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The quasiinvariants of the symmetric group
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Abstract. For m a non-negative integer and G a Coxeter group, we denote by QIm(G) the ring of m-quasiinvariants
of G, as defined by Chalykh, Feigin, and Veselov. These form a nested series of rings, with QI0(G) the whole
polynomial ring, and the limit QI∞(G) the usual ring of invariants. Remarkably, the ring QIm(G) is freely generated
over the ideal generated by the invariants of G without constant term, and the quotient is isomorphic to the left regular
representation of G. However, even in the case of the symmetric group, no basis for QIm(G) is known. We provide
a new description of QIm(Sn), and use this to give a basis for the isotypic component of QIm(Sn) indexed by the
shape [n− 1, 1].

Résumé. Pour m un entier positif ou nul et G un groupe de Coxeter, nous notons QIm(G) l’anneau des quasiinvari-
ants définis par Chalykh, Feigin et Veselov. On obtient ainsi une série d’anneaux emboités, QI0(G) étant l’anneau
des polynômes, et la limite QI∞(G) l’anneau des invariants usuels. Il est remarquable que l’anneau QIm(G) est
librement généré sur l’idéal engendré par les invariants de G sans terme constant, et le quotient est isomorphe à la
représentation régulière à gauche de G. Cependant, même dans le cas du groupe symétrique, aucune base de QIm(G)

n’est connue. Nous donnons une nouvelle description de QIm(G) et l’utilisons pour obtenir une base du composant
isotypique de QIm(Sn) indexée par la partition (n− 1, 1).
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1 Introduction
A permutation σ ∈ Sn acts on a polynomial in R = Q[x1, . . . , xn] by permutation of indices:

σP (x1, . . . , xn) = P (xσ(1), . . . , xσ(n)). (1)

The Sn-invariant polynomials are known as symmetric functions, and denoted by Λn. It is well known
(e.g., [Sta99]) that the elements of Λn without constant term are generated by the elementary symmetric
functions {e1, . . . , en} where

ej =
∑

i1<i2<···<ij

xi1 . . . xij . (2)
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The ring of coinvariants of Sn is the quotient

R/〈e1, . . . , en〉. (3)

As an Sn-module, the ring of coinvariants is known to be isomorphic to the left regular representation.
It is also known that R is freely generated over this ideal which implies that if we choose a basis of
minimal degree elements B = {b1, . . . , bn!} for the ring of coinvariants, any element P ∈ R has a unique
expansion

P =
n!∑
i=1

bigi (4)

with the gi ∈ Λn. More information is given by the Hilbert series for the isotypic component of R
corresponding to λ, namely ∑

T∈ST (λ) fλ q
cocharge(T )

(1− q)(1− q2) . . . (1− qn)
. (5)

Known bases for the ring of coinvariants with combinatorial descriptions include the Artin monomials
and the Schubert polynomials.

In [CV90] and [FV02], Chalykh, Feigin and Veselov introduced a generalization of invariance known
as “m-quasiinvariance”. For the symmetric group, the m-quasiinvariants are the polynomials P ∈
Q[x1, . . . , xn] which have the divisibility property

(xi − xj)2m+1

∣∣∣∣ (1− (i, j)
)
P (6)

for every transposition (i, j). We set

QIm = {m-quasiinvariants of Sn}. (7)

A straightforward calculation (which we do not do here) shows that the m-quasiinvariants of Sn form a
ring and an Sn module, and that we have the following containments:

R = QI0 ⊃ QI1 ⊃ · · · ⊃ QIm ⊃ · · · ⊃ Λn. (8)

For all m, the ring QIm was conjectured in [FV02] to be freely generated over the ideal generated by
symmetric functions without constant term. The corresponding quotient QIm/〈e1, . . . , en〉 was conjec-
tured to be isomorphic as an Sn module to the left regular representation. These facts were proved in
[EG02]. Further information was given in [FV03], where they showed the Hilbert series of the isotypic
component of QIm indexed by λ is given by∑

T∈ST (λ) fλ q
m((n2)−content(λ(T )))+cocharge(T )

(1− q)(1− q2) . . . (1− qn)
. (9)

Here fλ is the number of standard tableaux of shape λ and content and cocharge are two statistics
on tableaux–we will not need the precise definitions, though we note that content only depends on the
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shape of T and thus is actually a statistic on partitions. We should note that the definitions, theorems and
conjectures cited above were all phrased in terms of general Coxeter groups; it is only for simplicity that
we have restricted our attention to Sn.

