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The L(h, k)-labeling is an assignment of non negative integer labels to the nodes of a graph such that ’close’ nodes

have labels which differ by at least k, and ’very close’ nodes have labels which differ by at least h. The span of an

L(h, k)-labeling is the difference between the largest and the smallest assigned label. We study L(h, k)-labelings of

cellular, squared and hexagonal grids, seeking those with minimum span for each value of k and h ≥ k. The L(h, k)-

labeling problem has been intensively studied in some special cases, i.e. when k = 0 (vertex coloring), h = k (vertex

coloring the square of the graph) and h = 2k (radio- or λ -coloring) but no results are known in the general case for

regular grids. In this paper, we completely solve the L(h, k)-labeling problem on cellular grids, finding exact values

of the span for each value of h and k; only in a small interval we provide different upper and lower bounds. For the

sake of completeness, we study also hexagonal and squared grids.
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1 Introduction

The L(h, k)-labeling problem consists in assigning non negative integer labels to the nodes of a graph such

that nodes at distance two have labels which differ by at least k, and adjacent nodes have labels which

differ by at least h. The span of an L(h, k)-labeling is the difference between the largest and the smallest

assigned frequency. The aim of the L(h, k)-labeling problem is to satisfy the distance constraints using

the minimum span. This graph theoretical problem arises from the problem of assigning frequencies to

the transcievers of a wireless network in order to avoid some kinds of interference (i.e. direct and hidden

collision); in this setting, the nature of the environment and the geographical distance are the major factors

determining parameters h and k, and it is usually assumed h ≥ k. Since its formal definition (18) the

L(h, k)-labeling problem has been widely studied by means of techniques from disparate research areas

and receiving many names (for a survey see (5)). However, almost all the literature concerns the special

case of k = 1 and h = 2 or h = 1, and very few papers (8; 14; 15; 16; 20) investigate on the more

general problem. Nevertheless, the solution of the problem for any h and k is worthy since it allows one

to handle more realistic scenarios. Observe that, when k = 0, for any fixed h, the problem is equivalent

to the classical vertex coloring problem, and when h = k it becomes the problem of optimally coloring

†A preliminary version of this paper has been published on the Proceedings of the 8th Italian Conference on Theoretical Computer

Science (ICTCS’03), ), Lect. Notes in Comp. Science 2841, pp. 163-173, 2003.
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the nodes of the square of the input graph; finally, when h = 2k the problem has been called radio- or

λ-coloring problem. All these problems have been intensively studied.

The decisional version of the L(h, k)-labeling problem is NP-complete even for small values of h and

k (2). This motivates seeking optimal solutions on particular classes of graphs.

In this paper, we completely solve the L(h, k)-labeling problem on cellular grids, finding exact values

of the span for each value of h and k; only in a small interval we provide different upper and lower bounds.

For the sake of completeness, we study also hexagonal and squared grids.

Exploiting the upper bounds presented in this paper, a label can be assigned to any node in a distributed

fashion in constant time in all considered grids, provided that the relative position of the node in the

graph is locally known. In this paper, the presented upper bounds will be described by means of formulas

determining the color of a node as function of its own coordinates; nevertheless, figures will help to have

the intuition of the labeling schemes.

2 Preliminaries and Discussion of the Results

For any non negative real values k and h ≥ k, an L(h, k)-labeling of a graph G = (V,E) is a function

L : V → IR such that

- |L(u) − L(v)| ≥ h if (u, v) ∈ E and

- |L(u) − L(v)| ≥ k if there exists w ∈ V such that (u, w) ∈ E and (w, v) ∈ E.

The span of an L(h, k)-labeling is the difference between the largest and the smallest value of L, so it

is not restrictive to assume 0 as the smallest value of L. We denote by λh,k(G) the smallest integer λ such

that graph G has an L(h, k)-labeling of span λ.

In this paper, we consider the infinite cellular hexagonal and squared grids, where the position of each

node is defined by a couple of integer coordinates, as shown in Fig. 1. Given a certain node (x, y) in a

cellular grid, its neighbors are (x + 1, y), (x− 1, y), (x, y − 1), (x, y + 1), (x− 1, y − 1), (x + 1, y + 1).
The nodes at distance 2 from (x, y) are (x + 2, y), (x − 2, y), (x, y + 2), (x, y − 2), (x + 2, y + 1),
(x−2, y−1), (x+1, y−1), (x−1, y+1), (x+2, y+2), (x−2, y−2), (x+1, y+2) and (x−1, y−2).

The reader can easily determine the neighbors of (x, y) and the nodes at distance 2 from (x, y) in a

hexagonal and squared grid (highlighted by grey areas in Fig. 1.)

