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Abstract. We prove the conjecture of A. Postnikov that (A) the number of regions in the inversion hyperplane ar-
rangement associated with a permutationw ∈ Sn is at most the number of elements beloww in the Bruhat order, and
(B) that equality holds if and only if w avoids the patterns 4231, 35142, 42513 and 351624. Furthermore, assertion
(A) is extended to all finite reflection groups.

Résumé. Nous prouvons la conjecture de A. Postnikov que (A) le nombre de régions dans l’arrangement d’hyperplans
inverses associés à la permutation w ∈ Sn est au plus égal au nombre d’éléments en dessous de w dans l’ordre de
Bruhat, et (B) il y a égalité si et seulement si w évite les motifs 4231, 35142, 42513 et 351624. De plus, l’affirmation
(A) est généralisée à tous les groupes de réflexion finis.
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1 Introduction
We confirm a conjecture of A. Postnikov (6, Conjecture 24.4(1)), relating the interval below a permutation
w ∈ Sn in the Bruhat order and a hyperplane arrangement determined by the inversions of w. Definitions
of key objects discussed but not defined in this introduction can be found in Section 2.

Fix n ∈ N and w ∈ Sn. An inversion of w is a pair (i, j) such that 1 ≤ i < j ≤ n and iw > jw.
(Here we write w as a function acting from the right on [n] := {1, . . . , n}.) We write INV(w) for the set
of inversions of w.

For 1 ≤ i < j ≤ n, set
Hij := {(v1, . . . , vn) ∈ Rn | vi = vj},

so Hij is a hyperplane in Rn. Set

A′w := {Hij | (i, j) ∈ INV(w)},
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so A′w is a central hyperplane arrangement in Rn. Let re(w) be the number of connected components of
Rn \ ∪A′w. Let br(w) be the size of the ideal generated by w in the Bruhat order on Sn.

The first part of Postnikov’s conjecture is that

(A) for all n ∈ N and all w ∈ Sn we have re(w) ≤ br(w).

In Theorem 3.3 below, we give a generalization of (A) that holds for all finite reflection groups.
Let m ≤ n, let p ∈ Sm and let w ∈ Sn. We say w avoids p if there do not exist 1 ≤ i1 < i2 <
· · · < im ≤ n such that for all j, k ∈ [m] we have ijw < ikw if and only if jp < kp. The second part of
Postnikov’s conjecture is that

(B) for all n ∈ N and all w ∈ Sn, we have br(w) = re(w) if and only if w avoids all of 4231, 35142,
42513 and 351624.

Here we have written the four permutations to be avoided in one line notation, that is, we write w ∈ Sn

as 1w · · ·nw. As is standard, we call the permutations to be avoided patterns. With Theorem 4.1 we
show that avoidance of the four given patterns is necessary for the equality of br(w) and re(w) and with
Corollary 5.7 we show that this avoidance is sufficient, thus proving all of Postnikov’s conjecture.

We remark that the avoidance of the four given patterns has arisen in work of Postnikov on total pos-
itivity (6), work of Gasharov and Reiner on Schubert varieties in partial flag manifolds (4) and work of
Sjöstrand (7) on the Bruhat order.

The present paper is an extended abstract. In the full length version (5) more details are given, and
several applications of our main results (and their proofs) are presented. For example, inequalities are
deduced that relate the Betti numbers of the complement of the complexification of A′w to the Betti
numbers of the Schubert variety indexed by w.

2 Prerequisites
In this section, we review basic material on hyperplane arrangements and Coxeter groups that we will use
in the sequel. For more information on these subjects the reader may consult, for example, (8) and (2),
respectively.

A Coxeter group is a group W generated by a finite set S of involutions subject only to relations of
the form (ss′)m(s,s′) = 1, where m(s, s′) = m(s′, s) ≥ 2 if s 6= s′. The pair (W,S) is referred to as a
Coxeter system.

