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Affine and toric arrangements

Richard Ehrenborg, Margaret Readdy, and Michael Slone
Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027

Abstract. We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a central hyperplane
arrangement to affine and toric hyperplane arrangements. For toric arrangements, we also generalize Zaslavsky’s fundamental results
on the number of regions.

Résumé. Nous étendons l’opérateur de Billera–Ehrenborg–Readdy entre la trellis d’intersection et la trellis de faces d’un arrange-
ment hyperplans centrals aux arrangements affines et toriques. Pour les arrangements toriques, nous généralisons aussi les résultats
fondamentaux de Zaslavsky sur le nombre de régions.
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1 Introduction

Traditionally combinatorialists have studied topological objects that are spherical, such as polytopes, or which are homeo-
morphic to a wedge of spheres, such as those obtained from shellable complexes. In this paper we break from this practice
and study hyperplane arrangements on the n-dimensional torus.

It is classical that the convex hull of a finite collection of points in Euclidean space is a polytope and its boundary is a
sphere. The key ingredient in this construction is convexity. At the moment there is no natural analogue of this process to
obtain a complex whose geometric realization is a torus.

In this paper we are taking a zonotopal approach to working with arrangements on the torus. Recall that every central
hyperplane arrangement gives rise to a zonotope, that is, a spherical object. By considering an arrangement on the torus,
we are able to obtain a subdivision whose geometric realization is indeed the torus. This amounts to restricting ourselves
to arrangements whose subspaces in the Euclidean space Rn have coefficient matrices with rational entries. Under the
quotient map Rn −→ Rn/Zn = Tn these subspaces are sent to subtori of the n-dimensional torus Tn.

Zaslavsky initiated the modern study of hyperplane arrangements in his fundamental treatise [43]. For early work in the
field, see the references given in Grünbaum’s text [26, Chapter 18]. Zaslavsky showed that evaluating the characteristic
polynomial of a central hyperplane arrangement at−1 gives the number of regions in the complement of the arrangement.
For central hyperplane arrangements, Bayer and Sturmfels proved the flag f -vector of the arrangement can be determined
from the intersection lattice [6]; see Theorem 2.3. Billera, Ehrenborg and Readdy proved that the flag f -vector of the
arrangement can be determined from the flag f -vector of the intersection lattice. Recall that the cd-index of a regular cell
complex is an efficient tool to encode its flag f -vector without linear redundancies [5]. The Billera–Ehrenborg–Readdy
theorem gives an explicit way to compute the cd-index of the arrangement [8].

The first step is to generalize Zaslavsky’s theorem on the number of regions of a hyperplane arrangement to the toric
case. Although there is no intersection lattice, one works with the intersection poset. From the Zaslavsky result we obtain
a toric version of the Bayer–Sturmfels result for hyperplane arrangements, that is, there is a natural poset map from the
face poset to the intersection poset and the cardinality of the inverse image of a chain under this map is described.

As in the case of a central hyperplane arrangement, our toric version of the Bayer–Sturmfels result determines the
flag f -vector of the face poset of a toric arrangement in terms of its intersection poset. However, this is far from being
explicit. Using the coalgebraic techniques from [18], we are able to determine the flag f -vector explicitly in terms of the
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flag f -vector of the intersection poset. Moreover, the answer is given by a cd type of polynomial. The flag f -vector of a
regular spherical complex is encoded by the cd-index, a non-commutative polynomial in the variables c and d, whereas
the n-dimensional toric analogue is a cd-polynomial plus the ab-polynomial (a− b)n+1.

Zaslavsky also showed that evaluating the characteristic polynomial of an affine arrangement at 1 gives the number
of bounded regions in the complement of the arrangement. Thus we return to affine arrangements in Euclidean space
with the twist that we study the unbounded regions. The unbounded regions form a spherical complex. In the case of
central arrangements, this complex is exactly what was studied previously by Billera, Ehrenborg and Readdy [8]. For
non-central arrangements, we determine the cd-index of this complex in terms of the lattice of unbounded intersections
of the arrangement.

