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Göteborg, Sweden.

Abstract. We give another construction of a permutation tableau from its corresponding permutation and construct
a permutation-preserving bijection between 1-hinge and 0-hinge tableaux. We also consider certain alignment and
crossing statistics on permutation tableaux that have previously been shown to be equidistributed by mapping them
to patterns in related permutations. We give two direct maps on tableaux that prove the equidistribution of those
statistics by exchanging some statistics and preserving the rest. Finally, we enumerate some sets of permutations that
are restricted both by pattern avoidance and by certain parameters of their associated permutation tableaux.

Résumé. Nous donnons une nouvelle construction d’un tableau de permutation à partir de la permutation correspon-
dante. Nous construisons ensuite une permutation qui préserve la bijection entre un tableau charnière 1 et tableau
charnière 0. Nous considérons également certaines statistiques sur les alignements et croisements dans les tableaux
de permutations. L’équidistribution de ces données statistiques est connue, et donnée par le biais d’une application
très compliquée associant les alignements et croisements des tableaux a des motifs des permutations correspondantes.
Nous constuisons deux involutions définies sur les tableaux qui démontrent l’équidistribution des statistiques en
échangeant certaines données tout en préservant d’autres. Enfin, nous dénombrons quelques ensembles de permuta-
tions définis non seulement par l’absence de certains motifs mais aussi par certains paramètres issus des tableaux de
permutations.
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1 Introduction
Permutation tableaux are combinatorial objects that are in bijection with permutations. They originally
turned up in the enumeration of totally positive Grassmannian cells [8, 10]. Permutation tableaux have
then been studied either in their own right [1, 9] to produce enumeration results for permutations, or in
connection with the PASEP model in statistical mechanics [3, 5, 6].
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Fig. 1: Permutation tableaux (1-hinge) of π = 36187425. To the right is illustrated π(1) = 3, π(2) = 6 and
π(6) = 4

A permutation tableaux T is usually defined as a k × (n− k) array filled with zeroes, ones and twos
such that the cells filled with zeroes and ones form a Young tableau Yλ of an integer partition λ such that
n−k = λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0 (note that zero parts are allowed), and such that these rules are obeyed:

(column): Each column in the tableau contains at least one 1.

(1-hinge): Each cell in the Young tableau Yλ with a 1 above in the same column and to its left in the same
row must contain a 1.

Equivalently, one forgets about the twos and considers only the Young tableau of zeroes and ones, which
are sometimes encoded as blanks and bullets, respectively (see Figure 1). The shape of T is the integer
partition sh(T ) = λ and its length is the number of parts in λ, `(T ) = k.

The second rule above can, however, take several forms. An alternative [1] is this:

(0-hinge): Each cell in the Young tableau Yλ with a 1 above in the same column and to its left in the same
row must contain a 0.

In this paper, we generalize these hinge rules:

(0/1-hinge): Given any partition µ ≤ λ (i.e. µi ≤ λi for all i ≥ 0), each cell in the Young tableau Yλ
with a 1 above in the same column and to its left in the same row must contain a 1 if the cell is in µ
and a 0 otherwise.

The 0/1-hinge rule specializes to the 0-hinge rule for µ = ∅ an the 1-hinge rule for µ = λ. We let Tn
denote the set of 1-hinge permutation tableaux T such that, with sh(T ) = λ, λ1 + `(T ) = n.

Permutation tableaux have their name from a natural bijection Φ : Tn → Sn between (1-hinge)
permutations tableaux and permutations [9]. Let n = λ1 + k. Label the south-east boundary of the
tableau with 1 to n, starting in the north-east corner, and extend these labels to the rows and columns they
belong to. Then, starting at the top of a column (or the left of a row) labelled i, we follow the zig-zag path
obtained by bouncing right or down every time we hit a 1. If the label of the exit is j, we put π(i) = j.
This is illustrated to the far right in Figure 1.

There are several important statistics of π = Φ(T ), typically related to the order relation between a
position i and its letter π(i) which are easily deduced from T . The weak excedances (positions i such
that π(i) ≥ i) are given by the row labels and the deficiences (the opposites of weak excedances, that is
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positions i such that π(i) < i) are given by the column labels. Fixed points correspond to empty rows.
We let wex(π) denote the number of weak excedances in π and conclude that wex(π) = k. We also note
that a bijection between permutations tableaux and permutations with n−k descents (elements π(i) such
that π(i) > π(i + 1)) has been proposed [4], which amongst other things re-proves that descents and
deficiencies are equidistributed.

The inverse Γ = Φ−1 : Sn → Tn of the presented bijection is less natural, and several algorithms
describing Γ have been proposed [1, 9]. We continue this tradition with another algorithm which we
consider simpler than the previous ones. It is presented in Section 2 together with the presentation of
0/1-hinge tableaux.