The length, denoted `(w), of w ∈W is the smallest k such that w = s1 · · · sk for some s1, . . . , sk ∈ S.
If w = s1 · · · sk and `(w) = k, then the sequence s1 · · · sk is called a reduced expression for w.

Every Coxeter group admits a partial order called the Bruhat order.

Definition 2.1 Given u,w ∈ W , we say that u ≤ w in the Bruhat order if every reduced expression
(equivalently, some reduced expression) for w contains a subword representing u. In other words, u ≤ w
if whenever w = s1 · · · sk with each si ∈ S and `(w) = k, there exist 1 ≤ i1 < · · · < ij ≤ k such that
u = si1 · · · sij .

Although it is not obvious from Definition 2.1, the Bruhat order is a partial order on W . Observe that
the identity element e ∈W is the unique minimal element with respect to this order.
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Given u,w ∈ W , the definition is typically not very useful for determinining whether u ≤ w. When
W = Sn is a symmetric group, with S being the set of adjacent transpositions (i i + 1), the following
nice criterion exists. For a permutation w ∈ Sn and i, j ∈ [n] = {1, . . . , n}, let

w[i, j] = |{m ∈ [i] | mw ≥ j}|.

Let P (w) = (aij) be the permutation matrix corresponding to w ∈ Sn (so aij = 1 if iw = j and aij = 0
otherwise). Then w[i, j] is simply the number of ones weakly above and weakly to the right of position
(i, j) in P (w), that is, the number of pairs (k, l) such that k ≤ i, j ≤ l and akl = 1.

A proof of the next proposition can be found in (2).

Proposition 2.2 (Standard criterion) Given u, v ∈ Sn, we have u ≤ w in the Bruhat order if and only
if u[i, j] ≤ w[i, j] for all (i, j) ∈ [n]2.

In fact, it is only necessary to compare u[i, j] and w[i, j] for certain pairs (i, j); see Lemma 5.1 below.
Each finite Coxeter group W can be embedded in some GLn(R) in such a way that the elements of

S act as reflections. That is, having fixed such an embedding, for each s ∈ S there is some hyperplane
Hs in Rn such that s acts on Rn by reflection through Hs. Thus a reflection in W is defined to be an
element conjugate to an element of S. Letting T denote the set of reflections in W , we therefore have
T = {w−1sw | s ∈ S, w ∈ W}. Every finite subgroup of GLn(R) generated by reflections is a
Coxeter group. A natural geometric representation of a Coxeter group W is an embedding of the type
just described in which no point in Rn \ {0} is fixed by all of W .

Sometimes we work with the generating set T rather than S. We define the absolute length `′(w) as
the smallest number of reflections needed to express w ∈ W as a product. In the case of finite Coxeter
groups, i.e. finite reflection groups, a nice formula for the absolute length follows from work of Carter (3,
Lemma 2).

Proposition 2.3 (Carter (3)) Let W be a finite reflection group in a natural geometric representation.
Then, the absolute length of w ∈W equals the codimension of the space of fixed points of w.

Next, we recall a convenient interaction between reflections and (not necessarily reduced) expressions.
For a proof, the reader may consult (2, Theorem 1.4.3). By a ĥat over an element, we understand deletion
of that element.

Proposition 2.4 (Strong exchange property) Suppose w = s1 . . . sk for some si ∈ S. If t ∈ T has the
property that `(tw) < `(w), then tw = s1 . . . ŝi . . . sk for some i ∈ [k].

A real hyperplane arrangement is a set A of affine hyperplanes in some real vector space V ∼= Rn.
We will assume that A is finite. The arrangement A is called linear if each H ∈ A is a linear subspace
of Rn. The intersection lattice of a linear arrangement A is the set LA of all subspaces of V that can be
obtained by intersecting some elements of A, ordered by reverse inclusion. (The minimal element V of
LA is obtained by taking the intersection of no elements of A and will be denoted by 0̂.)