In light of the combinatorially interesting bases for the coinvariants in the classical (i.e., m = 0) case,
the authors have looked for a basis for larger m. In [FV02], and later in [BM05], a basis was given
for the case n = 3. (The work [FV02] specifically described the quasiinvariants for dihedral groups; in
particular for D3

∼= S3.) Further, in [FV03], Felder and Veselov provide integral expressions, φ(j)(x) for
2 ≤ j ≤ n, for the lowest degree non-symmetric m-quasiinvariants, i.e. those of degree mn + 1. In the
present work, we give a complete basis of the isotypic component indexed by the partition [n−1, 1]. This
is accomplished by means of a new characterization of QIm:

Theorem 1 The vector space of quasiinvariants has the following direct sum decomposition:

QIm =
⊕

T∈ST (n)

(
γTR ∩ V 2m+1

T R
)

where ST (n) is the set of standard tableaux of size n, γT is a projection operator due to Young (defined
in full detail in the next section) and VT is the polynomial given by the product over the columns of T of
the associated “Vandermonde determinants” (this is also defined in detail below). This characterization
is proved using completely elementary methods. We then give a basis for the [n − 1, 1] isotypic compo-
nent, using the previous characterization to show that our basis does, in fact, consist of quasiinvariants.
Precisely, for T a standard Young tableau of shape [n− 1, 1] with j the entry in the second row, we set

Qk,mT =
∫ xj

x1

tk
n∏
i=1

(t− xi)mdt. (10)

With this definition, we have

Theorem 2 The set

{Q0,m
T , Q1,m

T , Q2,m
T , . . . , Qn−2,m

T } (11)

is a basis for γT (QIm/〈e1, . . . , en〉).

The fact QIm is freely generated over 〈e1, . . . , en〉 then gives us that the set

{Qk,mT ep11 e
p2
2 . . . epnn } 0 ≤ k ≤ n− 2, pi ∈ N

is a basis for QIm.

2 Acknowledgements
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3 Definitions and notation
Throughout this work, we will write elements of the symmetric group Sn using cycle notation. We will
perform computations in the group algebra of Sn, and as such it will be useful to have shorthand notation
for many commonly occurring elements. For a given subgroup A of Sn, we set

[A] =
∑
σ∈A

σ and

[A]′ =
∑
σ∈A

sgn(σ)σ.

The Young diagram of a partition λ consists of a collection of λi left-justified boxes in the ith row of
the positive integer lattice. These boxes are indexed by ordered pairs (i, j), where i is the row index and
j is the column index. For example, in the following Young diagram of [4, 3, 2], the cell (2, 3) is marked:

•
.

A tableau of shape λ ` n is a function from the cells of the Young diagram of λ to the set {1, . . . , n}.
We write the T (i, j) for the value of T at the cell (i, j). For example, if T is the following tableau,
T (2, 3) = 8:

6 7
4 5 8
1 2 3 9 .

We call a tableau standard if it is injective and the entries increase across the rows and up the columns.
For example, the tableau above is standard. We denote the set of standard tableaux of shape λ by ST (λ)
and the set of all standard tableaux with n boxes by ST (n).

Given a tableau T we let Ci be the set of elements in the ith column and we define Ri similarly for the
rows. We also set

C(T ) =
⋃
i

{(a, b) : a, b ∈ Ci} (12)

N(T ) =
∏
i

[Ci]′ (13)

P (T ) =
∏
i

[Ri] (14)

γT =
fλ N(T )P (T )

n!
(15)

λ(T ) = the shape of tableau T. (16)

Finally, we define the following useful polynomial associated with a tableau T :

VT =
∏

(i,j)∈C(T )

(xi − xj). (17)
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4 Useful Facts From Representation Theory
The following is a fundamental fact about the representation theory of the symmetric group.