Further, we study two bijections on tableaux. Alignment and crossing statistics on permutations have
been proposed by Corteel [3], and they have natural interpretations on tableaux. First we give in Section
3 a direct description on tableaux for the bijection between tableaux that belong to permutation π and
irc(π), where irc is the inverse of the reversal of the complement. This exchangesAEN andANE statistics
and preserves statistics wex, AEE, ANN, CEE, CNN. Then we give a simple bijection on tableaux that
preserves theAEN andANE statistics, and exchange theANN+AEE andCNN+CEE statistics. Definitions
and algorithm are presented in Section 4.

Pattern avoidance (or pattern statistics in general) and tableau restrictions do not always combine easily
and naturally. Patterns deal with comparisons of different letters in a permutation, in particular, they are
better suited for considering descents and inversions. Permutation tableaux, on the other hand, naturally
emphasize excedances, fixed points and deficiencies, i.e. comparisons of letters with their positions.
Thus, permutation tableaux are useful in considering pattern-restricted sets when the information about
descents and inversions can be translated into information about weak excedances and deficiencies. A
good example of such a situation is [2] where alternating permutations (descent-related objects) with the
maximum number of fixed points (excedance-related property) are considered.

In a 1-hinge tableau T , those ones that are not forced by the 1-hinge rule are called essential. We
conclude this article in Section 5 by giving some enumeration results on sets of permutations avoiding
pairs of patterns of length 3 and whose associated tableaux (via maps Φ and Γ) have the maximum
number of essential ones. The eventual goal of this undertaking is to refine pattern-occurrence statistics
with respect to the number of essential ones in the associated tableaux.

2 Combining 1-hinge and 0-hinge
An important property of 1-hinge permutation tableaux is that every zero has a clear view (only zeroes)
to its left or above it. We will use this property in two ways. First, we give a new algorithm for computing
the 1-hinge tableaux of a permutation, and then we show that the 1-hinge and 0-hinge tableaux of a
permutation are connected via a series of mixed hinge tableaux.

In a tableau T , two paths are said to meet at a cell if each of these paths enters the cell. If the cell
contains a zero, the paths will cross, and if it contains a one they will bounce. By the 1-hinge rule, two
paths can only cross at their first meet.

Definition 2.1 In a tableau T of π, we have columns ci(T ), 1 ≤ i ≤ λ1 and rows ri(T ), 1 ≤ i ≤ n−λ1.
When no confusion can arise, we write ci = ci(T ) and ri = ri(T ). Further, let ent(ci) be the label
of column ci and let ext(ci) = π(ent(ci)). We call these entry and exit labels of column ci. Similar
definitions apply for the rows. The row (resp. column) number with exit label j is denoted row(j) (resp.
col(j)). In other words, col(j) = i⇔ ext(ci) = j.



628 Alexander Burstein and Niklas Eriksen

The initial zeroes in a column (or row) are the zeroes in that column (row) that have no ones above (to
the left). The number of initial zeroes in a column or row is denoted z(ci) and z(ri), respectively, and
similarly t(ci) and t(ri) for the number of twos in the column or row.

The exit labels of rows are the weak excedance letters and the exit labels of columns are the deficiency
letters.

We note that information on the number of initial zeroes in all rows and columns completely determines
T ∈ Tn, since each zero is an initial zero of some row or column. The initial zeroes also determines the
essential ones, and thus any 0/1-hinge tableau. Thus, to compute Γ(π) we need only determine the initial
zeroes. To accomplish this, only the relative order of the exit labels of rows and columns are important.

Definition 2.2 For a row ri in T , we say that row ri has m inversions if there are m rows above with
higher exit labels. Likewise, we say that column ci has m inversions if there are m columns to its left
with lower exit labels. The number of inversions are denoted inv(rj , T ) and inv(cj , T ), respectively, or
inv(rj) and inv(cj) for short.

As for usual permutation inversions, we need only to know the inversion numbers of all row (column)
exit labels to compute their order.

Lemma 2.3 Consider a permutation tableau T with sh(T ) = λ. Let r contain the indices of the rows ri
such that ext(ri) > ext(cj) in increasing order. Then, z(cj) = rinv(cj)+1−1. Similarly, letting c contain
the columns ci such that ext(ci) < ext(rj) in increasing order, with λj + 1 appended at the end, we have
z(rj) = cinv(rj)+1 − 1.

Example 2.4 The lemma is best appreciated after an example. Consider the permutation π = 463785912.
Its tableau has shape λ = (35, 2). The column exit labels are 215 (deficiency letters read from right to
left) and the row exit labels are 463789 (weak excedance letters read from left to right).

Now, for the third column we get r = (2, 4, 5, 6) and hence z(c3) = rinv(c3)+1 − 1 = r2+1 − 1 =
5− 1 = 4. For c2 and c1, we find no inversions, and the first entry in r is 1, yielding no initial zeroes.