A crucial property of LA is that it admits a so-called EL-labelling. The general definition of such
labellings is not important to us; see (1) for details. Instead, we focus on the properties of a particular
EL-labelling of LA, the standard labelling λ, which we now describe.

Let � denote the covering relation of LA. Choose some total ordering of the hyperplanes inA. To each
covering A�B we associate the label

λ(A�B) = min{H ∈ A | H ≤ B and H 6≤ A}.
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The complement V \∪A of the arrangementA is a disjoint union of contractible connected components
called the regions of A. The number of regions can be computed from λ. Given any saturated chain
C = {A0 � · · · � Am} in LA, say that C is λ-decreasing if λ(Ai−1 � Ai) > λ(Ai � Ai+1) for all
i ∈ [m− 1].

Proposition 2.5 (Björner (1), Zaslavsky (9)) The number of regions of A is the same as the number of
λ-decreasing saturated chains that contain 0̂.

Proof: It follows from the theory of EL-labellings (1) that the number of chains with the asserted proper-
ties is ∑

A∈LA

|µ(0̂, A)|,

where µ is the Möbius function of LA. By a result of Zaslavsky (9), this number is precisely the number
of regions of A. 2

3 From intersection lattices to Bruhat intervals
Let (W,S) be a finite Coxeter system. Fix a reduced expression s1 · · · sk for some w ∈W . Given i ∈ [k],
define the reflection

ti = s1 · · · si−1sisi−1 · · · s1 ∈ T.
The set Tw = {ti | i ∈ [k]} only depends on w and not on the chosen reduced expression. In fact,
Tw = {t ∈ T | `(tw) < `(w)}. We call Tw the inversion set of w. If W = Sn and T is the set of
transpositions, then the transposition (i j) lies in Tw if and only if (i, j) ∈ INV(w). Being reflections, the
various ti correspond to reflecting hyperplanes Hi in a standard geometric representation of W . Thus, w
determines an arrangement of real linear hyperplanes

Aw = {Hi | i ∈ [k]}

which we call the inversion arrangement of w.
Let us order the hyperplanes in Aw by H1 > H2 > · · · > Hk. We denote by λ the standard EL-

labelling of the intersection lattice Lw = LAw induced by this order. In particular, λ depends on the
choice of reduced expression for w.

Let C↓ be the set of λ-decreasing saturated chains in Lw that include the minimum element 0̂. By
Proposition 2.5, C↓ is in bijection with the set of regions of Aw. We will construct an injective map from
C↓ to the Bruhat interval [e, w].

Let C = {0̂ = X0 �X1 � · · ·�Xm} ⊂ Lw be a saturated chain. Suppose, for each i ∈ [m], we have
λ(Xi−1 �Xi) = Hji . Define

p(C) = tj1 · · · tjm ∈W.
Proposition 3.1 If C ∈ C↓, then p(C)w ≤ w in the Bruhat order. Thus, C 7→ p(C)w defines a map
φ : C↓ → [e, w].

Proof: When C = {0̂ = X0 �X1 � · · ·�Xm} ⊂ Lw is λ-decreasing, we have

p(C)w =
∏

i∈[k]\{j1,...,jm}

si.
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Thus, p(C)w can be represented by an expression which is a subword of the chosen reduced expression
for w. 2

In order to deduce injectivity of φ, we need the following lemma.

Lemma 3.2 For every saturated chain C = {0̂ = X0 �X1 � · · ·�Xm} ⊂ Lw, we have `′(p(C)) = m.

Proof: Induction on m using Proposition 2.3. We refer to (5) for the details. 2

We are now in position to prove the main result of this section.

Theorem 3.3 The map φ : C↓ → [e, w] is injective.

Proof: IfC is the saturated chain 0̂ = X0� · · ·�Xm in Lw, thenXm is contained in the fixed point space
of p(C) (since p(C) is a product of reflections through hyperplanes, all of which contain Xm). Lemma
3.2 and Proposition 2.3 therefore imply that Xm is the fixed point space of p(C). In particular, if two
chains have the same image under p, then their respective maximum elements coincide.