We will use these sets of nodes to prove that the presented labelings are feasible. For the regularity of

the grids, it is not restrictive to consider only nodes whose coordinates are lexicographically greater than

(x, y) (otherwise it is enough to swap the role of the nodes).

In this paper we study the L(h, k)-labeling problem on the cellular grid C, proving that:

2h + 4k ≤ λh,k(C) ≤ min(6h, 8k) if k ≤ h ≤ 2k;
3h + 2k ≤ λh,k(C) ≤ min(4h, 11k) if 2k ≤ h ≤ 3k;
λh,k(C) = 3h + 2k if 3k ≤ h < 4k;
λh,k(C) = 2h + 6k if h ≥ 4k.

For the sake of completeness we study also the hexagonal grid H , showing that:
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Fig. 1: Cellular, hexagonal and squared grids, where the nodes at distance 1 and 2 from the general node (x, y) are

higlighted. Observe that in the hexagonal grid the coordinates of these nodes change according to the parity of x.

2h + k ≤ λh,k(H) ≤ min(3h, 5k) if k ≤ h ≤ 2k;
λh,k(H) = 2h + k if 2k ≤ h < 3k;
λh,k(H) = h + 4k if h ≥ 3k;

Finally, we improve the results by Georges and Mauro (13) achieved as a special case of the more

general L(h, k)-labeling problem on product of paths. Here we state only the results achieved in this

paper; see Figure 2(a) for the complete results.

2h + 2k ≤ λh,k(S) ≤ min(4h, 2h + 3k − 1, 6k) if k ≤ h ≤ 2k;
2h + 2k ≤ λh,k(S) ≤ min(3h, 2h + 3k − 1, 8k) if 2k ≤ h ≤ 3k.

The really important parameter is the ratio h/k. This is the reason why, in the graphical summary of

results depicted in Fig. 2(a), h is a function of k.

The L(h, k)-labeling problem on regular grids has already been studied in (3) for h = 2 and k = 1, and

in (6) for h = 0, 1, 2 and k = 1. Of course, the results obtained in this paper include as special case the

previous ones. Also Griggs and Jin (17) have independently studied the same problem using completely

different techniques.

In (20) the distance between two labels i, j ∈ {0, 1, . . . , n − 1} is defined as min{|i − j|, n − |i − j|}.

Using this definition and restricting h and k to be integer, the authors study a variant of L(h, k)-labeling

on triangular and squared grids (for a summary of their results see Fig. 2(b)). We will call Lc(h, k)-
labeling problem this variant. The authors of (20) approach the Lc(h, k)-labeling problem from a purely

combinatorial point of view, with completely different techniques, for each integer h and k. Furthermore,

observe that – despite the similarity of L(h, k)- and Lc(h, k)-labeling problems – it does not seem possible

to shift from results in (20) to ours (compare Fig. 2(a) and Fig. 2(b)).

Before proving one by one all bounds listed above, we state some general results that will be useful in

the following.

Theorem 2.1 (13) Given any regular grid of the plane G with degree ∆ (∆ = 3, 4 or 6), the following

conditions for λh,k(G) hold:
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(a) Summary of the results: grey areas denote gaps between

the upper and the lower bounds. Bold lines represent already

known results.
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Fig. 2: Summaries of bounds.

a. λh,k(G) ≥ 2h + (∆ − 2)k for any k ≤ h ≤ ∆k;

b. λh,k(G) ≥ h + 2(∆ − 1)k for any h ≥ ∆k.

Thanks to the generality of its statement, Theorem 2.1 will be exploited in the following in order to

obtain immediate lower bounds on λh,k. Before concluding this section, we depict in Fig. 3 optimal

L(1, 1)-, L(2, 1)- and L(3, 1)-labelings of the regular grids that will be used in the following.

3 Cellular Graphs

Given a cellular grid with an optimal L(h, k)-labeling, for any node x we call a1, a2, . . . a6 its neighbors

arranged around x (see Fig. 4). It is not restrictive to assume that a1 has the smallest label, and that

L(a2) < L(a6).
In this section, we derive exact values of λh,k(C) by proving coinciding upper and lower bounds, except

for interval k ≤ h ≤ 3k, where bounds are slightly different.

3.1 k ≤ h ≤ 2k

Theorem 3.1 If k ≤ h ≤ 2k, then 2h + k ≤ λh,k(C) ≤ min (6h, 8k).

Proof:

Lower bound. It directly descends from Theorem 2.1 a
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Fig. 3: L(1, 1)-, L(2, 1)- and L(3, 1)-labelings of regular grids.
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Fig. 4: A general node x and all its neighbors in a cellular graph.