For the rows, the only row with positive inversion number is r3, with inv3 = 2. Computing c =
(1, 2, λ3 + 1), we get z(r3) = c2+1 − 1 = λ3 + 1− 1 = 3.
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We are now ready to prove Lemma 2.3.
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Proof: Assume that z(cj) = m and consider the array from T of the intersection of rows r1 to rm and
columns c1 to cj−1. The paths that enter the array must also exit the array. Those that exit horizontally
will cross the path from cj and those that exit vertically will not, since paths starting at columns must
cross at an initial zero of cj , and paths starting at rows ri must cross at an initial zero of either cj or ri,
neither of which is possible with a vertical exit.

Thus, with j − 1 vertical exits and j − 1 − inv(cj) taken by columns, there must be j − 1 − (j −
1 − inv(cj)) = inv(cj) rows with higher exit labels in the array. Since rm+1 does not cross cj we find
that rinv(cj)+1 = m + 1, which proves the lemma for columns. For rows, the situation is completely
analogous, although it should be noted that rows without ones get the same number of initial zeroes as the
length of the row. 2

We now turn to 0/1-hinge tableaux. We will prove that for any λ < µ, the permutation π ∈ Sµ has a
unique tableau such that the 1-hinge property is fulfilled on λ and the 0-hinge property is fulfilled on µ/λ.
To prove this, we need a few definitions and a lemma. We also take the liberty of extending the function
Φ : Tn → Sn to allow any permutation tableau, in particular, a 0/1-hinge tableaux.

Definition 2.5 Let Sλ denote the set of permutations π such that sh(Γ(π)) = λ. Also, let Tµλ denote the
set of tableaux T such that T fulfills the 1-hinge property on Yµ and the 0-hinge property on Yλ/µ.

Lemma 2.6 Let π ∈ Sλ, and consider the integer partitions µ < ν ≤ λ such that Yν/µ has exactly one
cell. Further let T ∈ T νλ be a tableau such that Φ(T ) = π. Then, switching ones to zeroes and zeroes to
ones on the first and last meetings in ν of the two paths that meet at ν/µ, we obtain a tableau T ′ ∈ Tµλ
such that Φ(T ′) = π.

Proof: Let i→ π(i) and j → π(j) be the paths that meet at ν/µ. It is obvious that Φ(T ′) = π since each
of the changes correspond to the transposition (i j). Thus, what remains is to show that T ′ ∈ Tµλ .

The paths can only cross at their first meet. Thus, if T (ν/µ) = 0, the first and last meetings coincide
and no changes are made. The 0-hinge property is trivially fulfilled on ν/µ, since only 1s can violate it.

If T (ν/µ) = 1, the 0-hinge property on λ/ν is still trivially fulfilled. On ν/µ, it is trivial if the value
changes to 0, and otherwise the 1 must be essential and cannot violate the 0-hinge property. What remains
is to show that changing the first meeting of paths does not violate the 1-hinge property. But changing the
value at the first meeting to 0 is not a problem, since then the 1 was essential, and changing the value to 1
is legal too, by the following argument.

The new 1 must be essential, so assume without loss of generality that it is essential in its row. Then,
any 0s immediately to its right must have 0s below in the row of the second meeting. These 0s have a 1
to their left and hence can have no 1 above, so the 0s immediately to the right of the new 1 do not violate
the 1-hinge property. 2

Theorem 2.7 Let π ∈ Sλ and let µ ≤ λ. Then, there is a unique tableau T ∈ Tµλ such that Φ(T ) = π.

Proof: Given a tableau T ∈ Tλλ , which is known to be unique from [9], we can use the algorithm of
Lemma 2.6 to reduce the 1-hinge part to µ cell by cell. Thus, it is clear that there is at least one T ∈ Tµλ
such that Φ(T ) = π.

At any given moment during the reduction there are usually several cells that can be moved from the
1-hinge area to the 0-hinge area. We need to show that no matter how we choose the order of them, we
still end up with the same tableau.
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It is fairly easy to realize that for any two cells that can be chosen at the same time, the order of these is
insignificant. The cells of their last meetings are on different rows and columns, so all paths through these
cells are distinct. Thus, any changes induced by one of the cells will not affect the paths through another
one of these cells, and hence will not affect the changes induced by that other cell.

By the strong convergence theorem [7], it suffices to show that any two moves that are valid at the same
time commute and that the sequence of moves is finite for a game to have a unique end result. We have
shown that any two moves commute and since the number of moves is |λ/µ|, the uniqueness is proved. 2

We let Γµλ : Sλ → Tµλ map any permutation whose weak excedance pattern matches λ to the tableau
with the 1-hinge property on µ ≤ λ and the 0-hinge property on λ/µ. Of course, its inverse is Φ restricted
to Tµλ .

3 The irc map
In [3], Sylvie Corteel defined the permutation statistics

AEE(π) = |{(i, j) | j < i ≤ π(i) < π(j)}|,
ANN(π) = |{(i, j) | π(j) < π(i) < i < j}|,
AEN(π) = |{(i, j) | j ≤ π(j) < π(i) < i}|,
ANE(π) = |{(i, j) | π(i) < i < j ≤ π(j)}|,
CEE(π) = |{(i, j) | j < i ≤ π(j) < π(i)}|,
CNN(π) = |{(i, j) | π(i) < π(j) < i < j}|.