Interestingly, the techniques for studying toric arrangements and the unbounded complex of non-central arrangements
are similar. Hence, we present these results in the same paper. For example, the toric and non-central analogues of
the Bayer–Sturmfels theorem only differ in which Zaslavsky invariant is used. The coalgebraic translations of the two
analogues involve exactly the same argument, and the resulting underlying maps ϕt (in the toric case) and ϕub (in the
non-central case) only differ slightly in their definitions.

We end with many open questions about subdivisions of manifolds.

2 Preliminaries

All the posets we will work with are graded, that is, posets having a unique minimal element 0̂, a unique maximal
element 1̂, and rank function ρ. For two elements x and z in a graded poset P such that x ≤ z, let [x, z] denote the
interval {y ∈ P : x ≤ y ≤ z}. Observe that the interval [x, z] is itself a graded poset. For standard poset terminology,
we refer the reader to Stanley’s work [37].

We now review important results about hyperplane arrangements, the cd-index and coalgebraic techniques that are
essential for proving the main results of this paper.

2.1 Hyperplane arrangements

Let H = {H1, . . . ,Hm} be a hyperplane arrangement in Rn, that is, a finite collection of affine hyperplanes in n-
dimensional Euclidean space Rn. For brevity, throughout this paper we will often refer to a hyperplane arrangement as an
arrangement. We call the arrangement essential if the normal vectors to the hyperplanes in H span Rn. In this paper we
are only interested in essential arrangements.

Observe that the intersection
⋂m
i=1Hi of all of the hyperplanes in an essential arrangement is either the empty set ∅ or a

singleton point. We call an arrangement central if the intersection of all the hyperplanes is one point. We may assume that
this point is the origin 0 and hence all of the hyperplanes are codimension 1 subspaces. If the intersection is the empty
set, we call the arrangement non-central.

The intersection lattice L is the lattice formed by ordering all the intersections of hyperplanes inH by reverse inclusion.
If the intersection of all the hyperplanes in a given arrangement is empty, then we include the empty set ∅ as the the
maximal element in the intersection lattice. If the arrangement is central the maximal element is {0}. In all cases, the
minimal element of L will be all of Rn.

For a hyperplane arrangementH with intersection lattice L its characteristic polynomial is defined by

χ(H; t) =
∑
x∈L
x 6=∅

µ(0̂, x) · tdim(x),

where µ denotes the Möbius function. The characteristic polynomial is a combinatorial invariant of the arrangement. The
fundamental result of Zaslavsky [43] is that this invariant determines the number and type of regions.

Theorem 2.1 (Zaslavsky) For a hyperplane arrangementH in Rn the number of regions is (−1)n · χ(H;−1). Further-
more, the number of bounded regions is given by (−1)n · χ(H; 1).
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For a graded poset P , define the two Zaslavsky invariants Z and Zb by

Z(P ) =
∑

0̂≤x≤1̂

(−1)ρ(x) · µ(0̂, x),

Zb(P ) = (−1)ρ(P ) · µ(P ).

In order to work with Zaslavsky’s result, we need the following reformulation of Theorem 2.1.

Theorem 2.2 (i) For a central hyperplane arrangement H the number of regions is given by Z(L), where L is the
intersection lattice of the arrangementH.

(ii) For a non-central hyperplane arrangement H the number of regions is given by Z(L) − Zb(L), where L is the
intersection lattice of the arrangementH. The number of bounded regions is given by Zb(L).

Given a central hyperplane arrangement H there are two associated lattices, namely the intersection lattice L and the
lattice T of faces of the arrangement. The lattice of faces can be seen as the face poset of the CW -complex obtained by
intersecting the arrangement H with a sphere of radius R centered at the origin. Each hyperplane corresponds to a great
circle on the sphere. An alternative way to view the lattice of faces T is that the dual lattice T ∗ is the face lattice of the
associated zonotope.

Let L∪{0̂} denote the intersection lattice with a new minimal element 0̂ adjoined. Define an order- and rank-preserving
map z from the dual lattice T ∗ to the augmented lattice L∪{0̂} by sending a face of the arrangement, that is, a cone in Rn,
to its affine hull. Note that under the map z the minimal element of T ∗ is mapped to the minimal element of L∪ {0̂}. We
view z as a map from the set of chains of T ∗ to the set of chains of L∪{0̂}. Bayer and Sturmfels [6] proved the following
result about the inverse image of a chain under the map z.