Proposition 1 For W a finite dimensional Sn-module,

W ∼=
⊕
λ`n

V ⊕mλλ (18)

where the Vλ are the irreducible representations of Sn and the mλ are non-negative integers.

The vector space and Sn-module V ⊕mλλ is known as the isotypic component of V indexed by λ. Now,
QImis infinite dimensional, but it is the direct sum of homogeneous components, each of which are
finite dimensional. So we have that each homogeneous component of QImdecomposes into the direct
sum of irreducibles. The direct sum of all copies of Vλ occurring in this decomposition is still itself an
Sn-module, and is still referred to as the isotypic component indexed by λ. However, we will find the
following decomposition of V more useful.

Proposition 2 On any Sn module W , the group algebra elements {γT }T∈ST (n) act as projection opera-
tors. In symbols, we have the conditions

1. γ2
T = γT

2. W =
⊕

T∈ST (n) γTW .

Note that in this decomposition, unlike the previous one, the direct summands are not themselves Sn-
modules. We do have the following proposition, however, nicely relating the previous two.

Proposition 3 For any Sn module W , ⊕
T∈ST (λ)

γTW (19)

is the isotypic component of W indexed by λ.

In the case of the quasiinvariants, we have the following

Proposition 4 The Q-vector space of m-quasiinvariants has the following direct sum decomposition:

QIm =
⊕

T∈ST (n)

γTQIm.

Our goal will be to use the decomposition QIm/〈e1, . . . en〉 =
⊕

T γT (QIm/〈e1, . . . en〉) to find a
partial basis for this space.

5 A New Characterization of Sn-Quasiinvariants
In this section we prove the following theorem:

Theorem 1 The vector space of quasiinvariants has the following direct sum decomposition:

QIm =
⊕

T∈ST (n)

(
γTR ∩ V 2m+1

T R
)
.
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We will prove this by showing

γTQIm = γTR ∩ V 2m+1
T R. (20)

Combining (20) with Proposition 4 will prove the theorem. We note first that one containment of (20) is
easy:

γTQIm ⊆ γTR ∩ V 2m+1
T R. (21)

By definition, any element of γTQIm is also in γTR. Thus, we must only show that for Q ∈ QIm we
have

γTQ ∈ V 2m+1
T R. (22)

Let P = γTQ = N(T )Q′. P must be anti-symmetric with respect to all transpositions in C(T ) since it is

in the image of N(T ). Thus, for any (a, b) ∈ C(T ),
(

1− (a, b)
)
P = 2P . Hence (xa−xb)2m+1 divides

2P (and also P ) for all (a, b) ∈ C(T ). This establishes equation (21).
It remains to show that for all standard tableaux T and all m ≥ 0, we have the following containment

of vector spaces:

γTR ∩ V 2m+1
T R ⊆ γTQIm. (23)

Since γT is an idempotent, it suffices to show that for any polynomial P in the ideal V 2m+1
T R, γTP =

P implies that P is m-quasiinvariant. With this in mind, we let P be such that V 2m+1
T |P and γTP = P .

We wish to show that
(

1− (a, b)
)
P is divisible by (xa − xb)2m+1 for all transpositions (a, b). We first

consider the case where a and b are in the same column of T . In this case we have

(a, b)N(T ) = −N(T )

and so

(a, b)P = (a, b)γTP = −γTP = −P.

Thus (
1− (a, b)

)
P = 2P ∈ V 2m+1

T R

which is divisible by the required factor of (xa − xb)2m+1.

The remaining case, showing that
(

1 − (a, b)
)
P is divisible by (xa − xb)2m+1 when a and b are in

different columns, is the only difficult part of the proof. Suppose without loss that a is in column i, and
is to the left of b, which is in column j. We define αi,b ∈ Q[Sn] to be the sum of all transpositions (c, b)
where c is an element of column i. The key property of this is element is the following:
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Lemma 1 The operator αi,b preserves γT . In symbols,

αi,bγT = γT .