They are related to the 1-hinge permutation tableaux T = Γ(π) in the following way. Label the 0-cells
in T with EN if the paths that cross there originated from one column and one row, NN if both these
paths originated from columns and EE if both paths originated from rows. The 2-cells are labeled NE.
Let EN(T ) be the number of cells labelled EN in this labeling, and use similar notation for the other three
labels. From [9] and [1] we know that

AEE(π) = EE(T ),
ANN(π) = NN(T ),
AEN(π) = EN(T ),
ANE(π) = NE(T ),

CEE(π) + CNN(π) = #nontop 1s(T ).

The map irc = i ◦ r ◦ c (inverse of reversal of complement) is known to preserve all alignment and
crossing statistics on permutation except for exchanging statistics ANE and AEN. We now show that the
tableau of irc(π) can be easily computed from the tableau of π. The irc map on tableaux is also named
irc(T ) = Γ(irc(Ψ(T ))).

To simplify matters, we start by showing this bijection for quite restricted tableaux and successively
remove the restriction until the general case is reached. The condition ANE(π) = 0 simply means that
the shape of Γ(π) is a rectangle, and the condition AEN(π) = 0 implies that the main diagonal of Γ(π)
(starting at the northwest corner) contains only ones. It is easy to see that if the main diagonal contains
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only ones then no path can cross it and hence AEN(π) = EN(Γ(π)) = 0, and conversely, if a row (or
column) has initial zeroes reaching the main diagonal, there are not enough rows (columns) to account for
all these crossings, and hence AEN(π) > 0.

Proposition 3.1 Let π ∈ Sn and let T = Γ(π) ∈ Tn and assume AEN(π) = ANE(π) = 0. To compute
T ′ = irc(T ), associate the number of initial zeroes to each row and column, and then order the columns
by increasing ext(ci) and the rows by decreasing ext(ri).

Proof: If π(i) = j, then irc(π)(n + 1 − j) = n + 1 − i. Thus, if i is a weak excedance in π, then
n + 1 − j will be a weak excedance in irc(π). Assuming AEN(π) = ANE(π) = 0, all these weak
excedances map one of the k = wex(π) lowest elements on one of the k highest elements. Since i ≤ k
implies n+ 1− i ≥ n+ 1− k and vice versa, this holds for irc(π) as well, and hence sh(T ′) = sh(T ).
Further, for rectangular tableaux, we have i = n + 1 − ent(ci), and for tableaux with only ones on the
main diagonal, we have z(ci) = inv(ci).

Consider column ci(T ). For each inversion π(k) < π(i) < i < k we get an inversion in T ′, since then
irc(π)(n + 1 − π(k)) < irc(π)(n + 1 − π(i)) < n + 1 − π(i) < n + 1 − π(k). All these inversions
contribute to initial zeroes in the same column c in T ′. Since ent(c) = n+1−π(i) = n+1−ext(ci(T )),
we get c = cn+1−ent(c) = cext(ci(T )), which is the statement of the proposition. Rows are handled in a
similar fashion. 2

Example 3.2 Consider the permutation π = 76485132. Below we have its 1-hinge tableau T with
rows and columns labeled with their exit labels ext(ri) and ext(ci), as well as the tableau T ′ ob-
tained by reordering columns and rows according to the proposition above. It is easy to check that
Φ(T ′) = irc(π) = 58746213. Note that the number of initial 0s for each exit label remains the same after
reordering rows and columns.

T =
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We now continue with permutations π such that AEN(π) > 0. The idea is to remove all EN cells, use
the transformation for permutations with AEN(π) = ANE(π) = 0 and then put them back as NE cells,
which contain 2s.

Proposition 3.3 Let π ∈ Sn and let T = Γ(π) ∈ Tn. Assuming ANE(π) = 0, then the following
algorithm will give T ′′ = irc(T ). Let T ′ have the same shape as T and let z(ci(T ′)) = inv(ci(T )) for
all columns (and similarly for the rows). Letting the column exit labels of T be i1 < i2 < . . . < in−wex(π),
compute T ′′ = irc(T ′) and let t(cj(T ′′)) = ij − j for all j.
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Proof: The tableau T ′ will have column and row exit labels in the same relative order as T , since only
EN cells are changed, but the column exit labels will be 1 to n − wex(π) and the row exit labels will be
n− wex(π) + 1 to n. Let k = wex(π) and let the column exit labels in T be i1 < i2 < . . . < ik. Then,
each column exit label is reduced by a(j) = ext(cj(T ))− ext(cj(T ′)) = ij − j. We define permutations
σj = ((ij − a(j)) (ij − a(j) + 1) . . . ij) and obtain Ψ(T ′) = σk . . . σ1π, since each σj replaces the exit
label ij with j, while maintaining the relative order of all other exit labels.