Theorem 2.3 (Bayer–Sturmfels) Let H be a central hyperplane arrangement with intersection lattice L. Let c be the
chain {0̂ = x0 < x1 < · · · < xk = 1̂} in L ∪ {0̂}. Then the cardinality of the inverse image of the chain c under the
map z : T ∗ −→ L ∪ {0̂} is given by the product

|z−1(c)| =
k∏
i=2

Z([xi−1, xi]).

2.2 The cd-index and coalgebraic techniques

Let P be a graded poset of rank n + 1 with rank function ρ and let a and b be two non-commutative variables. The flag
f -vector is defined as follows. For S = {s1 < · · · < sk−1} a subset of {1, . . . , n} define fS to be the number of chains c
that have elements with ranks in the set S, that is, fS = |{c : ρ(x1) = s1, . . . , ρ(xk−1) = sk−1}|. The flag h-vector is
obtained by the relation (here we also present its inverse)

hS =
∑
T⊆S

(−1)|S−T | · fT and fS =
∑
T⊆S

hT .

For S a subset of {1, . . . , n} let uS be the monomial uS = u1 · · ·un where ui = b if i ∈ S and ui = a if i 6∈ S. Then
the ab-index is given by the sum

Ψ(P ) =
∑

S⊆{1,...,n}

hS · uS .

A poset P is Eulerian if every interval [x, y], where x < y, satisfies the Euler-Poincaré relation, that is, there are the
same number of elements of odd as even rank. Equivalently, the Möbius function of P is given by µ(x, y) = (−1)ρ(x,y)

for all x ≤ y in P . The quintessential result is that the ab-index of Eulerian posets has the following form.

Theorem 2.4 The ab-index of an Eulerian poset P can be expressed in terms of the noncommutative variables c = a+b
and d = ab + ba.
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This theorem was originally proved for face lattices of convex polytopes by Bayer and Klapper [5]. Stanley provided a
proof for all Eulerian posets [39]. There are proofs which have both used and revealed the underlying algebraic structure.
See for instance [14, 21]. When the ab-index Ψ(P ) is written in terms of c and d, the resulting polynomial is called the
cd-index. There are linear relations holding among the entries of the flag f -vector of an Eulerian poset, known as the
generalized Dehn-Sommerville relations; see [3]. The importance of the cd-index is that it removes all of these linear
redundancies among the flag f -vector entries.

For a graded poset P define P ∗ to be the dual poset, that is, the poset having the same underlying set as P but with the
order relation reversed: x <P∗ y if and only if y <P x. Define the reverse of an ab-monomial u = u1u2 · · ·un to be
u∗ = un · · ·u2u1 and extend by linearity to an involution on Z〈a,b〉. Since c∗ = c and d∗ = d, this involution applied
to a cd-monomial reverses the cd-monomial. Finally, for a graded poset P we have Ψ(P )∗ = Ψ(P ∗).

A coproduct ∆ on a module C is a linear map ∆ : C −→ C ⊗ C. We say that the coproduct is coassociative if
(∆⊗ id) ◦∆ = (id⊗∆) ◦∆. We use the Sweedler notation [42] for the coproduct, writing

∆(w) =
∑
w

w(1) ⊗ w(2).

The Sweedler notation for the k-ary coproduct is

∆k−1(w) =
∑
w

w(1) ⊗ w(2) ⊗ · · · ⊗ w(k).

Define a coproduct ∆ on the algebra Z〈a,b〉 by letting ∆ satisfy the following identities: ∆(1) = 0, ∆(a) = ∆(b) =
1⊗ 1 and the Newtonian condition ∆(u · v) = ∆(u) · v + u ·∆(v). For an ab-monomial u = u1u2 · · ·un we have that

∆(u) =
n∑
i=1

u1 · · ·ui−1 ⊗ ui+1 · · ·un.

The following identity expresses the fundamental result that the ab-index is a coalgebra homomorphism [18].

