . , fn), dj =

∑j
i=1(bj − fj), d0 = 0, |f | =

f1 + · · ·+ fn, andW = UbnDfn · · · Ub1Df1Um for some m > 0. Assume dn +m > 0 and let y be any
vertex of rank dn +m in P . Then,

eW(y) = r|f |pqb,f (m)e(y) (39)

and
αW(0→ dn +m) = r|f |pqb,f (m)α(0→ dn +m) (40)

where pqb,f (m) =
∏n
j=1[m+ dj−1]fj .
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6 p, q-Analogs
Recall the definition of the p, q-analog of the derivative operator, Dp,q;

Dp,qf(x) =
f(px)− f(qx)

(p− q)x
(41)

X and Dp,q satisfy the commutation rule

Dp,qX = qXDp,q + Tp (42)

where Tp is defined by Tpf(x) = f(px). We define the p, q-generalized Sitrling numbers as the coeffi-
cients Sp,qb,f (k) (rational functions in p and q) appearing in the straightening formula

wp,qb,f = XbnDfn
p,q · · ·Xb1Df1

p,q =
∑
k

Sp,qb,f (k)T
lk
p X

dn+kDk
p,q (43)

where the lk are integers. We easily verify the following relations:

TpX = pXTp (44)

DrTp = pTpDr (45)

Dp,q = TpDq/p and more generally Df
p,q = T

(f
2)

p Df
q/p for f ∈ Z+ (46)

which yield:

wp,qb,f = pmT lpX
bnDfn

q/p · · ·X
b1Df1

q/p (47)

where m =
∑n
j=1(dj − dn − bj)

(
fj

2

)
and l =

∑n
j=1

(
fj

2

)
. Thus,

wp,qb,f =
∑
k p

mS
q/p
b,f (k)T lpX

dn+kDk
q/p

=
∑
k p

m+(dn+k)(k
2)Sq/pb,f (k)T

l−(k
2)

p Xdn+kT
(k
2)

p Dk
q/p

=
∑
k p

m+(dn+k)(k
2)Sq/pb,f (k)T

l−(k
2)

p Xdn+kDk
p,q

This is,

Sp,qb,f (k) = pm+(dn+k)(k
2)Sq/pb,f (k) (48)
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