Further, irc(T ′) is the tableau of

irc(σk . . . σ1π) = irc(π)irc(σ1) . . . irc(σk),

where irc(σj) = ((n+ 1− ij) (n+ 1− ij + 1) . . . (n+ 1− ij + a(j))). Multiplying from the right with
((n+ 1− ik) (n+ 1− ik + 1) . . . (n+ 1− ik + a(k))) in a permutation circularly changes the positions
of the letters in positions n + 1 − ik, n + 1 − ik + 1, . . . , n + 1 − ik + a(k), which is equivalent with
introducing a(k) twos in the rightmost column. Similarly, removing the other cycles introduce a(j) in the
(k − j + 1)th column from the right. 2

The irc bijection when ANE(π) = 0 is clearly bijective. Thus, its inverse gives irc(Γ(π)) when
AEN(π) = 0, and we state the proposition without proof.

Proposition 3.4 Let π ∈ Sn and let T = Γ(π) ∈ Tn. Assume AEN(π) = 0, then the following
algorithm gives T ′′ = irc(T ). Given λ = sh(T ) and k = wex(π), let T ′ have shape λk1 and let
z(ci(T ′)) = z(ci(T )) for all columns (and similarly for the rows). Then, let T ′′ = irc(T ′) and increase
column labels j by t(cj(T )).

Example 3.5 The permutation π = 38652417 has AEN(π) = 4 and ANE(π) = 0. Its tableau is below
to the right. Removing the EN zeroes gives the second tableau, where the column exit label 7 has been
reduced by 3 and 4 has been reduced by 1. Applying irc gives the third tableau, and inserting 3 twos in
the forth column and 1 in the third gives the final tableau of irc(π) = 71653842 to the right. To compute
irc of the last tableau, just follow the tableaux below from right to left.

3

8

6

5

7 1 4 2

t tt t tt
t

EN

EN

EN

EN 5

8

7

6

4 1 3 2

tt tt
t

tt
t
tt
t 7

6

5

8

2 4 3 1

t

t

t
t
tt
t
tt
tt 7

6

5

8

2 4 3 1

t

t

t
t tt
t

As it turns out, the processes of turning EN zeroes into NE twos and vice versa are independent pro-
cesses. Combining the last two Propositions thus gives us an algorithm for computing irc(T ) for any
1-hinge permutation tableau T .

Theorem 3.6 Let π ∈ Sn and let T = Γ(π) ∈ Tn, with λ = sh(T ), k = wex(π) and column exit labels
i1 < i2 < . . . < ik. To compute T ′′ = irc(T ), let T ′ have shape λk1 and let z(ci(T ′)) = inv(ci(T )) for
all columns (and likewise for the rows). Then, let T ′′ = irc(T ′), increase column labels j by t(cj(T ))
and t(cj(T ′′)) = ij − j for all j.
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Proof: Removing the twos of T corresponds to multiplying π by cycles on the right as in the proof
of Proposition 3.3. Removing the EN zeroes corresponds to multiplying π by cycles on the left. These
processed are commutative. We can then compute irc and intepret the cycles moving from left to right as
NE twos and the other cycles as EN zeroes. 2

Example 3.7 The permutation π = 38265417 has AEN(π) = 4 and ANE(π) = 2. Its tableau is below to
the right. Removing the EN zeroes and the twos gives the second tableau, which is the same as the second
tableau in the previous example. Applying irc gives the third tableau, and inserting twos as before, as
well as two EN zeroes by increasing column exit label 4 to 6 gives the final tableau of irc(π) = 71543862
to the right.
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4 The A↔ C bijection
Steingrı́msson and Williams showed that ANN +AEE is equidistributed with CNN +CEE. We would like
to show this with a simple bijection, which exchanges these statistics while preserving ANE, AEN and
wex. We name this bijection ψ : Γ(Sn)→ Γ(Sn). To find ψ, we need to keep track of the relative order
of the exit labels of rows and columns.

Algorithm 1: AC
Data: T
Result: T ′ = ψ(T ).
T ′ ← T ;
Sc ← exit labels of the columns of T , sorted in descending order;
Sr ← exit labels of the rows of T , sorted in ascending order;
for i← 1 to λ1 do

invSc(i)(T ′)← n− i− Sc(i)− |{j : ent(rj) > Sc(i)}| − invSc(i)(T );
end
for i← 1 to n− λ1 do

invSr(i)(T ′)← Sr(i)− i− |{j : ent(cj) ≤ Sr(i)}| − invSr(i)(T );
end

Theorem 4.1 Algorithm 1 is an involution on permutation tableaux T such that T ′ = ψ(T ) fulfills

• ANN(Φ(T ′)) +AEE(Φ(T ′)) = CNN(Φ(T )) + CEE(Φ(T ));
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• CNN(Φ(T ′)) + CEE(Φ(T ′)) = ANN(Φ(T )) +AEE(Φ(T ));

• AEN(Φ(T ′)) = AEN(Φ(T ));

• ANE(Φ(T ′)) = ANE(Φ(T ));

• sh(T ′) = sh(T ).