Theorem 2.5 (Ehrenborg–Readdy) For a graded poset P with ab-index w = Ψ(P ) and any k-multilinear map M on
Z〈a,b〉, the following coproduct identity holds:∑

c

M(Ψ([x0, x1]),Ψ([x1, x2]), . . . ,Ψ([xk−1, xk])) =
∑
w

M(w(1), w(2), . . . , w(k)),

where the first sum is over all chains c = {0̂ = x0 < x1 < · · · < xk = 1̂} of length k and the second sum is taken over
the k-ary coproduct, that is, ∆k−1.

2.3 The cd-index of the face poset of a central arrangement

We recall the definition of the omega map [8].

Definition 2.6 The linear map ω from Z〈a,b〉 to Z〈c,d〉 is formed by replacing every occurrence of ab in a given
ab-monomial by 2d and replacing the remaining letters by c.

For a central hyperplane arrangementH the cd-index of the face poset is computed as follows [8]:

Theorem 2.7 (Billera–Ehrenborg–Readdy) LetH be a central hyperplane arrangement with intersection lattice L and
face lattice T . Then the cd-index of the face lattice T is given by

Ψ(T ) = ω(a ·Ψ(L))∗.
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We review the basic ideas behind the proof of this theorem. We will refer back to them when we prove similar results
for toric and affine arrangements in Sections 3 and 4.

Define two linear operators κ and η on Z〈a,b〉 by the following relations [8, Section 5]:

κ(Ψ(P )) = (a− b)ρ(P )−1,

η(Ψ(P )) = Z(P ) · (a− b)ρ(P )−1.

For k ≥ 1 the operator ϕk is defined by the coalgebra expression

ϕk(v) =
∑
v

κ(v(1)) · b · η(v(2)) · b · · ·b · η(v(k)),

where the coproduct splits v into k parts. Finally ϕ is defined as the sum

ϕ(v) =
∑
k≥1

ϕk(v).

Note that in this expression only a finite number of terms are non-zero. The connection with hyperplane arrangements is
given by the following proposition.

Proposition 2.8 The ab-index of the lattice of faces of a central hyperplane arrangement is given by

Ψ(T ) = ϕ(Ψ(L ∪ {0̂}))∗.

Proposition 2.9 For an ab-monomial w that begins with a, the two maps ϕ and ω coincide, that is, ϕ(w) = ω(w).

Finally, Theorem 2.7 follows by Proposition 2.9 and from the fact that Ψ(L ∪ {0̂}) = a ·Ψ(L).

2.4 Regular subdivisions of manifolds

A regular subdivision of the sphere has an Eulerian face poset and hence a cd-index. For regular subdivisions of compact
manifolds, a similar result holds. This was independently observed by Ed Swartz [41].

Theorem 2.10 Let Ω be a regular CW -complex whose geometric realization is a compact n-dimensional manifold M .
Let χ(M) denote the Euler characteristic of M . Then the ab-index of the face poset P of Ω has the following form.

(i) If n is odd then P is an Eulerian poset and hence Ψ(P ) can written in terms of c and d.

(ii) If n is even then Ψ(P ) has the form

Ψ(P ) =
(

1− χ(M)
2

)
· (a− b)n+1 +

χ(M)
2
· cn+1 + Φ,

where Φ is a homogeneous cd-polynomial of degree n+ 1 and where the term cn+1 does not occur.

For the n-dimensional torus Theorem 2.10 can be expressed as follows.

Corollary 2.11 Let Ω be a regular CW -complex whose geometric realization is the n-dimensional torus Tn. Then
the ab-index of the face poset P of Ω has the following form:

Ψ(P ) = (a− b)n+1 + Φ,

where Φ is a homogeneous cd-polynomial of degree n+ 1 and where the term cn+1 does not occur.
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Fig. 1: A toric line arrangement and its intersection poset.