Upper bound. Given any node (x, y) of the cellular grid, consider the following labeling function (see

Fig. 5.a):

L((x, y)) = ((x + 4y)mod 7)h.

This labeling is feasible, indeed |L((x + 1, y)) − L((x, y))| ≥ h, |L((x, y + 1)) − L((x, y))| ≥ 3h
and |L((x + 1, y + 1)) − L((x, y))| ≥ 2h, so the distance 1 constraint is always respected. Analogously,

the distance 2 constraint is respected, too; indeed: |L((x + 2, y)) − L((x, y))| ≥ 2h, |L((x, y + 2)) −
L((x, y))| ≥ h, |L((x+2, y +1))−L((x, y))| ≥ h, |L((x+1, y−1))−L((x, y))| ≥ 3h, |L((x+2, y +
2)) − L((x, y))| ≥ 3h and |L((x + 1, y + 2)) − L((x, y))| ≥ 2h, i.e. the minimum distance between

L((x, y)) and the label of any node at distance 2 from (x, y) is at least h ≥ k.

The span of the presented labeling is 6h. Observe that the resulting labeling is essentially identical to

an optimal L(1, 1)-labeling of the cellular grid, where all values are multiplyied by h.

Consider now the following labeling function (see Fig. 5.b):

L((x, y)) = ((3x + 4y)mod 9)k.

Also this labeling is feasible: |L((x + 1, y)) − L((x, y))| ≥ 3k, |L((x, y + 1)) − L((x, y))| ≥ 4k and

|L((x + 1, y + 1)) − L((x, y))| ≥ 2k ≥ h. Analogously, the distance between L((x, y)) and the label of

any node at distance 2 from (x, y) is always ≥ k. The span of the presented labeling is 8k.

a. b.

8k 2k 5k 8k

4k4k 7k 1k

0 3k 6k 0

3h 4h 5h 6h

6h 0 h 2h

2h 3h 4h 5h

0 h 3h2h 4h 5h 6h

0 h 2h

3h 4h5h

h 6h 0

2h

0

0

5h

3k 6k 0 3k

Fig. 5: Feasible labelings of a cellular graph when a. k ≤ h ≤
4

3
k and when b. 4

3
k ≤ h ≤ 2k.
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Observe that this labeling is exactly the same as an optimal L(2, 1)-labeling, where each value has been

multiplied by k. It follows that, when k ≤ h ≤ 2k, λh,k(C) ≤ min (6h, 8k). Combining the results for

the two labelings, it follows that, when k < h ≤ 5

3
k then λh,k(C) ≤ 6h, and when 5

3
k ≤ h ≤ 2k then

λh,k(C) ≤ 8k. ✷

3.2 2k ≤ h < 4k

Theorem 3.2 If 3k < h < 4k, then λh,k(C) = 3h + 2k; if 2k ≤ h ≤ 3k then 3h + 2k ≤ λh,k(C) ≤
min(4h, 11k).

Proof:

Upper bound. If 2k ≤ h ≤ 3k, consider the two following labeling functions (see Figs. 6.a and 6.b):

L((x, y)) = ⌊((3x + 4y)mod 9)/2⌋h + ((3x + 4y)mod 9)mod 2)k

and

L((x, y)) = ((7x + 9y)mod 12)k.

Analogously to the previous proofs, it is easy to check that both labelings are feasible, comparing

L((x, y)) with the label of all nodes at distance 1 and 2 from (x, y). Furthermore, the span of the pre-

sented labelings are 4h and 11k, respectively. It follows that λh,k(C) ≤ min(4h, 11k). Combining

the results for the two labelings, it follows that when 2k < h ≤ 11

4
k then λh,k(C) ≤ 4h and when

11

4
k ≤ k < 3k then λh,k(C) ≤ 11k. Observe that also the labeling in Fig. 6.a can be obtained from an

optimal L(2, 1)-labeling by the following substitutions: (0, 0), (1, k), (2, h), (3, h + k), (4, 2h), (5, 2h +
k), (6, 3h), (7, 3h+k) and (8, 4h), while the labeling in Fig. 6.b can be obtained from an optimal L(3, 1)-
labeling multiplying each value by k.

3k 10k 5k 0

6k k 8k 3k

7k 2k 9k

7k 2k

4h h 2h+k 4h

2h 3h+k k 2h

0 h+k 3h 0

h+k 3h h+k0

a. b.

0 9k

0

9k 4k 11k 6k

Fig. 6: Two feasible labelings of a cellular graph when 2k ≤ h ≤ 3k. Their span is a. 4h and b. 11k.

