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Enumeration of orientable coverings of a
non-orientable manifold
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Abstract. In this paper we solve the known V.A. Liskovets problem (19@6the enumeration of orientable coverings
over a non-orientable manifold with an arbitrary finitelyngeated fundamental group. As an application we obtain
general formulas for the number of chiral and reflexible cimgs over the manifold. As a further application, we
count the chiral and reflexible maps and hypermaps on a claseatable surface by the number of edges. Also, by
this method the number of self-dual and Petri-dual maps eatebermined. This will be done in forthcoming papers
by authors.
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1 Introduction

Let M be a connected non-orientable manifold. Denot&'by 7, (M) the fundamental group and by
M the universal covering o#1. Identify I with the group of covering transformations.6f — M. We
note thatM is always orientable and acts onM as a group of homeomorphisms.

Denote byl a subgroup of index two i consisting of all orientation preserving homeomorphisms.
Then M+ = M /T is anorientable doubleof M with fundamental groug™t = 7;(M™*). The
following facts from algebraic topology are well known (5).

Letw : Y — M be ann-fold covering of M. Then the fundamental grou§ = m; (i) is contained
as a subgroup of index in the groupl’ = 7, (M). Conversely, any subgroup of indexin T is the
fundamental group of an-fold covering of M. Moreover, ifi/* is orientable then the number= 2m
is even and the groufi” is contained as a subgroup of indexin the groupl'*. In this casel/* is an
m-fold covering of the manifold\ ™.
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Two coveringst : U — M andn’ : U’ — M areequivalent(or isomorphi¢ if there exists a
homeomorphismk : 4 — U’ such thatr = =’ o h. An orientable coveringr : YT — M is called
reflexibleif there exists an orientation reversing homeomorphisnd{* — U such thatr o h = 7 and
irreflexible (or chiral) otherwise. Irreflexible coverings are divided into chipalrs of twins. Two twins
are non-equivalent as coverings ovetf™, but have to be equivalent as coverings alér

Coveringsr : U — M andr’ : U’ — M are equivalent if and only if the corresponding subgroups
71 (U) andm (') are conjugate if". Hence, the number of non-equivalenfold coverings ofM coin-
cides with the numberr(n) of conjugacy classes of subgroups of indgeix the groupl".

Recall that the fundamental group of a bordered surfaisen free grouf® = F,. of rankr = 1 —x(S),
whereyx (S) is the Euler characteristic &f. It this case the number(n) was determined by V. Liskovets
((15), (16)), J. H. Kwak and J. Lee (12), and M. Hofmeister &)r the fundamental group of closed
orientable and non-orientable surfaces the numpger) was given by A. Mednykh (19) and A. Mednykh
and G. Pozdnyakova (23), respectively.

During the discussion at Dresden University between V. Akbvets and one of the authors in 1996
the following problem was stated:

Liskovets problem. Find the number of non-equivalentfold orientable coverings of a given non-
orientable manifold with a finitely generated fundamentalgp.

The main purpose of the paper is to give a solution of the hisk®problem (Theorem 3). As an
application, we enumerate reflexible coverings and of tlpairs of coverings over a non-orientable
manifold with a finitely generated fundamental group. Thessults form a background for counting
chiral pairs of maps and hypermaps on closed orientablaeirit will be done in a forthcoming paper
by A. Breda, R. Nedela and A. Mednykh (1). The general fornfiolahe number of reflexible coverings
(Theorem 8) allows also to count self-dual and Petri-dugd$rend other combinatorial objects.

2 Preliminaries

Following J.Sir4n and M.Skoviera (24) we define group with sign structuréo be a paiT’,w), wherel’
isagroupand : I' — Z, = {—1, 1} is a homomorphism. Eactign structure (Or orientation) w is
uniquely determined by a subgrolip= Ker (w) of index at most two i". Equivalently, one can define
a group with sign structure as a péit, H), whereH is a subgroup of index one or two Ih

Let (T',w) be a group with sign structure. The image of an elergenf’ under homomorphism will
be referred as theign of g. Elements with signr1 will be calledpositive and those with siga-1 will be
callednegative. The set of positive elements Bfforms a subgroup, denoted by, of index one or two
in T'. The set of negative elemerits is a coset of " in I" or empty. In the latter case the corresponding
sign structure will be calledrivial.