Now suppose φ(C) = φ(D), i.e. p(C) = p(D), for some C,D ∈ C↓. We shall show that C = D.
Write C = {0̂ = X0 � · · · � Xm} and D = {0̂ = Y0 � · · · � Ym′}. We have shown that m = m′

and Xm = Ym. Since both C and D are λ-decreasing, the construction of λ implies λ(Xm−1 �Xm) =
λ(Ym−1 � Ym) = H , where H is the smallest hyperplane below Xm = Ym in Lw. With t denoting the
reflection corresponding to H , we thus have p(C \Xm) = p(D \ Ym) = p(C)t = p(D)t. Our theorem
is proved by induction on m. 2

Let us explain how the first part of Postnikov’s conjecture, statement (A) in the Introduction, follows
from Theorem 3.3. The symmetric group Sn acts on Rn by permuting coordinates. Under this action,
the transposition (i j) acts by a reflection in the hyperplane given by xi = xj . However, this is not quite
a natural geometric representation of Sn because the entire line given by x1 = · · · = xn is fixed by all
elements. To rectify the situation we may study the restriction of the action to the subspace V (n−1) ⊂ Rn
that consists of the points in Rn whose coordinates sum to zero. Thus, Aw is a hyperplane arrangement
in V (n−1).

Recalling our convention that uw means “first u, then w” for u,w ∈ Sn we see that (i j) ∈ Tw if and
only if (i, j) is an inversion of w in the ordinary sense. Thus, for w ∈ Sn,

Aw = {H ∩ V (n−1) | H ∈ A′w}.

In the language of (8), Aw is the essentialization of A′w. The regions in the complements of Aw and A′w
are in an obvious bijective correspondence and statement (A) follows.

Although we do not know when φ is surjective for an arbitrary finite reflection group, for symmetric
groups we have the following result, whose proof is contained in the next two sections.

Theorem 3.4 If w ∈ Sn, the map φ is surjective (and hence bijective) if and only if w avoids the patterns
4231, 35142, 42513 and 351624.
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4 A necessity criterion for surjectivity in symmetric groups
We now confine our attention to the type A case when W = Sn is a symmetric group. Depending on
what is most convenient, either one-line notation or cycle notation is used to represent a permutation
w ∈ Sn. In this setting, as we have seen, T becomes the set of transpositions in Sn and Tw = {(i j) |
i < j and iw > jw} can be identified with INV(w).

Theorem 4.1 Suppose W is a symmetric group. If φ : C↓ → [e, w] is surjective, then w avoids the
patterns 4231, 35142, 42513 and 351624.

Proof: It follows from Lemma 3.2 that if u ≤ w is in the image of φ, then uw−1 can be written as
a product of `′(uw−1) inversions of w. Below we construct, for w containing each of the four given
patterns, elements u ≤ w that fail to satisfy this property.
Case 4231. Suppose w contains the pattern 4231 in positions n1, n2, n3, and n4, meaning that n1w >
n3w > n2w > n4w. Then, let u = (n1 n4)(n2 n3)w. Invoking the standard criterion, Proposi-
tion 2.2, it suffices to check (1 4)(2 3)4231 = 1324 < 4231 in order to conclude u < w. Now,
uw−1 = (n1 n4)(n2 n3) has absolute length 2. However, uw−1 cannot be written as a product of two
inversions of w, because (n2 n3) is not an inversion.
Case 35142. Now assume w contains 35142 in positions n1, . . . , n5. Define u = (n1 n3 n4)(n2 n5)w.
Again we have u < w; this time since (1 3 4)(2 5)35142 = 12435 < 35142. We have uw−1 =
(n1 n3 n4)(n2 n5) which is of absolute length 3. Neither (n1 n4) nor (n3 n4) is an inversion of w, so
u cannot be written as a product of three members of Tw.
Case 42513. Next, suppose w contains 42513 in n1 through n5. Then, we let u = (n2 n5 n3)(n1 n4)w
and argue as in the previous cases.
Case 351624. Finally, if w contains 351624 in positions n1 through n6, use u = (n1 n3 n6 n4)(n2 n5)w
and argue as before. 2