Proof: It is clear that the proposed map is an involution, but there are three additional items for us to prove:
that each tableau T is a valid input, that the obtained tableau T ′ is valid and finally that the statistics are
transformed as stated. We take these matters in order.

In the rest of the proof, we will consider rows only, but the columns are treated analogously. Now, the
maximal number of rows between the entry and the exit of the path with exit label Sr(i) is Sr(i)−i−|{j :
ent(cj) ≤ Sr(i)}|. Since invSr(i) is bounded from above by this number and from below by zero for both
T and T ′, it is clear that each tableau T is a valid input, and that ψ(T ) is a valid tableau.

Since we do not change the exit labels of the rows, except for their order, the value of AEN stays
constant. By the argument that invSr(i)(T ′) stays within the given bounds, it follows that the shape and
ANE does not change either. If AEN = ANE = 0, the total number of inversions for T and T ′ clearly is
(k − 1)(n− k), which shows that for this case, AEE + ANN and CEE + CNN must exchange. But since
each increase in ANE or AEN decreases the number of inversions equally, the exchange must still hold. 2

It is not too hard to deduce the following special cases of the ψ involution.

Corollary 4.2 Let the extended diagonal be the usual main diagonal followed to the right by the remain-
der of the lowest row extending past the main diagonal. For T such that AEN(T ) = ANE(T ) = 0, we
get

z(col(i, ψ(T ))) = inv(col(i, ψ(T ))) = min(i,wex(Φ(T )))−1−inv(col(i, T )) = min(i,wex(Φ(T )))−1−z(col(i, T ))

and
z(row(i, ψ(T ))) = inv(row(i, ψ(T ))) = min(i,wex(Φ(T )))− 1− z(row(i, T )).

Example 4.3 Consider the permutation π = 76813524 with tableau as below. The number of inital
zeroes is zero for exit labels 1, 2, 4, one for 3 and two for 5. Hence, in ψ(T ) we get z(col(5)) = 2−2 = 0,
z(col(4)) = 2− 0 = 2, z(col(3)) = 2− 1 = 1, z(col(2)) = 1− 0 = 1 and z(col(5)) = 2− 2 = 0.

T =

ss ssss sssss
7

6

8

4 2 5 3 1

ψ(T ) =

ss ss sssss
8

6

7

5 1 3 4 2
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Corollary 4.4 Consider any tableau T such that ANN(T ) = AEE(T ) = ANE(T ) = 0, and split it in a
lower part consisting of the bottom row, a left part where coordinates (i, j) satisfy i − j ≥ n − 2λ1 and
i < n − λ1 and an upper part where λ1 + i − j < n − λ1. Then, inv(ci(ψ(T ))) equals the number of
ones in column i in the left part and inv(ri(ψ(T ))) the number of ones in row i in the upper part of T .

Example 4.5 The permutation π = 157923468 fulfills the conditions of the previous corollary. We take
its tableau and split it.

T =
s s ss s s ss s s s s

1

5

7

9

8 6 4 3 2

=⇒

sssss
sss sss s

The number of ones in the left part is, from the left, 0, 1, 2 and 1, and the number of ones in the upper
part is, from above, 0, 2 and 1. Thus, the permutation becomes 197543628, with two inversions on 5 and
one on 7, and similarly for the columns.

Corollary 4.6 Consider any tableau T such that ANN(T ) = AEE(T ) = AEN(T ) = 0. Then, the
tableau of ψ(T ) contains only zeroes and the extended diagonal filled with ones, possibly pushed up by
the south-east border.

Example 4.7 For the permutation 671283945, the tableaux T = Φ(π) and ψ(T ) become

T =

s s s s ss s s s ss s ss s

6

7

8

9

5 4 3 2 1

ψ(T ) =

s s s s s
9

8

6

7

1 4 5 3 2

5 Tableaux of restricted permutations
In this section, we will enumerate some restricted sets of permutations whose 1-hinge tableaux have the
maximum number of essential 1s as a first step in determining the distribution of restricted permutations
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according to the number of the essential 1s of their associated tableaux. Let Mn denote the set of permu-
tations in Sn whose 1-hinge tableaux have n − 1 essential 1s (i.e. the maximum number). As we noted
in the introduction, not every set of pattern restrictions refines well by the essential 1s statistic, so we find
analyze some of the “nicer” cases here.

Definition 5.1 We say that a permutation σ ∈ Sn contains a pattern τ if τ is a permutation order-
isomorphic to a subsequence of σ. If σ does not contain the pattern τ , then we say that σ avoids τ . We
denote the set of τ -avoiding permutations in Sn by Sn(τ). Given a set of patterns T , we let Sn(T ) be
the set of permutations avoiding all patterns in T .