A subgroupK < T is called to beorientable(with respect tav) if K C Ker (w) andnon-orientable
otherwise. For any orientable and non-orientable subgfoup I" the induced sign structutd i : K —
Zs is trivial or non-trivial, respectively. The given defirgtis are justified by the following topological
observations.

Let M be a manifold with the fundamental grolip= 7, (M). ThenI acts as a homeomorphism group
on the universal covering/! of the manifoldAM. Denote byl'* the group of all orientation preserving
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homeomorphisms df. The pair(T’, I'") uniquely defines a sign structure: I' — Z, with Ker (w) =
r+.

We note that the cyclic group = Z, is the fundamental group of a non-orientable projectivagia?
and of the orientable projective three-sp@de In the first case,I't = (1) and(T',w) is a non-orientable
group. In the second;* = Z, and (T, w) is an orientable group.

ExAMPLE 1 LetF,. = (x1, xo,...,x,) be a free group of rank andw : F, — Zs = {—1, 1} is the
epimorphism defined by(x;) = (—1)?¢, i = 1,2,...,r, where at least one of the integers ps,...,p:
is odd. Ther(F,., w) be the group with sign structure.

EXAMPLE 2 LetA, = (x1, 2a,...,2, : xia3-- 27 = 1) be the fundamental group of a closed non-
orientable surface of genysandw : A, — Zy = {1, —1} be the epimorphism defined byz;) =
(-1)%,i=1,...,p, where at least one of the integeys, ¢», ..., g, is odd. ThenA,, w) is a group
with sign structure.

EXAMPLE 3 LetZ, = (z : z' = 1) be a finite cyclic group of ordef. If ¢ is odd then there is only
one (trivial) orientation on the grouf, given byw(x) = 1. If £ is even there is only one non-trivial
orientation defined by (x) = —1. In both cases we will say thatis the canonical orientation dZ,.

LetI’ = (T,w) and A = (A,n) be two groups with sign structure. A homomorphigm I' — A
is said to beorientation preservingf ¥(I't) C A* and(I'") C A~. An epimorphismy : I' —
A is orientation preserving if and only if its kernel is a sutngp of '". Note that the derived group
[’ = [I, I'] < I'". Denote by Hont (T, A), Epi™ (G, A) the respective sets of orientation preserving
homomorphisms and epimorphisiis— A. We considei{; (I') = I'/T” as a group with sign structure
whose positive elements are /T".

Thus we have the following auxiliary result.

Lemmal Letl' = (I'w) and A = (A,n) be groups with sign structure and let be abelian. Then
[Hom™* (T, A)| = [Hom™ (H(T), 4)|.

LetT" and.A be two finitely generated groups. Denote by HGMK) (resp. Ep(T, K)) the sets of
homomorphisms (respectively, epimorphisms) fibrio K. By the Philip Hall inversion formula (3) we
obtain

[Epi(T, A)f = > p(K)[Hom(T, K)|,
K<A
wherey is the Mdbius function for the groud which assigns an integei(K) to each subgroufg of A

by the recursive formula
1 if K =A,
2. “(H>5K’A{ 0 if K < A.

H>K
LetT = (I',w) and A = (A, n) be groups with non-trivial sign structure. That is the golif =

Kerw and A+ = Kern are subgroups of index two in the groups and AT, respectively. We set also
Kt=KnTT.
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The following generalization of the P. Hall formula has beéiained in (13).

Proposition 1
[Epi* (T, A) = pu(K)[Hom™ (T, K)|.

K<A
K#£KT

3 Counting conjugacy classes of subgroups

Consider a finitely generated grolip Let P be a property of subgroups &f which is invariant under
conjugation (for instance: to be normal, to be torsion frieebe orientable and so on). By a slight
modification of arguments from the paper (21) we get the ¥ahg result obtained earlier in (22)

Theorem 1 LetI" be a finitely generated group. Then the number of conjugassek of subgroups of
indexn in the groupl” having propertyP is given by the formula

Fm=— S 3 EpP(K, 7)),
r

ln K<m
{m=n

where the sum ;. - is taken over all subgroup&” of indexm in the groupl’ andEpi” (K, Z,) is the
set of epimorphisms of the group onto the cyclic groufZ, whose kernel has the proper®