5 Pattern avoidance implies br(w) = re(w)

Let Ŝn ⊆ Sn denote the set of permutations that avoid the four patterns 4231, 35142, 42513, 351624.
In this section we will represent permutations π ∈ Sn by rook diagrams. These are n by n square

boards with a rook in entry (i, j), i.e. row i and column j, if iπ = j. If x is a rook, we will write xi for its
row number and xj for its column number.

The inversion graph of π, denoted by Gπ , is a simple undirected graph with the rooks as vertices and
an edge between two rooks if they form an inversion of π, i.e. if one of them is south-west of the other
one. Let ao(π) = ao(Gπ) denote the number of acyclic orientations of Gπ . Note that ao(π) equals the
number of regions re(π) of the hyperplane arrangement A′π .

Following Postnikov (6), we will call a permutation π chromobruhatic if br(π) = ao(π). Our goal in
this section is to prove that all π ∈ Ŝn are chromobruhatic. This will be accomplished as follows: First
we show that if π (or its inverse) has something called a reduction pair, which is a pair of rooks with
certain properties, then there is a recurrence relation for br(π) in terms of br(ρ) for some permutations
ρ ∈ Ŝn ∪ Ŝn−1 that are “simpler” than π in a sense that will be made precise later. It turns out that the
very same recurrence relation also works for expressing ao(π) in terms of a few ao(ρ). Finally, we show
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Fig. 1: The shaded region constitutes the right hull of the permutation 35124.

that every π ∈ Ŝn except the identity permutation has a reduction pair, and hence br(π) = ao(π) by
induction.

We will need two useful lemmas about the Bruhat order on the symmetric group. The first is a well-
known variant of Proposition 2.2 (see e.g. (4)). A square that has a rook strictly to the left in the same row
and strictly below it in the same column is called a bubble.

Lemma 5.1 Let π, σ ∈ Sn. Then σ ≤ π in the Bruhat order if and only if σ[i, j] ≤ π[i, j] for every
bubble (i, j) of π.

If π avoids the forbidden patterns, there is an even simpler criterion. Define the right hull of π, denoted
by HR(π), as the set of squares in the rook diagram of π that have at least one rook weakly south-west of
them and at least one rook weakly north-east of them. Figure 1 shows an example. The following lemma
is due to Sjöstrand (7).

Lemma 5.2 Let π ∈ Ŝn and σ ∈ Sn. Then σ ≤ π in the Bruhat order if and only if all rooks of σ lie in
the right hull of π.

For a permutation π ∈ Sn, the rook diagram of the inverse permutation π−1 is obtained by transposing
the rook diagram of π. Define π	 = π0ππ0, where π0 = n(n − 1) · · · 1 denotes the maximum element
(in the Bruhat order) of Sn. Note that the rook diagram of π	 is obtained by a 180 degree rotation of the
rook diagram of π.

Observation 5.3 The operations of transposition and rotation of the rook diagram of a permutation have
the following properties.

(a) They are automorphisms of the Bruhat order, i.e.

σ ≤ τ ⇔ σ−1 ≤ τ−1 ⇔ σ	 ≤ τ	 ⇔ (σ	)−1 ≤ (τ	)−1.

(b) They induce isomorphisms of inversion graphs, so

Gσ ∼= Gσ−1 ∼= Gσ	 ∼= G(σ	)−1 .

(c) The set of the four forbidden patterns is closed under transposition and rotation, so

σ ∈ Ŝn ⇔ σ−1 ∈ Ŝn ⇔ σ	 ∈ Ŝn ⇔ (σ	)−1 ∈ Ŝn.