If 3k < h < 4k consider the labeling function defined by the following formula (see Fig. 7.a):

L((x, y)) = ((y mod 4 + x mod 3)mod 4)h + (x mod 3)k.

The produced coloring is a feasible L(h, k)-labeling and its span is 3h + 2k.
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h+2k 2h+5k 2k h+2k

k h+4k 2h+4k k

k h+4k k2h+4k

a. b.

3h

Fig. 7: Two optimally labeled portions of cellular graph when a. 3k < h < 4k and b. h ≥ 4k.

Lower bound. Let be given a cellular graph with any optimal L(h, k)-labeling, 2k ≤ h < 4k. We

consider a node a and all possible relative orders of the 7 distinct labels of a and its neighbors.

The proof is based on a systematic way of describing all the different cases in which a labeling of

smaller span could be achieved. Then, the proof examines these cases and establishes that none of them

could result in a feasible L(h, k)-labeling.

We prove – by contradiction – that λh,k(C) ≥ 3h+2k if 2k ≤ h < 4k. So, assume λh,k(C) < 3h+2k.

For the nomenclature, we refer to Fig. 8. Let us focus on any node a of C.

A B C D E F G A B C D E F G

A B C D E F G

a1

a.

a1

b.

a1

c.

L(    ) L( a) L(    ) L( a)

L(    ) L( a)

Fig. 8: Some possible relative positions of L(a) and of labels of a’ neighbors.

Seven cases can occur:

Case 5 − a − 1: Suppose first that a has 5 neighbors whose labels are smaller than L(a) and only one

with label bigger than L(a) (see Fig. 8.a). Hence, L(a) is in position F while L(a1) is in position

A.

First of all, observe that two adjacent nodes ai and ai+1 cannot have their labels in consecutive

positions (e.g. L(ai) in C and L(ai+1) in D), otherwise the span would become too large, against

the hypothesis λh,k(C) < 3h + 2k. In the same way, two adjacent nodes ai and ai+1 cannot have
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their labels separated by only one label (e.g. L(ai) in C and L(ai+1) in E) otherwise the span

would be ≥ 3h + 2k. Therefore, L(a2) can be neither in position B, nor in C. Since L(a2) cannot

be in G because L(a2) < L(a6), it follows that L(a2) lies either in D or in E.

If L(a2) is in D, then L(a3) must be in G and hence L(a6) must be in E. In this way, L(a4) and

L(a5) would be in B and C, in some order, achieving in any case a too large span.

Lastly, if L(a2) is in E, then L(a6) > L(a2) must necessarily be in G and L(a3), L(a4) and L(a5)
occupy positions B,C and D in some order, leading again to a too large span.

Then – under the hypothesis λh,k(C) < 3h + 2k – this configuration never occurs.

Cases 4 − a − 2, 2 − a − 4 and 1 − a − 5: If a has 4 neighbors whose labels are smaller than L(a) and

2 with label bigger than L(a) (see Fig. 8.b), then L(a) is in E and L(a1 is in A. With considerations

similar to the previous ones, L(a2) can be either in D or in F or in G. L(a2) in D leads to a

contradiction, as L(a6) > L(a2) and L(a3) are in F and G in some order and, hence, L(a4) and

L(a5) must lie in B and C. If L(a2) is larger than L(a), then the only possibility is that L(a2) lies

in F and L(a6) in G. In this case, L(a3), L(a4) and L(a5) must be in B,C and D in sopme order,

leading to a too large span. Therefore, even this case never occurs when λh,k(C) < 3h + 2k.

The cases in which a has either two neighbors or one neighbor whose labels are smaller than L(a)
are symmetrical to the previous two cases and then omitted for the sake of brevity.

Cases 0 − a − 6 and 6 − a − 0: If the labels of all a’s neighbors are larger (smaller) than L(a), then

L(a) lies in A (G). These cases are both feasible in the hypothesis λh,k(C) < 3h + 2k.

Case 3 − a − 3: Finally, suppose that a has 3 neighbors whose labels are smaller than L(a) and 3 with

label bigger than L(a) (see Fig. 8.c). In this case, L(a1) is in position A and L(a) is in position D.

Since this case does not lead to any contradiction, it can occur when λh,k(C) < 3h + 2k.

We have proven that only three cases can occur, i.e. the six labels of a’s neighbors are: i. all smaller

than L(a), ii. all bigger than L(a), iii. three smaller and three bigger than L(a). Now we want to study

which values L(a) can assume and prove that no value is feasible, i.e. our hypothesis λh,k(C) < 3h + 2k
is false. To this aim, we move L(a) along interval [0, 3h + 2k) and see what happens.