From now on we suppose that= (T', w) is a finitely generated group with sign structure. The priyper
P = P* orP = P~ for the subgroups df is "to be orientable” or "to be non-orientable”, respeclyve
Applying Theorem 1 fofP = P~ we have the following result:

Theorem 2 Let I" be a finitely generated group with non-trivial sign strueurThen the number of
conjugacy classes of non-orientable subgroups of indiexthe groupl” is given by the formula

== Y Y Epi (K, ),

lln K=<,
£m=n
where the sun} .~ _ . is taken over all non-orientable subgroups of indexin the groupI’ and

Epi~ (K, Z,) is the set of epimorphisms of the groéponto a cyclic groupZ, of order ¢ with non-
orientable kernel.

Let M be a connected non-orientable manifold with a finitely gatest group”. The groupl’ acts
by homeomorphisms on the universal coveriftjof the manifold M. Denote byl'* the subgroup of
index two inI" consisting of all orientation preserving homeomorphisitenl” admits a non-trivial sign
structure with the set of positive elemeiits. We identify the equivalency classes of orientable covering
of M with conjugacy classes of orientable subgrougs.ifihe following theorem gives a general solution
of V. A. Liskovets problem
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Theorem 3 LetI" be a finitely generated group with non-trivial sign strueubDenote by the group
of positive elements df. Then the number of conjugacy classes of orientable subgrotipjmdex2n in
the groupI' is given by the formula

=5 3 ( SRR, Zol+ Y |Epi+(K7Z%)|),

fn \K+t<,T+ K—<mD
{m=n

where the sun} ;. _ . is taken over all non-orientable subgroups of indexin the groupl’, and
Epit (K, Zy) is the set of epimorphisms of the gro&p~ onto a cyclic groupZs, with orientable
kernel.

Proof: By Theorem 1 fof® = P+ we obtain that the number of conjugacy classes of orientaliigroups
of index2n in the group” is given by the formula

c?(%):% > ( > EpI(KT, Zo)+ > |Epi+(K‘,Ze)|),

4] 2n K+<,,T K=<l
£ m=2n

where the sum3 .. _ and)_, _ . aretaken over all orientable and non-orientable subgrofips
indexm in the groupl’, respectively and Epi(K~, Z,) is the set of epimorphisms of the group-
onto a cyclic groufZ, of order? with orientable kernel. We note that all orientable subgsinT" are of
even index. Hence, the condition ., _ . can be rewritten in the ford .-, _ ., wherem = 2m
and/m = n. By the same reason any orientable kernel of the epimorphisifiroontoZ, has an even
indexin K —. Hence/ is even and Epi (K —, Z,) can be represented in the form Bgik —, Z, ;), where
'm = n. After these remarks, by replacirigo ¢ anim to m we obtain the result. O

To make the above solution more explicit we have to calcttet@umbers of epimorphisnSpi (K, Z,)|
and|Epi T (K ~, Zay)|. This will be done in the next section.

4 Counting orientation preserving homomorphisms

In this section we describe how to calculate orientatios@néng epimorphisms of a given finitely gen-
erated group onto the cyclic group. We will follow the ideaseg in papers (9), (13) and (14).

LetI’ = (T', w) be a finitely generated group with sign structure. We repretbe oriented homology
group(H:(T"), @) of the group" in the form

() =272 72 ©-- Ly,

wherek; € {2,3,..., 00} and the notatiofZ; means that the corresponding cyclic grdup= (z|z* =
1) is generated by an elementvith &(z) = ¢ for somes € {—1,1}.

We accept the following conventiots, ' = Z,, Z;' = Z}, Zoo = Z, (-1)® =1, (k, () =
gcd(k, £) and(oo, £) = ¢ for any positive integet.
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EXAMPLE 4 LetF, = (x1, xo,...,x,) be the free group of rankwith a sign structure given hy(z;) =
-1, i=1,2,...r. ThenH,(F,) = (Z~)".

EXAMPLE 5 LetA, = (x1, 2,...,2, : 27232, = 1) be the fundamental group of a closed non-
orientable surface of genyswith sign structure given by (z;) = —1,¢ = 1,...,p. ThenH(A,) =

(z=)e=1) @ ngl)".
The main result is given by the following theorem obtaine(ilih).