3 Toric arrangements

3.1 Toric subspaces and arrangements

The n-dimensional torus Tn is defined as the quotient Rn/Zn. Let V be a k-dimensional affine subspace in Rn with
rational coefficients. That is, V has the form V = {~v ∈ Rn : A~v = ~b} , where the matrix A has rational entries and the
vector~b is allowed to have real entries. Let V denote the image of V under the quotient map Rn → Rn/Zn. We call the
image V a toric subspace of the torus Tn. When we remove the condition that the matrix A is rational, the image is no
longer homeomorphic to a torus. The intersection of two toric subspaces is in general not a toric subspace, but instead is
the disjoint union of a finite number of toric subspaces. For two affine subspaces V and W with rational coefficients, we
have that V ∩W ⊆ V ∩W . This containment can be strict.

A toric hyperplane arrangementH = {H1, . . . ,Hm} is a finite collection of toric hyperplanes. Define the intersection
poset P of a toric arrangement to be the set of all connected components in all possible intersections of the toric hyper-
planes, that is, all connected components of

⋂
i∈S Hi where S ⊆ {1, . . . ,m}, together with the empty set. We order the

elements of the intersection poset P by reverse inclusion, that is, the torus Tn is the minimal element of P corresponding
to the empty intersection, and the empty set is the maximal element. A toric subspace V is contained in the intersection
poset P if there are toric hyperplanes Hi1 , . . . ,Hik in the arrangement such that V ⊆ Hi1 ∩ · · · ∩ Hik and there is no
toric subspace W satisfying V ⊂ W ⊆ Hi1 ∩ · · · ∩Hik . In other words, V has to be a maximal toric subspace in some
intersection of toric hyperplanes from the arrangement.

The notion of using the intersection poset can be found in work of Zaslavsky, where he considers topological dissec-
tions [44]. In this setting there there is not an intersection lattice, but rather an intersection poset.

For a toric hyperplane arrangementH define the toric characteristic polynomial to be

χ(H; t) =
∑
x∈P
x 6=∅

µ(0̂, x) · tdim(x).

Example 3.1 Consider the line arrangement consisting of the three lines y = 3 · x, x = 2 · y and y = 1/5. It subdivides
the torus into a regular CW -complex. The subdivision and the associated intersection poset are shown in Figure 1. The
characteristic polynomial is given by χ(H; t) = t2 − 3 · t+ 8. Furthermore, the ab-index of the subdivision of the torus
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is given by Ψ(Tt) = (a− b)3 + 7 · dc + 8 · cd, as the following calculation shows.

S fS hS uS (a− b)3 7 · dc 8 · cd
∅ 1 1 aaa 1 0 0
{1} 7 6 baa −1 7 0
{2} 15 14 aba −1 7 8
{3} 8 7 aab −1 0 8
{1, 2} 30 9 bba 1 0 8
{1, 3} 30 16 bab 1 7 8
{2, 3} 30 8 abb 1 7 0
{1, 2, 3} 60 −1 bbb −1 0 0

Observe that the sum of the three last columns is equal to the flag h-vector.

We now give a natural interpretation of the toric characteristic polynomial. LetG be the collection of finite intersections
of toric subspaces of the n-dimensional torus Tn together with the empty set. Observe that Tn also belongs to G and that
G is closed under finite intersections. Let L be the distributive lattice consisting of all subsets of the torus Tn that are
obtained from the collection G by finite intersections, finite unions and complements. The set G is the generating set for
the lattice L. A valuation v is a function on the lattice L such that v(∅) = 0 and v(A) + v(B) = v(A ∩ B) + v(A ∪ B)
for all sets A,B ∈ L. Similar to Theorem 2.1 in [19] we have:

Theorem 3.2 There is a valuation v on the distributive lattice L such that the valuation v applied to a k-dimensional
toric subspace V is tk, that is, v(V ) = tk.

By Möbius inversion we directly have the following theorem. The proof is standard. See the references [1, 10, 19, 28].

Theorem 3.3 The characteristic polynomial of a toric arrangement is given by

χ(H) = v

(
Tn −

m⋃
i=1

Hi

)
.

Observe that the Euler valuation of a k-dimensional torus is given by the Kronecker delta δk,0. This corresponds to
setting t = 0 in the valuation. Using that the Euler valuation of a n-dimensional region is (−1)n, we have the next result.
The proof is analogous to the proofs in [19, 20].