From (a) and (b) it follows that σ, σ−1, σ	 and (σ	)−1 are either all chromobruhatic or all non-
chromobruhatic.
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(a)

x

y

(b)

x

y

Fig. 2: (a) A light reduction pair. (b) A heavy reduction pair. The shaded areas are empty. The size of the lighter
shaded areas depends on the underlying permutation.

If x is a rook in the diagram of π then the image of x under any composition of transpositions and
rotations is a rook in the diagram of the resulting permutation. In what follows, we sometimes discuss
properties that the image rook (also called x) has in the resulting diagram, while still thinking of x as
lying in its original position in the diagram of π.

Definition 5.4 Let π ∈ Sn and let x, y be a pair of rooks that is a descent, i.e. yi = xi − 1 and xj < yj .
Then, x, y is a light reduction pair if we have the situation in Figure 2(a), i.e.

• there is no rook a with ai < yi and aj > yj , and

• there is no rook a with ai > xi and xj < aj < yj .

The pair x, y is called a heavy reduction pair if we have the situation in Figure 2(b), i.e.

• there is no rook a with ai > xi and aj < xj ,

• there is no rook a with ai < yi and aj > yj , and

• there is no pair of rooks a, b such that ai < yi and bi > xi and xj < aj < bj < yj (or, equivalently,
there is some xj ≤ j < yj such that the regions [1, yi−1]×[xj+1, j] and [xi+1, n]×[j+1, yj−1]
are both empty).

Lemma 5.5 Let π ∈ Ŝn and assume that

(a) all ρ ∈ Ŝn below π in Bruhat order, and

(b) all ρ ∈ Ŝn−1 are chromobruhatic.

Then, π is chromobruhatic if at least one of π, π−1, π	 and (π	)−1 has a reduction pair.

Proof: If one of π, π−1, π	 and (π	)−1 has a light reduction pair, then by Observation 5.3, π, π−1, π	

and (π	)−1 all satisfy conditions (a) and (b), so we may assume that π has a light reduction pair x, y. On
the other hand, if none of π, π−1, π	 and (π	)−1 has a light reduction pair, then one of them has a heavy
reduction pair x, y and we may assume that it is π.
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uu uu
u uu uu

uu uu u

u uu uu u
4231 35142 42513 351624

Fig. 3: The four forbidden patterns.

In either case, replace x by a rook x′ immediately above it, and replace y by a rook y′ immediately
below it. The resulting permutation ρ is below π in the Bruhat order. Note that ρ ∈ Ŝn — a forbidden
pattern in ρ must include both of x′ and y′ but an inspection of the forbidden patterns in Figure 3 and the
reduction pair situations in Figure 2 reveals that this is impossible. Thus, by the assumption in the lemma
we conclude that ρ is chromobruhatic.

Case 1: x, y is a light reduction pair in π. What permutations are below π but not below ρ in the
Bruhat order? Note that ρ has the same bubbles as π, plus an additional bubble immediately above y′,
i.e. at the position of y. Now, Lemma 5.1 yields that the only permutations below π that are not below ρ
are the ones with a rook at the position of y. These are in one-one correspondence with the permutations
weakly below the permutation π − y ∈ Sn−1 that we obtain by deleting y from π together with its row
and column. Thus, we have

br(π) = br(ρ) + br(π − y). (1)

Now consider the inversion graphs of π, ρ and π − y. It is not hard to show that Gρ is isomorphic to the
graph Gπ \ {x, y} obtained by deletion of the edge {x, y}. Since all neighbors of y′ are also neighbors
of x′ in Gρ, the graph Gπ−y = Gρ−y′ is isomorphic to the graph Gπ/{x, y} obtained by contraction of
the edge {x, y}. It is a well-known fact that, for any edge e in any simple graph G, the number of acyclic
orientations satisfies the recurrence relation ao(G) = ao(G \ e) + ao(G/e). Thus, in our case we get

ao(π) = ao(ρ) + ao(π − y). (2)

The right-hand sides of equations (1) and (2) are equal since ρ and π−y are chromobruhatic. We conclude
that br(π) = ao(π) so that π also is chromobruhatic.