Theorem 4 LetI" be a finitely generated group with non-trivial sign strueand
Hi(T)=2Z;) Z;; - Ly
is the oriented homology group Bf Then|Epi ™ (T, Z,)| = 0 if £ is odd and

kj
n -(kj’ f)
Epi (0, Z0)| = T - 37 )k, m) ks, m) (k).

e —
J :odd

[\]

£
m

We note that a similar formula for the numbEpi (T, Z,)| of all epimorphism§* ontoZ, was obtained
in (21). Then we also have

[Epi~ (I, Z)| = |EpI(T', Z)| — [Epi (T, Zy)|.

5 Application to surface coverings

In this section we employ the above general theorems to awigritable coverings over bordered and and
non-orientable surfaces. By straightforward calculaifiom Theorems 3 and 4 we obtain the following
results.

Theorem 5 LetB be a bordered non-oriented surface with the fundamentalgra (8) = F... Then the
number of orientabl@n-fold coverings of3 is given by the formula

1 o _
CE@”) = mn Z (2 m(7'—1)+1(€) SFy, (M) + %%«71)“(5) SFT(m))v
ln
Lm=n

whereyp,.(¢) and 29 (¢) are the Jordan functions,, (m) is the numbers s of subgroups of indexand

T

sr, (m) is the numbers of non-orientable subgroups of indei the groupr.

We note that}T (2n) coincides with the number of balanc2d-fold coverings of a unbalanced graph
B, obtained in (2).
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Theorem 6 Let N, be a closed non-oriented surface of gepusith the fundamental group; (V) =
A,. Then the number of orientabei-fold coverings ofV,, is given by the formula

14+ (71)(571)(271)

1
ck (2n) = o Z (@2 s+1(€) Say0, 4y (M) +

ln
{m=n

(2,0) 24(0) s <m>) ,

wheres = m(p—2)+1, ¢,(¢) andyp2?(¢) are the Jordan functions, , (m) is the number of subgroups

S

of indexm, and Sh, (m) is the number of non-orientable subgroups of indein the groupA,,.

The last theorem was obtained earlier in (2) by a combiratargument.

Let K be a Klein bottle, that is a closed non-oriented surface ofige. It was shown in (20) and (10)
that the number,- (n) of n-fold coverings ofC is expressed in terms of classical number-theoreticatfunc
tions. The numbet, (n) of non-orientable:-fold coverings ofC was calculated in (17) by a complicated
method based on analysis of the subgroup structure in tluafaental group ok..

Now, as a corollary of Theorem 2 we obtain a simple formula:foin).

Recall that any positive integer can be uniquely represented in the form= 2° - n=, wheres > 0
andn~ is an odd number. We callt = 2% andn~ by evenandoddpart ofn, respectively.

Theorem 7 Let/C be a Klein bottle. Then the number of non-orientabi®ld coverings ok is given by
the formula

cc(n) =(2,n)d(n"),
wheren ™ is the odd part of: andd(n) is the number of positive divisors of

6 Reflexible coverings and chiral pairs

Let M be a non-orientable manifold or orbifold. An orientableedngsr : /™ — M is calledreflexible
if there exists an orientation reversing homeomorphisnd ™ — U/ such thatr o h = 7 andirreflexible
(or chiral) otherwise. All irreflexible coverings are divided into i pairs of twins. Two twins are
non-equivalent as coverings ovgt ™, but have to be equivalent as coverings akér

In particular, any regular covering is reflexible. The multiplicity of any finite sheeted reflebdb
covering is arevennumber.

The following theorem is a consequence of Theorem 1 and Enear

Theorem 8 Let M be a connected non-orientable manifold with a finitely gatest fundamental group
I'. Then the number &n-fold reflexible coverings of is given by the formula

1 . _
ar(n) = — > > [EpiT(KT,Zy),
ln K—<,T
L m=n
where the sun} - _ . is taken over all non-orientable subgroups of indexin the groupI’ and
Epit (K, Z;) is the set of epimorphisms of the groiponto a cyclic grouZ, of order/ with orientable
kernel.
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Proof: LetI'* be the positive subgroup éfandl’ = I'™ + o ' is its coset decomposition. L&f be a
subgroup of"+. Denote by K|+ and[K]r the conjugacy class df in I't andT, respectively.