Theorem 3.4 Let H be a toric hyperplane arrangement on the n-dimensional torus Tn that subdivides the torus into
regions that are open n-dimensional balls. Then the number of regions of the arrangement is given by (−1)n · χ(H; 0).

Continuation of Example 3.1 Setting t = 0 in the characteristic polynomial in Example 3.1 we obtain 8, which is indeed
is the number of regions of this arrangement.

We call a toric hyperplane arrangement H = {H1, . . . ,Hm} rational if each hyperplane Hi is of the form ~ai · ~x = bi
where the vector ~ai has integer entries and bi is an integer. This is equivalent to assuming every constant bi is rational
since every vector ~ai was already assumed to be rational. In what follows we assume every coefficient is integral in a
given rational arrangement. Define M(H) to be the least common multiple of all the n × n minors of the n ×m matrix
(~a1, . . . ,~am). We can now give different interpretation of the toric chromatic polynomial by counting lattice points.

Theorem 3.5 For a rational hyperplane arrangement H there exists a constant k such that for every q > k and q a mul-

tiple of M(H), the toric characteristic polynomial evaluated at q is given by the number of lattice points in
(

1
qZ
)n

/Zn

that do not lie on any of the toric hyperplanes Hi, that is,

χ(H; q) =

∣∣∣∣∣
(

1
q

Z
)n

/Zn −
m⋃
i=1

Hi

∣∣∣∣∣ .
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The condition that q is a multiple of M(H) implies that every subspace x in the intersection poset P intersects the toric

lattice
(

1
qZ
)n

/Zn in exactly qdim(x) points. Theorem 3.5 now follows by Möbius inversion. This theorem is the toric
analogue of Athanasiadis’ finite field method. See especially [2, Theorem 2.1].

In the case when M(H) = 1, the toric arrangementH is called unimodular. Novik, Postnikov and Sturmfels [36] state
Theorem 3.4 in the special case of unimodular arrangements. Their first proof is based upon Zaslavksy’s result on the
number of regions in an affine arrangement. The second proof, due to Vic Reiner, is equivalent to our proof for arbitrary
toric arrangements.

3.2 The toric Bayer–Sturmfels result

Define the toric Zaslavsky invariant of a graded poset P by

Zt(P ) =
∑

x coatom of P

(−1)ρ(0̂,x) · µ(0̂, x) = (−1)ρ(P )−1 ·
∑

x coatom of P

µ(0̂, x).

We reformulate Theorem 3.4 as follows.

Theorem 3.6 For a toric hyperplane arrangement H on the torus Tn that subdivides the torus into open n-dimensional
balls, the number of regions is given by Zt(P), where P is the intersection poset of the arrangementH.

For the remainder of this section we will assume that the subdivision of the torus induced by the toric arrangement is a
regular CW -complex. Let Tt denote the face poset of this subdivision. Define the map zt : T ∗t −→ P ∪ {0̂} by sending
each face to the smallest toric subspace in the arrangement that contains the face and sending the minimal element in T ∗t
to 0̂. Observe that the map zt is order- and rank-preserving, as well as being surjective.

The toric analogue of Theorem 2.3 is as follows.

Theorem 3.7 Let P be the intersection poset of a toric hyperplane arrangement. Let c = {0̂ = x0 < x1 < · · · < xk = 1̂}
be a chain in P ∪ {0̂} with k ≥ 2. Then the cardinality of the inverse image of the chain c is given by the product

|z−1
t (c)| =

k−1∏
i=2

Z([xi−1, xi]) · Zt([xk−1, xk]).

3.3 The connection between posets and coalgebras

For an ab-monomial v define the linear map λt by letting

λt(v) =


(a− b)m if v = bm for some m ≥ 0,
(a− b)m+1 if v = bma for some m ≥ 0,
0 otherwise.

The next lemma gives the relation between the toric Zaslavsky invariant Zt and the map λt.

Lemma 3.8 For a poset P , the following identity holds:

λt(Ψ(P )) = Zt(P ) · (a− b)ρ(P )−1.