Case 2: x, y is a heavy reduction pair in π, and none of π, π−1, π	 and (π	)−1 has a light
reduction pair. Since y, x is not a light reduction pair in π	, there exists a rook a in the region A =
[1, yi − 1]× [xj + 1, yj − 1]. Analogously, since x, y is not a light reduction pair in π, there exists a rook
b in the region B = [xi + 1, n] × [xj + 1, yj − 1]. As can be seen in Figure 4, the right hulls of π and ρ
are the same except for the two squares containing x and y, which belong to HR(π) but not to HR(ρ).

By Lemma 5.2 and inclusion-exclusion, we get

br(π) = br(ρ) + br(π − x) + br(π − y)− br(π − x− y) (3)

where π − x− y ∈ Sn−2 is the permutation whose rook diagram is obtained by deleting both of x and y
together with their rows and columns.
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(a)

x

y

b

a

(b)

x′

y′

b

a

Fig. 4: (a) The heavy reduction pair x, y in π. The shaded areas are empty and the thick lines show segments of the
border of the right hull of π. (b) The right hull of ρ is the same as that of π, except for the two squares of x and y.

Now, for any permutation σ, let χσ(t) = χGσ (t) denote the chromatic polynomial of the inversion
graph Gσ (so for each positive integer n, χGσ (n) is the number of vertex colorings with at most n col-
ors such that neighboring vertices get distinct colors. The following argument is based on an idea by
Postnikov. It is a well-known fact that ao(G) = (−1)nχG(−1) for any graph G with n vertices. Since
Gρ = Gπ \ {x, y}, the difference χρ(t)− χπ(t) is the number of t-colorings of Gρ where x′ and y′ have
the same color.

Let C be any t-coloring of Gπ−x−y using, say, α different colors for the vertices in A and β different
colors for those in B. Since the subgraph of Gπ induced by A ∪ B is a complete bipartite graph, the
coloring C must use α + β different colors for the vertices in A ∪ B. We can extend C to a coloring
of Gπ−y by coloring the vertex x with any of the t − α colors that are not used for the vertices in A.
Analogously, we can extend C to a coloring of Gπ−x by coloring the vertex y with any of the t− β colors
that are not used in B. Finally, we can extend C to a coloring of Gρ where x′ and y′ have the same color,
by choosing this color among the t− α− β colors that are not used for the vertices in A ∪ B. Summing
over all t-colorings C of Gπ−x−y yields

χρ(t)− χπ(t) =
∑
C

(t− α− β)

=
∑
C

(t− β) +
∑
C

(t− α)−
∑
C
t

= χπ−x(t) + χπ−y(t)− tχπ−x−y(t).

Using that ao(G) = (−1)nχG(−1) for a graph G with n vertices, we finally obtain

ao(π) = ao(ρ) + ao(π − x) + ao(π − y)− ao(π − x− y). (4)

The right-hand sides of equations 3 and 4 are equal by the assumption in the lemma. Thus, br(π) = ao(π)
and we conclude that π is chromobruhatic. 2
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Let π ∈ Sn be any nonidentity permutation. Then there is a pair of rooks x, y that is the first descent
of π, i.e. xi = min{i : iπ < (i− 1)π} and yi = xi− 1. Analogously, let x̄, ȳ be the first descent of π−1,
i.e. x̄j = min{j : jπ−1 < (j − 1)π−1} and ȳj = x̄j − 1.

Proposition 5.6 For any nonidentity π ∈ Ŝn, either x, y is a reduction pair in π or x̄, ȳ is a reduction
pair in π−1, or both.