There are two kinds of subgroupé in I'+. Eitherreflexiblewith the property{ K]+ = [K|p+ =
[K]r ortwinwith [K]p+ # [K7|r+ and[K]r = [K]p+ U [K?]p+. By definition, the set of all orientable
subgroups is the disjoint union of reflexible and twin sulbg® Denote byir(n) andtr(n) the numbers
of conjugacy classes of reflexible and twin subgroups ofxriiein the groupl’, respectively. Now we
calculate the numbers of orientable subgroups of irdexp to conjugacy if” andI'*. We get

ot (2n) = ar(n)+tr(n)
cr+(n) = ar(n)+ 2tr(n).

From Theorem 3 we have )
cf (2n) = 5 (ers (n) + I(n)),

where .
I(n) = S EpiT(E T, Zy)l.
lln K=<,
Lm=n
Hence,

. 1 . . o
Also, sincetr(n) = §(CF+ (n) — ar(n)) we obtain the following proposition.

Proposition 2 Let M™ be the orientable double of a non-orientable manifaki Then the number of
chiral pairs ofn-fold coverings ofM™ is given by the formula

cr+(n) —ar(n)

tr (n) = B 5

whereI't is the fundamental group o¥1* andcr+ (n) andar(n) are determined by Theorems 1 and 8,
respectively.

We illustrate results of the last section by the followingeple. LetM = K be a Klein bottle with
fundamental group
I'=m(K) = (z, y|ayzy " =1).

The orientable double &€ is a torus7 with fundamental group
rt = Wl(T) = <a7 b| [av b] = 1>7

whereq = z andb = 3%. We note thal' = T' + T'ty, yay~! = o', andyby ! = b.
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we &h

<a?b, ab*> <a?b, a 'b>> <a'b, a*b3*> <ab, a?b3>

(1) (i)

o]
a
I'"=<a, b>

(iii)

Fig. 1
The chiral pairs of coverings

Setn = 5. Then, by direct calculation from Theorems 1 and 6 we obtaenfthllowing equations
¢ (10) = ar(5) + tr(5) = 4 and cr+(5) = ar(5) + 2tr(5) = 6. Hencear(5) = tr(5) = 2.

That is the groud'™ has six (conjugacy classes of) subgroups producing cay®rifwo of them,
(a®, b) and(a, b°) are reflexible and other four are divided into chiral pailsefare(a®b, a=1b%), (a=2b, ab?)
and(ab, a=2b3), (a=1b, a®b3), respectively. (See Fig. 1(i), (ii)).

The twin subgroups in chiral pairs are not conjugatgEnbut are conjugate by elemeptn the groug".

7 Numerical tables

n | Total number| Non-orientable| Orientable| Reflexible | Chiral pairs
011 1 0 0 0
02| 3 2 1 1 0
03] 2 2 0 0 0
04| 5 2 3 3 0
05| 2 2 0 0 0
06| 7 4 3 2 1
072 2 0 0 0
08| 8 2 6 5 1
09| 3 3 0 0 0
10| 8 4 4 2 2
11| 2 2 0 0 0
12| 13 4 9 6 3

Table 1. The number of n-fold coverings of genus2
non-orientable surface (Klein bottle)
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n | Total number| Non-orientable| Orientable
011 1 0
02| 7 6 1
03| 14 14 0
04 | 89 80 9
05 | 264 264 0
06 | 1987 1930 57
07 | 11086 11086 0
08 | 93086 92240 846
09 | 779579 779579 0
10 | 7753717 7738414 15303
11 | 82768656 82768656 0
12 | 990033082 | 989476104 556978
Table 2. The number of n-fold coverings of genus 3
non-orientable surface
n | Total number Non-orientable Orientable
011 1 0
02| 15 14 1
03| 82 82 0
04 | 1583 1544 39
05 | 30242 30242 0
06 | 1110935 1109452 1483
07 | 51724322 51724322 0
08 | 3296935883 3296581880 354003
09 | 264893065443 264893065443 0
10 | 26438156395760 26437948184476 208211284
11 | 3193922150539634 | 3193922150539634 | O
12 | 45964412892214330P 459643859463061456 269459081853
Table 3. The number of n-fold coverings of genus4
non-orientable surface
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