0 ≤ L(a) < 2h − 3k In this interval L(a) has all six labels of a’s neighbors to its right. If L(x) was

≥ 2h − 3k then the space to its right would be not sufficient to keep the span strictly smaller than

3h + 2k and, at the same time, to fit six labels at mutual distance k and at distance ≥ h from L(a).

2h − 3k ≤ L(a) < h + 2k L(a) never lies inside this interval because there is not enough room to fit six

labels to the right of L(a) and not enough room to fit three labels to the left of L(a). From the

previous part of the proof, we know that other configurations are not possible.

h + 2k ≤ L(a) < 2h If L(a) lies in this interval, three labels are smaller than L(a) and three labels are

bigger than it.

2h ≤ L(a) < h + 5k L(a) never lies here, for analogous reasons with respect to the second interval.

h + 5k ≤ L(a) < 3h + 2k In this interval L(a) has all six labels of a’s neighbors to its left.
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So, only three intervals are feasible for L(a): [0, 2h− 3k), [h + 2k, 2h] and [h + 5k, 3h + 2k). In view

of the generality of a, it follows that all seven considered labels must lie in these three intervals.

The second interval is h−2k wide; since h−2k < 2k when h < 4k, we deduce that inside this interval

we can fit at most two labels at mutual distance k. It follows that the other two intervals must contain at

least four labels and hence they must be at least 3k wide each. If 2k ≤ h < 3k this is a contradiction

and the proof is concluded. If 3k ≤ h < 4k let us consider the general L(a) in the first (third) feasible

interval. All six a’s neighbors must have label bigger (smaller) than L(a), and only two can be in the

second feasible interval while four are in the third (first) one. Let us focus on the labels L(ai) and L(aj)
lying inside the second feasible interval, implying that the third (first) interval is at least h + k wide. If

ai and aj are neighbors, then the second interval must be at least h wide, and this is a contradiction. If

ai and aj have distance two in the cycle induced by a’s neighbors, then consider the three nodes different

from ai, aj and their common neighbor; they must all lie in the third (first) interval. If ai and aj have

distance three in the cycle induced by a’s neighbors, then there exist two pairs of neighbors whose labels

all lie in the third (first) interval. Again, this configuration implies that the third (first) interval is at least

h + k wide, possible if and only if h ≥ 4k, i.e. a contradiction. ✷

In the interval 2k ≤ h ≤ 3k, the achieved upper and lower bounds for λh,k(C) are not coinciding. The

following result ensures us that the lower bound is not tight, at least in a subinterval:

Theorem 3.3 If 2k < h < 5

2
k, then λh,k(C) > 3h + 2k.

Proof: Let be given a cellular graph C with any optimal L(h, k)-labeling. We consider any node a of C
and study all possible values that L(a) can assume, taking into account the positions of the labels of a’s

neighbors with respect to L(a). We assume, by contradiction, that λh,k(C) ≤ 3h + 2k.

Case 0 − a − 6: Let us suppose first that all the labels of a’s neighbors lie to the right of L(a). It must

hold that L(a1) ≥ L(a) + h and that the biggest one among the labels of the a’s neighbors is

≥ L(a) + h + 5k; the same label must also be ≤ 3h + 2k for our hypotesis. It follows that

L(a) + h + 5k ≤ 3h + 2k, that is L(a) ≤ 2h − 3k. Observe that the width of interval [0, 2h − 3k]
is strictly less than 2k when 2k < h < 5

2
k.

Case 1 − a − 5: If the label of one neighbor is to the right of L(a), then it must be L(a) ≥ h. On the

other hand, the biggest one among the labels of the a’s neighbors must be ≥ L(a) + h + 4k and,

at the same time, ≤ 3h + 2k. It follows L(a) ∈ [h, 2h − 2k]. The width of this interval is strictly

smaller than k
2

since h < 5

2
k.

Cases 2 − a − 4, 3 − a − 3, 4 − a − 2 and 5 − a − 1: With reasonings identical to the previous ones,

we deduce that if a has two neighbors whose label is smaller than L(a) then L(a) ∈ [h+k, 2h−k].
If the neighbors whose labels are smaller than L(a) are three, then L(a) ∈ [h + 2k, 2h]. When four

labels are smaller than L(a) and two are bigger, then L(a) must belong to interval [h+3k, 2h+ k].
Lastly, when only one neighbor has its label bigger than L(a) then L(a) ∈ [h + 4k, 2h + 2k]. The

width of all these intervals is strictly less than k
2

since h < 5

2
k.

Case 6 − a − 0: This case is symmetrical to the first one, and we obtain L(a) ∈ [h + 5k, 3h + 2k]. The

width of this interval is < 2k when h < 5

2
k.
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Fig. 9: The feasible intervals in the proof of Theorem 3.3.