Proof: Under the assumption that neither of x, y and x̄, ȳ is a reduction pair, we detect forbidden patterns
in π. See (5) for details. 2

Combining Lemma 5.5 and Proposition 5.6, yields the following two corollaries via induction.

Corollary 5.7 A permutation is chromobruhatic if it avoids the patterns 4231, 35142, 42513 and 351624.

Recall that the right and left weak orders on Sn are defined by u ≤R w ⇔ INV(u) ⊆ INV(w) and
u ≤L w ⇔ INV(u−1) ⊆ INV(w−1). The two-sided weak order is the transitive closure of the union of
the right and left weak orders.

Corollary 5.8 Every chromobruhatic permutation is connected to the identity permutation via a saturated
chain of chromobruhatic permutations in the two-sided weak order.

6 Open problems
In this last section, we present some ideas for future research. Some of the open problems are intentionally
left vague, while others are more precise.

In Theorem 3.3, we showed that the map φ : C↓ → [e, w] is injective for any finite Coxeter group,
but it is not surjective in general. When the forbidden patterns are avoided, we use an inductive counting
argument showing that the finite sets C↓ and [e, w] have the same cardinality — then surjectivity of φ
follows from injectivity.

Open problem 6.1 Is there a direct proof of the surjectivity of φ or, if not, is there another bijection
C↓ ↔ [e, w] whose bijectivity can be proved directly.

Open problem 6.2 When φ is not surjective, what is its image?

For example by considering Betti numbers (see (5, Section 7)), one can deduce that the number of elements
of even length not lying in the image of φ equals the number of such elements of odd length. In particular,
evenly many elements of [e, w] do not lie in the image of φ.

Open problem 6.3 Find a criterion for the surjectivity of φ in an arbitrary finite reflection group.

As noted in the introduction, our work (following Postnikov) marks the third appearance of the four
patterns 4231, 35142, 42513, and 351624 in the study of flag manifolds and Bruhat order. The first
time was in 2002 when Gasharov and Reiner (4) studied the cohomology of smooth Schubert varieties in
partial flag manifolds. In their paper, they find a simple presentation for the integral cohomology ring, and
it turns out that this presentation holds for a larger class of subvarieties of partial flag manifolds, namely
the ones defined by inclusions. They characterize these varieties by the same pattern avoidance condition
that appears in our work.

More recently, Sjöstrand (7) used the pattern condition to characterize permutations whose right hull
covers exactly the lower Bruhat interval below the permutation; see Lemma 5.2.
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Yet another way to characterize the permutations that avoid the four patterns follows from a more
detailed analysis of φ; see (5, Section 6).

As is discussed in (7) there seems to be no direct connection between the “right hull” result and the
“defined by inclusions” result. Though we use Sjöstrand’s result in the proof of Lemma 5.5, we have not
found any simple reason why the same pattern condition turns up again.

Open problem 6.4 Is there a simple reason why the same pattern condition turns up in three different
contexts: Gasharov and Reiner’s “defined by inclusions”, Sjöstrand’s “right hull”, and Postnikov’s (now
proved) conjecture?

Open problem 6.5 Does the poset structure of the Bruhat interval determine the intersection lattice
uniquely? In other words, for any two finite Coxeter systems (W,S) and (W ′, S′) and elements w ∈ W ,
w′ ∈W ′, does [e, w] ∼= [e′, w′] imply Lw ∼= Lw′?

It is not hard to check that the assertion is true for `(w) ≤ 4.
Finally, it would be interesting to know whether our results could be extended to general Bruhat inter-

vals, i.e. [u,w] with u 6= e.

Open problem 6.6 Given a (finite) Coxeter system (W,S) and u,w ∈W with u ≤ w in Bruhat order, is
there a hyperplane arrangement Au,w, naturally associated with u and w, which has as many regions as
there are elements in [u,w] (at least for u,w in some interesting subset of W )?
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