Define a sequence of functions ϕt,k : Z〈a,b〉 → Z〈a,b〉 by ϕt,1 = κ, and for k ≥ 2,

ϕt,k(v) =
∑
v

κ(v(1)) · b · η(v(2)) · b · η(v(3)) · b · · ·b · η(v(k−1)) · b · λt(v(k)).

Finally, let ϕt(v) be the sum ϕt(v) =
∑
k≥1 ϕt,k(v).
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Theorem 3.9 The ab-index of the face poset Tt of a toric arrangement is given by

Ψ(Tt)∗ = ϕt(Ψ(P ∪ {0̂})).

3.4 Evaluating the function ϕt

Define the linear operatorH ′ on Z〈a,b〉 to be the one which removes the last letter in each monomial, that is,H ′(w ·a) =
H ′(w ·b) = w andH ′(1) = 0. We use the prime in the notation to distinguish it from theH map defined in [8, Section 8]
which instead removes the first letter in each ab-monomial.

Proposition 3.10 For an ab-monomial v that begins with the letter a, the following holds:

ϕt(v) = κ(v) + 1/2 · ω(H ′(v) · b).

We now obtain the main result for computing the ab-index of the face poset of a toric arrangement.

Theorem 3.11 Let H be a toric hyperplane arrangement on the n-dimensional torus Tn that subdivides the torus into
a regular CW -complex. Then the ab-index of the face poset Tt can be computed from the ab-index of the intersection
poset P as follows:

Ψ(Tt) = (a− b)n+1 +
1
2
· ω(a ·H ′(Ψ(P)) · b)∗.

Observe that in Proposition 3.10 and Theorem 3.11 no rational coefficients were introduced. Only the ab-monomial an

is mapped to a cd-polynomial with an odd coefficient, hence 1/2 · ω(v · b) has all integer coefficients.

Continuation of Example 3.1 The flag f -vector of the intersection posetP in Example 3.1 is given by (f∅, f1, f2, f12) =
(1, 3, 7, 15), the flag h-vector by (h∅, h1, h2, h12) = (1, 2, 6, 6), and so the ab-index is Ψ(P ) = a2+2·ba+6·ab+6·b2.
Thus

Ψ(Tt) = (a− b)3 + 1/2 · ω(a ·H ′(a2 + 2 · ba + 6 · ab + 6 · b2) · b)∗

= (a− b)3 + 1/2 · ω(a · (7 · a + 8 · b) · b)∗

= (a− b)3 + 7 · dc + 8 · cd,

which agrees with the calculation in Example 3.1.

4 The complex of unbounded regions

The unbounded Zaslavsky invariant is defined by

Zub(P ) = Z(P )− 2 · Zb(P ).

As the name suggests, the number of unbounded regions in a non-central arrangement is given by this invariant. By taking
the difference of the two statements in Theorem 2.2 part (ii), we have:

Lemma 4.1 For a non-central hyperplane arrangement H the number of unbounded regions is given by Zub(L), where
L is the intersection lattice of the arrangementH.
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Fig. 2: The non-central arrangement x, y, z = 0, 1 and its associated spherical subdivision.

LetH be a non-central hyperplane arrangement in Rn with intersection lattice L. Let Lub denote the unbounded inter-
section lattice, that is, the subposet of the intersection lattice consisting of all affine subspaces with the points (dimension
zero affine subspaces) omitted. Similarly, let Tub denote all of the faces in the hyperplane arrangement H which are
unbounded. We observe that Tub is the face poset of an (n−1)-dimensional sphere. Pick R large enough so that all of the
bounded faces are strictly inside a ball of radius R. Intersect the arrangement H with a sphere of radius R. The resulting
CW -complex has face poset Tub. Our goal is to compute the cd-index of Tub in terms of the ab-index of Lub.

We now restrict the zero map z : T ∗ −→ L∪{0̂} to form the map zub : T ∗ub −→ L∪{0̂}. Observe that zub is order- and
rank-preserving. Also note that zub is not necessarily surjective. Analogous to the Bayer–Sturmfels result, Theorem 2.3,
we have the following theorem:

Theorem 4.2 Let H be a non-central hyperplane arrangement with intersection lattice L. Let c = {0̂ = x0 < x1 <
· · · < xk = 1̂} be a chain in L ∪ {0̂} with k ≥ 2. Then the cardinality of its inverse image under zub is given by

|z−1
ub (c)| =

k−1∏
i=2

Z([xi−1, xi]) · Zub([xk−1, xk]).