We found seven feasible intervals for the general L(a) (see Fig. 9) and we must assume that all the

used labels must fall in someone of these intervals. From now on we will call big intervals the first one

and the last one and small intervals all the other ones. These names derive from their widths.

Of course, for each general label L(a) there are at least six labels at distance h from L(a) itself, and

mutually at distance k. Because of the widths of the considered intervals, we cannot fit more than two

labels at mutual distance ≥ k inside the big intervals and no more than one label inside the small ones.

So, the cardinality of the set U of used labels is no more than 9. It can also be seen that it is at least 9

because if we consider any label L(v) in a small interval and any other label L(w) in a neighbor small

interval (e.g. L(v) in the second interval and L(w) in the third one), then |L(v) − L(w)| ≤ h − k < h.

So L(v) eliminates two labels, that are too close, and must have other 6 labels for all v’s neighbors. We

can conclude that small intervals must contain one label each and that big interval must contain two labels

each.

We will prove that there exists a position for L(a) such that L(a) cannot have other six labels at

distance at least h and at mutual distance k inside the feasible intervals, proving that the hypothesis

λh,k(C) ≤ 3h + 2k is a contradiction, and hence λh,k(C) > 3h + 2k. Let us focus on L(a) belonging to

the forth interval, i.e. to [h + 2k, 2h].
If L(a) lies on the left extreme of the interval, i.e. L(a) = h + 2k, the label L(b) of each a’s neighbour

b must be either ≤ 2k or ≥ 2h + 2k. We can fit at most two labels in the first interval. The second, third

and fifth intervals are forbidden since too close to L(a); we can fit at most one label in the sixth one and at

most two labels in the seventh one. So, globally, we have room for at most five labels, that is not enough

(see Fig. 9).

The same reasonings apply when L(a) coincides with the right extreme of the interval, i.e. L(a) = 2h.

So, assume L(a) in the open interval (h+2k, 2h). Again, each L(b) must be ≤ L(a)−h < 2h−h = h
and ≥ L(a) + h > h + 2k + h = 2h + 2k. It follows that we can fit at most four labels, two for each big

interval (see Fig. 9). This concludes the proof. ✷

On the base of the previous theorem and of the continuity of function λh,k(C) we conjecture that

λh,k(C) = 4h if 2k ≤ h ≤ 5

2
k and λh,k(C) = 2h + 5k if 5

2
k ≤ h ≤ 3k.

3.3 h ≥ 4k

Theorem 3.4 If h ≥ 4k, then λh,k(C) = 2h + 6k.
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Proof:

Upper bound. Consider the labeled portion of cellular graph limited by bold lines in Fig. 7.b and

replicate it in all directions. The definition of the labeling function is left to the interested reader.

The produced coloring is a feasible L(h, k)-labeling and its span is 2h + 6k.

Lower bound. Let be given a cellular graph with an optimal L(h, k)-labeling. Let a be any node in C.

By contradiction, let us assume λh,k(C) < 2h + 6k.

Cases 1 − a − 5 and 2 − a − 4: There exist either one or two neighbors of a whose labels are smaller

than L(a). With considerations very similar to those presented in the proof of Theorem 3.2 con-

cerning adjacent nodes having their labels to the right of L(a), we deduce that we always get a span

λh,k(C) ≥ 2h + 6k; hence these cases cannot occur under the hypothesis λh,k(C) < 2h + 6k.

Case 3 − a − 3: There exist exactly three neighbors of a whose labels are smaller than L(a) and three

neighbors whose labels are bigger than L(a).

Since L(a1) is the minimum label, if L(a2) < L(a) we achieve a too large span. It follows that

L(a2) > L(a). With similar reasonings, we deduce that L(a1), L(a3) and L(a5) lie to the left of

L(a) in some order, and L(a2), L(a4) and L(a6) lie to right side.

Cases 4 − a − 2 and 5 − a − 1: These cases are symmetrical to cases 2−a−4 and 1−a−5, and hence

they never occur.

Cases 0 − a − 6 and 6 − a − 0: These cases are both feasible in the hypothesis λh,k(C) < 2h + 6k.

Up to now, we have proved that either all labels of a’s neighbors lie to the same side with respect to

L(a) or they are three to the left and three to the right of L(a). Now, let us examine which values L(a)
can assume.