The proof of Lemma 1, though completely elementary, is lengthy and is omitted here.
With this fact in hand, it is not difficult to complete the proof. By Lemma 1, P is preserved by αi,b:

αi,bP = αi,bγTP = γTP = P. (24)

This fact and the definition of αi,b gives(
1− (a, b)

)
P = P − (a, b)P (25)

= αi,bP − (a, b)P (26)

=
∑
c∈Ci
c6=a

(c, b)P. (27)

Since P ∈ V 2m+1
T R, for any c ∈ Ci with c 6= a we can rewrite P as

P = (xc − xa)2m+1(other factors). (28)

Thus

(c, b)P = (xb − xa)2m+1(other factors) (29)

and we have

(xb − xa)2m+1 divides (c, b)P for every c ∈ Ci with c 6= a. (30)

Hence (xb − xa)2m+1 divides the right-hand side of equation 27, which completes the proof.

6 A Basis For The Isotypic Component λ(T ) = [n− 1, 1]
In this section, we refer to the quotient QIm/〈e1, . . . , en〉 by the symbol QI∗m. Our object here is to
describe a basis for γTQI∗m when T has a hook shape of the form [n − 1, 1]. Until otherwise specified,
let λ be the partition [n− 1, 1] and let T be one of the (n− 1) standard tableaux of shape λ. In fact T is
uniquely defined by the lone entry of the second row. Suppose it’s j ∈ {2, 3, . . . , n}. We define

Qk,mT =
∫ xj

x1

tk
n∏
i=1

(t− xi)mdt. (31)

Theorem 2 The polynomials {Qk,mT }n−2
k=0 are a set of representatives for a basis of γTQI∗m.

By equation (9) we know this consists of the right number of elements, and they are of the right degree.
Thus we are faced with two tasks: showing the elements Qk,mT are, in fact, m-quasiinvariant, and show-
ing that they are linearly independent in QI∗m. To show the m-quasiinvariance of Qk,mT we must, by
Theorem 1, show these polynomials are preserved by γT and divisible by V 2m+1

T .
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Lemma 2 The polynomials Qk,mT are preserved by the operator γT . That is,

γTQ
k,m
T = Qk,mT . (32)

Proof: We will prove this inductively, by showing that theQk,mT satisfy a recursion that respects the action
of γT . In what follows, ei will denote the ith elementary symmetric function in the variables x1, . . . , xn,
with the convention that e0 = 1. We first state for reference a classical symmetric function identity:

n∏
i=1

(t− xi) =
n∑
i=0

(−1)ieitn−i. (33)

We now show that for m > 1, we have the recurrence:

Q k,m
T =

n∑
i=0

(−1)iei Q
n−i+k,m−1
T . (34)

This can be seen by first expanding the definition of Q k,m
T to get

Q k,m
T =

∫ xj

x1

( n∏
i=1

(t− xi)
)
tk

n∏
l=1

(t− xl)m−1dt. (35)

Substituting (33) into (35) and pulling out the factors not involving t gives

Q k,m
T =

∫ xj

x1

( n∑
i=0

(−1)ieitn−i
)
tk

n∏
l=1

(t− xl)m−1dt (36)

=
n∑
i=0

(−1)iei
∫ xj

x1

tn−i+k
n∏
l=1

(t− xl)m−1dt (37)

=
n∑
i=0

(−1)iei Q
n−i+k,m−1
T . (38)

We now proceed with a proof of Lemma 2 by induction on m. From the definition of Q k,m
T we have

Qk,0T =
∫ xj

x1

tk
n∏
i=1

(t− xi)0dt (39)

=
1

k + 1
(
xk+1
j − xk+1

1

)
. (40)

That xk+1
j − xk+1

1 is preserved by γT is a straightforward calculation which we omit here.
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We can now complete the proof by using equation (34), the inductive hypothesis, and the fact that
symmetric functions commute with group algebra elements:

γTQ
k,m
T =

n∑
i=0

(−1)iγT
(
eiQ

n−i+k,m−1
T

)
(41)

=
n∑
i=0

(−1)iei
(
Q n−i+k,m−1
T

)
(42)

= Q k,m
T . (43)

2

In order to complete our task of showing that Q k,m
T ∈ QIm, we must show that (xj−x1)2m+1 divides

Q k,m
T . We do so by proving the following stronger statement:

Lemma 3 For all k,

lim
x1→xj

Q k,m
T

(xj − x1)2m+1
=

(−1)mm!2

(2m+ 1)!
xkj

n∏
i=2
i 6=j

(xj − xi)m.