Similarly, given a pattern (or a set of patterns) τ , let Mn(τ) denote the set of permutations in Sn(τ)
whose 1-hinge tableaux have n − 1 essential 1s, i.e. a single doubly essential 1 (i.e. both the leftmost 1
in its row and the topmost 1 in its column). We then proceed to determine the structure of these tableaux
to prove some enumerative results.

We note that, for simplicity, the patterns here are denoted the “old” way, without using the newer
generalized-pattern hyphenated notation.

Remark 5.2 Note that any permutation π ∈ Mn must have a 1 in upper left corner of its corresponding
1-hinge tableau. In particular, this implies that π(1) > π(n). Also, the 1-hinge tableau of π must contain
at least one 1 in every row, and hence π does not have fixed points.

Theorem 5.3 The number of permutations in Mn(132, 231) (resp. in Mn(213, 312)) whose 1-hinge
tableaux have k rows (resp. k columns) is equal to

2k−1

(
n− k − 1
k − 1

)
− 2k−2

(
n− k − 2
k − 2

)
.

Proof: Any permutation in π ∈ Sn(132, 231) can be written as π = π′1π′′, where π′ is a decreasing
sequence and π′′ is an increasing sequence. Thus, either n = π(1) or n = π(n), so by Remark 5.2, we
have n = π(1) for π ∈ Mn(132, 231). Therefore, the leftmost column of the 1-hinge tableau T of π
contains a 1 only in the first row. We also conclude that n− 1 = π(2) or n− 1 = π(n). In addition, since
π is a derangement and n = π(1), it follows that π(n− 1) < n− 1, so n− 1 is a column label in π.

From this, we can conclude that the first k < π−1(1) positions are excedances, and the remaining ones
are deficiences, so the shape of T is a k × (n − k) rectangle. Further, ext(ri) > ext(ri+1), ext(rk) =
π(k) > π(k+ 1) = ext(cn−k) and ext(ci) > ext(ci+1) for i ≥ m, where m is the column with exit label
1. We can thus conclude that z(ri) = n − ext(ri), as well as z(ci) = ext(ci) − 1 for i > m and zero
otherwise. The 1s in the tableau are thus on a northwest-southeast directed band so that no 1 has only 0s
in both its row and its column.

To determine such a tableau, we need to determine for each row the leftmost and rightmost position. The
leftmost position in ri is at least one more than in row ri−1, since z(ri) = n−ext(ri) > n−ext(ri−1) =
z(ri−1), and the rightmost position changes by at most one, since two adjacent columns cannot share the
same number of zeroes to the right of m. Further, the leftmost one of the first row and the rightmost one
of the last row are fixed.

Thus, we need to pick a subset of k− 1 columns among all columns but the first one to get the leftmost
positions in rows 2 to k, and for each of the first k − 1 rows, we need to determine if the rightmost 1
should be to the left of the row below or not. The number of such choices is 2k−1

(
n−k−1
k−1

)
. However, we
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cannot leave a 1 in the southeast corner with no other 1s above it or to its left, so all such tableaux must
be removed. They are counted by 2k−2

(
n−k−2
k−2

)
, and we are done. 2

Theorem 5.4 If Mk
n(123, 213) is the set of permutations in Mn(123, 213) with k nonessential 1s, then

|Mk
2n(123, 213)| = a(2n− 2, k) + a(2n− 3, k),

|Mk
2n+1(123, 213)| = 2a(2n− 2, k) + a(2n− 3, k),

where a(n, k) = A037027(n, k) (see [11]), the kth entry in row n of the Fibonacci-Pascal triangle.

Proof: Let π ∈ Mk
n(123, 213) and let T = Φ−1(π) be its permutation tableau. Simply avoidance of the

both pattern implies the following: n = π(1) or n = π(2), and π(n) = 1 or π(n) = 2. Also, if π(1) = n
and π(n) = 1, then the top row (labeled 1) and leftmost column (labeled n) of T both have a single 1
in the top left cell (labeled (1, n)). Thus, the cell labeled (2, n − 1) in the second row from the top and
next-to-leftmost column is also a doubly essential 1, and hence, π does not have the maximum number of
essential 1s. Therefore, either π(2) = n and π(n) = 1, or π(1) = n and π(n) = 2, or π(2) = n and
π(n) = 2.

Case 1. Let n ≥ 3, π(n) = 1 and π(2) = n. Since π(n) = 1, the top row has a single 1 in the leftmost
column. Since π(2) = n, the leftmost column has a 1 in row 2 and no 1s below it. Thus, we have