We can now evaluate the cd-index of the poset of unbounded regions Tub in terms of the ab-index of the unbounded
intersection lattice Lub.

Theorem 4.3 Let H be a non-central hyperplane arrangement with the unbounded intersection lattice Lub and poset of
unbounded regions Tub. Then

Ψ(Tub) = ω(a ·Ψ(Lub))∗.

Example 4.4 Consider the non-central hyperplane arrangement consisting of the six hyperplanes x = 0, 1, y = 0, 1 and
z = 0, 1. Intersecting this with a sphere of large enough radius yields a spherical complex whose polytopal realization is
the rhombicuboctahedron. The arrangement and its associated complex are displayed in Figure 2. The dual of the face
lattice of the spherical complex is not realized by a zonotope. However, the dual lattice can be viewed as the face lattice
of a 2× 2× 2 pile of cubes.

The intersection lattice L is the face lattice of the three-dimensional crosspolytope, in other words, the octahedron.
Hence the lattice of unbounded intersection Lub has the flag f -vector (f∅, f1, f2, f12) = (1, 6, 12, 24) and the flag h-
vector (h∅, h1, h2, h12) = (1, 5, 11, 7). The ab-index is given by Ψ(Lub) = a2 + 5 · ba + 11 · ab + 7 · b2. Hence the
cd-index of Tub is given by

Ψ(Tub) = ω(a3 + 5 · aba + 11 · a2b + 7 · ab2)∗

= c3 + 22 · dc + 24 · cd.
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5 Concluding remarks

For regular subdivisions of manifolds there is now a plethora of questions to ask.

(i) What is the right analogue of a regular subdivision in order that it be polytopal? Can flag f -vectors be classified for
polytopal subdivisions?

(ii) Is there a Kalai convolution for manifolds that will generate more inequalities for flag f -vectors? [30]

(iii) Is there a lifting technique that will yield more inequalities for higher dimensional manifolds? [16]

(iv) Are there minimization inequalities for the cd-coefficients in the polynomial Ψ? As a first step, can one prove the
non-negativity of Ψ? [7, 17]

(v) Is there an extension of the toric g-inequalities to manifolds? [4, 29, 31, 38]

(vi) Can the coefficients for Ψ be minimized for regular toric arrangements as was done in the case of central hyperplane
arrangements? [8]

The results in this extended abstract have been stated for hyperplane arrangements. In true generality one could work
with the underlying oriented matroid, especially since there are nonrealizable ones such as the non-Pappus oriented
matroid. All of these can be represented as pseudo-hyperplane arrangements. However, we have chosen to work with
hyperplane arrangements in order not to lose the geometric intuition.

Other poset transformations that have been considered appear in [15, 22, 27]. Each uses a map related to the ω map.
Are there toric or affine analogues of these posets transforms?

Another way to encode the flag f -vector data of a poset is to use the quasisymmetric function of a poset [13]. In this
language the ω map is translated to Stembridge’s ϑ map; see [9, 40]. Would the results of Theorems 3.11 and 4.3 be
appealing in the quasisymmetric function viewpoint?

Richard Stanley has asked if the coefficients of the toric characteristic polynomial are alternating. If so, is there any
combinatorial interpretation of the absolute values of the coefficients?

A far-reaching extension of Zaslavsky’s results for complex hyperplane arrangements is by Goresky and MacPher-
son [24]. Their results determine the cohomology of the complement of a complex hyperplane arrangement. For a toric
analogue of the Goresky–MacPherson results, see work of De Concini and Procesi [11]. For algebraic considerations of
toric arrangements, see [12, 33, 34, 35].

In Section 3 we restricted ourselves to studying arrangements that cut the torus into regular CW -complexes. In a future
paper [23], two of the authors are developing the notion of a cd-index for non-regular CW -complexes.
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