Proof: This is a straightforward calculation. Expanding Qk,mT according to the definition gives

lim
xj→x1

Qk,mT
(xj − x1)2m+1

= lim
xj→x1

∫ xj
x1
tk
∏n
i=1(t− xi)mdt

(xj − x1)2m+1
(44)

which is an indeterminate expression of the form 0
0 . Repeatedly applying L’Hopital’s rule and evaluating

the numerator with Leibniz’s rule for differentiation under the integral gives that the expression in (44)
equals

lim
xj→x1

(−1)m ·m!
∫ xj
x1
tk
∏n

i=1
i 6=j

(t− xi)mdt

(2m+ 1)(2m)(2m− 1) · · · (m+ 2)(xj − x1)m+1
.

One more application of L’Hopital’s rule, evaluated this time with the Fundamental Theorem of Calculus,
yields

lim
xj→x1

(−1)m ·m! · xkj
∏n

i=1
i 6=j

(xj − xi)m

(2m+ 1)(2m)(2m− 1) · · · (m+ 1)(xj − x1)m
. (45)

We now cancel the term (xj − x1)m from both numerator and denominator and the Lemma is proven. 2

The polynomiality of limx1→xj
Q k,m
T

(xj−x1)2m+1 immediately gives that (xj − x1)2m+1 divides Q k,m
T . Thus

we have established that Q k,m
T is m-quasiinvariant.

We need one more lemma to establish Theorem 2.



608 Jason Bandlow and Gregg Musiker

Lemma 4 The set {Qk,mT }n−2
k=0 is linearly independent in QI∗m.

Proof: As these polynomials are of different degrees, it suffices to show that they are non-zero in QI∗m.
Put another way, we must show that Qk,mT is not in the ideal of γTQIm generated by 〈e1, . . . , en〉. Equiv-
alently, we must show that polynomials of the form

Pk = Qk,mT +A1Q
k−1,m
T + · · ·+Ak−1Q

1,m
T +AkQ

0,m
T (46)

(where the Ai are symmetric functions of degree i) can only equal 0 if k ≥ n− 1. To accomplish this, we
use the explicit formulas for limxj→x1 Q

k,m
T /V 2m+1

T given by Lemma 3 to show the stronger statement

lim
xj→x1

Pk/V
2m+1
T = 0 =⇒ k ≥ n− 1 (47)

regardless of the choice of the symmetric functions. Letting Ãi denote the limit xj → x1 applied to the
symmetric function Ai, and assuming without loss of generality that j = 2, we have

lim
x2→x1

Pk/V
2m+1
T = 0 (48)

=⇒
(

(−1)mm!2

(2m+ 1)!

n∏
i=3

(x1 − xi)m
)(

xk1 + Ã1x
k−1
1 + · · ·+ Ãk−1x1 + Ãk

)
= 0 (49)

=⇒ xk1 + Ã1x
k−1
1 + · · ·+ Ãk−1x1 + Ãk = 0 (50)

=⇒ lim
x2→x1

(
xk1 +A1x

k−1
1 + · · ·+Ak

)
= 0. (51)

We set

Q(x1, . . . , xn) = xk1 +A1x
k−1
1 + · · ·+Ak (52)

and now equation (51) implies that

Q(x1, . . . , xn) = (x2 − x1) ·R(x1, . . . , xn). (53)

However, Q must be symmetric with respect to all pairs of variables not involving x1. Thus, for any
σ ∈ S{2,3,...,n}, σQ = Q and so

Q(x1, . . . , xn) = σQ(x1, . . . , xn) = (xσ(2) − x1) · σR(x1, . . . , xn). (54)

Hence
∏n
i=2(xi − x1) divides Q(x1, . . . , xn), and k, which is the degree of Q(x1, . . . , xn), must be

greater than or equal to n− 1. 2

The proof of Theorem 2 now follows immediately from Lemmas 2, 3, and 4.
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