T =

ss s
T ′

Let T ′ be the tableau obtained by removing the top row and leftmost column of T . Then, for T to have
the maximum number of 1s, T ′ must also have the maximum number of essential 1s, and in particular, an
essential 1 in the top left corner. Moreover, the nonessential 1s of T ′ are exactly the nonessential 1s of
T . Let π′ = Φ(T ′), then π(1) = π′(1) + 1, π(2) = n, π(i) = π′(i − 1) + 1 for 3 ≤ i ≤ n − 1, and
π(n) = 1. In other words, π′ is obtained from π by removing 1 and n and subtracting 1 from each of the
remaining values. Hence, π′ ∈Mk

n−2(123, 213).
Case 2. Let n ≥ 3, π(2) = n and π(n) = 2. Since the leftmost column has 1s in the rows 1 and 2,

any 1 in row 1 induces a (nonessential) 1 in the cell directly below it. Since π(n) 6= 1, there is at least
one 1 in the top row in addition to the 1 in the leftmost cell. Suppose the second leftmost 1 in the top row
is in column labeled i. Then the path starting south at column n turns east at cell (1, n), south at (1, i),
and east at (2, i). Since π(n) = 2, that path exits the tableau at row 2, so there are no 1s in row 2 to the
right of column i. Hence, there are also no 1s in row 1 to the right of column i, so π(i) = 1 and row
1 has, in fact, only two 1s, in the leftmost column and in column i. Let T ′ be the tableau obtained by
removing the top row and leftmost column of T . Then, just as in the previous case, it is easy to see that
T has exactly one more nonessential 1 than T ′, namely, the 1 in the cell labeled (2, i). Moreover, T ′ also
has the maximum number of essential 1s, and π′ = Φ(T ′) is obtained by deleting 2 and n from π and
subtracting 1 from each remaining value except 1. Therefore, π′ also avoids patterns 123 and 213, and
hence, π′ ∈Mk−1

n−2(123, 213).
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Case 3. Let n ≥ 3, π(1) = n and π(n) = 2. Since π(1) = n, the leftmost column of T contains
a single 1 in the top row. Therefore, the leftmost column cannot be longer than the column to its right,
and hence the second leftmost column has label n− 1. Since T has the maximum number of essential 1s
and 0 in cell (2, n), either n = 3 and π = 312 or there must be a 1 in the cell (2, n − 1). Thus, the path
starting south at column n, turns east at cell (1, n), then again south at (1, n − 1), and so passes through
cell (2, n − 1). Since π(n) = 2, this means that T has a 1 in the cell (2, n − 1) and only 0s to its right.
Hence, this is the single 1 in row 2, so either n = 4 and π = 4312 or n ≥ 5 and T must have a 1 in the
cell (3, n − 1). Also, the fact that row 2 has no 1s to the right of row n − 1 means that row 1 has no 1s
to the right of column n − 1, so π(n − 1) = 1. Finally, since π(1) = n and π avoids patterns 123 and
213, we must have n − 1 = π(2) or n − 1 = π(3). Since column n has no 1s other than in top row,
π(i) = n−1 implies that i is the lowest row with a 1 in column n−1. Since there is a 1 in cell (3, n−1),
we must have n− 1 = π(3), so there are no 1s in column n− 1 below row 3. Therefore, either n = 5 and
π = 53412 or n ≥ 6 and there is a 1 in cell (3, n− 2).

T =

s sss s
T ′

Let T ′ be the tableau obtained by deleting the top two rows and leftmost two columns of T , and let
π′ = Φ(T ′). Then T ′ has the maximum number of essential 1s and the same number of nonessential 1s
as T , and π(1) = n, π(2) = π′(1) + 2, π(3) = n − 1, π(i) = π(i − 2) + 2 for 4 ≤ i ≤ n − 2, and
π(n − 1) = 1, π(n) = 2. In other words, π′ is obtained from π by deleting n, n − 1, 1, 2 at positions
1, 3, n− 1, n, respectively, and subtracting 2 from each of the remaining values. Therefore, π′ also avoids
123 and 213, so π′ ∈Mk

n−4(123, 213).
Thus, it is easy to see that f(n, k) = |Mk

n(123, 213)| satisfies the recurrence relation

f(n, k) = f(n− 2, k) + f(n− 2, k − 1) + f(n− 4, k)

with initial values f(0, 0) = 1, f(1, 0) = 1, f(2, 0) = 1, f(3, 0) = 2, f(3, 1) = 0 f(4, 0) = 2,
f(4, 1) = 1, and f(n, k) = 0 if k < 0 or k > (n − 2)/2 for n ≥ 2. A routine application of generating
functions yields the theorem. 2

One can similarly prove the following statements. We omit the proofs in this extended abstract.

Theorem 5.5 Let Mn(123, 213; k) be the set of permutations in Mn(123, 213) that start with the letter
k. Then, for 1 ≤ k ≤ n ≤ 2k + 3, we have

|Mn(123, 213)| = A002965(n+ 1) (see [11]), n ≥ 0,

|Mn(123, 213; k)| = 2n−kA002965(2k − n− 3), n ≥ 4, bn/2c+ 2 ≤ k ≤ n,
|Mn(123, 213; k)| = 1, (n, k) ∈ {(1, 1), (2, 2), (3, 3), (3, 2)}.

Theorem 5.6

|Mn(132, 213)| =

{
2 · 3(n−2)/2 − 1 if n is even,
3(n−1)/2 − 1 if n is odd.
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