0 ≤ L(a) < h + k If L(a) lies in this interval, we have labels of all a’s neighbors to the right of L(a).

h + k ≤ L(a) < h + 2k It is not possible to put L(a) in this interval because neither case 0− a− 6 (not

enough space to the right of L(a)) nor case 3 − a − 3 (not enough space to the left of L(a)) can

apply.

h + 2k ≤ L(a) ≤ h + 4k When L(a) is in this interval, we have three labels to the left of L(a) and three

labels to the right of L(a).

h + 4k ≤ L(a) ≤ h + 5k This interval cannot be used for the same reasones as the second interval.

h + 5k ≤ L(a) ≤ 2h + 6k If L(a) is in this interval, then all neighbors of a have labels smaller than

L(a), and it is feasible.

Very similarly to the proof of Theorem 3.2, it is possible to show that the assumption λh,k(C) < 2h+6k
leads to a contradiction. ✷
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4 Hexagonal Grids

In this section we deal with the L(h, k)-labeling problem on hexagonal grids and we prove coinciding

upper and lower bounds on λh,k(H) for all possible values of k and h ≥ k, except when h is in the

interval (k, 2k), in which case we provide sligthly different upper and lower bounds.

4.1 k ≤ h ≤ 2k

Theorem 4.1 If k ≤ h ≤ 2k, then 2h + k ≤ λh,k(H) ≤ min (3h, 5k).

Proof:

Lower bound. The claim directly descends from Theorem 2.1 a.

Upper bound. Consider the portion of labeled grid limited by bold lines in Fig. 10.a. We get a feasible

L(h, k)-labeling by replicating the shown pattern of labels, and the span is 3h. this labeling is defined by

the following function:

L((x, y)) = ((⌈
x

2
⌉ +

3

2
y)mod 4)h

if y is even and

L((x, y)) = ((⌊
x

2
⌋ + 3⌈

y + 1

2
⌉)mod 4)h

if y is odd.

The produced labeling is substantially identical to an L(1, 1)-labeling, where all values are multiplied

by h.

We can also label the hexagonal grid by an optimal L(2, 1)-labeling, substituting each value i with ik.

It is easy to see that such a coloring is feasible and its span is 5k. It follows that λh,k(H) ≤ min (3h, 5k).
Combining the results for the two labelings, it follows that when k ≤ h ≤ 5

3
k λh,k(H) ≤ 3h and when

5

3
k ≤ h ≤ 2k λh,k(H) ≤ 5k. ✷

4.2 2k ≤ h < 3k

In order to make easier the reading of the proofs, in the rest of the paper we will not express anymore

each label as explicit function of the coordinates of nodes in the grid, but we will refer to figures. The

interested reader can easily deduce these functions from the depicted labelings.

Theorem 4.2 If 2k ≤ h < 3k, then λh,k(H) = 2h + k.

Proof:

Lower bound. The claim directly descends from Theorem x2.1 a.

Upper bound. Consider the upper labeled portion of hexagonal grid limited by bold lines in Fig. 10.b

and constituted by three hexagons.

The L(h, k)-labeling is performed by replicating either this portion of labeled grid or its specular image

(lower labeled portion in Fig. 10.b). It is straighforward to see that the produced L(h, k)-labeling is

feasible and its span is 2h + k. ✷
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Fig. 10: Three optimally labeled portions of hexagonal grid, when a. k ≤ h ≤
5

3
k, when b. 2k ≤ h ≤ 3k and when

c. h ≥ 3k.

4.3 h ≥ 3k

Theorem 4.3 If h ≥ 3k, then λh,k(H) = h + 4k.

Proof:

Lower bound. The claim directly descends from Theorem 2.1 b.

Upper bound. Observe that any labeling assigning to a node a label among 0 k 2k (respectively among

h + 2k, h + 3k, h + 4k) and to all its neighbors labels h + 2k h + 3k h + 4k (respectively 0, k, 2k) is

feasible and optimal. One of these labelings is shown in Fig. 10.c. ✷

5 Squared Grids

In this section we study the L(h, k)-labeling problem on squared grids. Some partial results can be found

in (13), where the L(h, k)-labeling problem on the product of paths is studied. As a special case of this

more general problem, the authors prove the following:

Theorem 5.1 (13) If h ≥ 4h, then λh,k(S) = h + 6k; if 3k < h < 4k, then λh,k(S) = 2h + 2k; if

k ≤ h ≤ 4k, then 2h + 2k ≤ λh,k(S) ≤ 2h + 3k − 1.

Here we improve the upper bound on λh,k(S) in the interval where it is not tight.

5.1 k ≤ h ≤ 2k

Theorem 5.2 If k ≤ h ≤ 2k, then 2h + 2k ≤ λh,k(S) ≤ min (4h, 2h + 3k − 1, 6k).

Proof: In view of Theorem 5.1, we only have to prove the upper bounds 4h and 6k.
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Fig. 11: Two optimally labeled portions of squared grid, when a. k ≤ h ≤
3

2
k and when b. 3

2
k ≤ h ≤ 2k.

We can replicate pattern 0 h 2h 3h 4h horizontally. When we move to the next row, we shift it by two

positions (see Fig. 11.a), obtaining in this way a vertical pattern 0 3h 2h 4h h. This labeling is the same

as an optimal L(1, 1)-labeling.

Consider now the horizontal pattern 0 2k 4k 6k k 3k 5k. Each time we replicate it on successive rows,

we shift it by two positions obtaining vertical pattern 0 3k 6k 2k 5k k 4k (see Fig. 11.b). Observe that

this labeling can be obtained by replacing color i in an optimal L(2, 1)-labeling with color ik.

It is easy to see that these two L(h, k)-labelings are feasible and their span are 4h and 6k, respectively.

So, in view of these reasonings and of Theorem 5.1, we have: λh,k(S) ≤ min (4h, 2h + 3k − 1, 6k). The

first value is the best one when h ≤ (3k − 1)/2, the second one is the best one when (3k − 1)/2 ≤ h ≤
(3k + 1)/2, and the third value is the best one when h ≥ (3k + 1)/2. ✷

5.2 2k ≤ h < 4k

Theorem 5.3 If 2k ≤ h ≤ 3k then 2h + 2k ≤ λh,k(S) ≤ min(3h, 2h + 3k − 1, 8k).

Proof: As in the previous proof, we only have to prove the upper bounds 3h and 8k. Two L(h, k)-
labelings can be obtained either by replicating vertical pattern 0 h + k 3h h 2h + k k 2h, as shown in

Fig. 12.a, or by replicating vertical pattern k 6k 2k 7k 3k 8k 4k 0 5k, as shown in Fig. 12.b. Both

patterns must be shifted down by three positions when changing column. Such labelings are both feasible

and their spans are 3h and 8k, respectively. So, combining these results with those in Theorem 5.1, we

have that the bound 3h is better than 8k when 2k ≤ h ≤ 8

3
k, while the second one is better than the

first one when 8

3
k ≤ h ≤ 3k. Finally the bound 2h + 3k − 1 is better than the other two in the interval

3k − 1 ≤ h ≤ (5k + 1)/2, but it has positive length only when k ≤ 3.
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Fig. 12: a. and b. two feasible L(h, k)-labelings when when 2k ≤ h ≤
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3
k and when 8
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k ≤ h ≤ 3k.

Observe that the labeling in Fig. 12.b can be obtained from an optimal L(2, 1)-labeling by the following

substitutions: (0, 0), (1, k), (2, h), (3, h + k), (4, 2h), (5, 2h + k) and (6, 3h). ✷

As for cellular graphs, also for squared grids, in the interval 2k ≤ h ≤ 3k we do not achieve tight

upper and lower bounds for λh,k(S). Nevertheless, we conjecture that λh,k(S) = 3h if 2k ≤ h ≤ 5

2
k

and λh,k(C) = h + 5k if 5

2
k ≤ h ≤ 3k. Observe that these values guarantee the continuity of function

λh,k(S).

6 Conclusions and Open Problems

In this paper we have studied the L(h, k)-labeling problem on cellular, hexagonal and squared grids.

Concerning cellular and hexagonal grids, for each value of k and h ≥ k we have obtained exact values

of the span, except in a small interval, where we provide slightly different upper and lower bounds for

λh,k(C) and λh,k(H). Concerning the squared grid, we have improved some previously known upper

bounds, reducing the gap with the lower bound.

It is easy to see that the replication schemes presented for the upper bounds lead to simple distributed

algorithms to label the whole grid in constant time, provided that each node knows its coordinates in the

grid.
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Three open problems arise from this work.

1. The first one is to prove (or disprove) our conjectures and close the gap between upper and lower

bound when k ≤ h ≤ 3k and ∆ = 4 and ∆ = 6, and when k ≤ h ≤ 2k and ∆ = 3.

2. The second one is to understand if there exists some shifting method to go from the results collected

in the present paper and those presented in (20) (see Fig. 2) and vice-versa. Indeed, it is not

surprising that the values of λh,k under the ‘cyclicity’ assumption are bigger than ours, but it is not

clear the reason why our λh,k function is fragmented in a bigger number of segments.

3. Lastly, it would be interesting to study the L(h, k)-labeling problem for other (not regular) tilings,

built with different shaped tiles (i.e. the edge-clique graph of the cellular graph, having degree 4,

constituted by triangular and hexagonal tiles).
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