P_{6} - and Triangle-Free Graphs Revisited: Structure and Bounded Clique-Width

Andreas Brandstädt, Tilo Klembt and Suhail Mahfud
Institut für Informatik, Universität Rostock, D-18051 Rostock, Germany.
\{ab, klembt, suma\}@informatik.uni-rostock. de

received Oct 13, 2004, revised May 30, 2005; Apr 27, 2006, accepted May 10, 2006.

Abstract

The Maximum Weight Stable Set (MWS) Problem is one of the fundamental problems on graphs. It is well-known to be NP-complete for triangle-free graphs, and Mosca has shown that it is solvable in polynomial time when restricted to P_{6} - and triangle-free graphs. We give a complete structure analysis of (nonbipartite) P_{6} - and triangle-free graphs which are prime in the sense of modular decomposition. It turns out that the structure of these graphs is simple implying bounded clique-width and thus, efficient algorithms exist for all problems expressible in terms of Monadic Second Order Logic with quantification only over vertex predicates. The problems Vertex Cover, MWS, Maximum Clique, Minimum Dominating Set, Steiner Tree, and Maximum Induced Matching are among them. Our results improve the previous one on the MWS problem by Mosca with respect to structure and time bound but also extends a previous result by Fouquet, Giakoumakis, and Vanherpe which have shown that bipartite P_{6}-free graphs have bounded clique-width. Moreover, it covers a result by Randerath, Schiermeyer, and Tewes on polynomial time 3-colorability of P_{6} - and triangle-free graphs.

Keywords: Maximum Weight Stable Set Problem; clique-width of graphs; efficient graph algorithms.

1 Introduction

Basic problems on graphs such as Vertex Cover and Maximum Weight Stable Set (MWS) which are NPcomplete in general can be solved efficiently for various graph classes. Thus, for example, the problems Vertex Cover and MWS are NP-complete even for triangle-free graphs [24] but can be solved in polynomial time for bipartite graphs. Mosca [21] has shown that MWS can be solved in time $\mathcal{O}\left(n^{4.5}\right)$ for any P_{6} - and triangle-free graph. Let P_{k} denote the induced path of k vertices and let $S_{i, j, k}$ denote the tree with exactly one vertex r of degree 3 and three leaves which have distance i, j, k from r, respectively.

In this paper, we give a complete structure analysis of P_{6} - and triangle-free graphs by showing that such graphs which are not bipartite but prime in the sense of modular decomposition have simple structure which implies bounded clique-width for these graph classes. This leads to the following improvements over previous results:

- it improves the time bound of the MWS algorithm in [21] from $\mathcal{O}\left(n^{4.5}\right)$ to $\mathcal{O}\left(n^{2}\right)$ by using the clique-width approach;
- it leads to more efficient algorithms not only for the MWS problem but also for problems such as Maximum Clique, Minimum Dominating Set, Steiner Tree, and Maximum Induced Matching and in general for all problems expressible in terms of Monadic Second Order Logic with quantification only over vertex predicates - see [10] - based on a so-called k-expression of the input graph;
- it extends the previous result by Fouquet, Giakoumakis and Vanherpe [12] on bounded clique-width from bipartite P_{6}-free graphs to $\left(P_{6}, K_{3}\right)$-free graphs;
- it extends efficient algorithms to larger classes: the input graph is not necessarily assumed to be $\left(P_{6}, K_{3}\right)$-free. Our algorithm for constructing a k-expression of the input graph either results in such an expression or proves that the input graph contains a P_{6} or K_{3}. This approach is called robust in [27].

Remark. There is great and constant interest in triangle-free graphs and in particular, P_{6} - and trianglefree graphs and variants; many papers are dealing with such graphs. Some examples are:

1. Prömel, Schickinger and Steger [25] have shown that with "high probability", a triangle-free graph can be made bipartite by removing a single vertex (which extends the famous result by Erdös, Kleitman and Rothschild saying that almost all triangle-free graphs are bipartite).
2. Liu and Zhou [16] showed that a triangle-free graph G is P_{6}-free if and only if every connected induced subgraph of G has a dominating complete bipartite subgraph or a dominating C_{6}.
3. Brandt [5] also studied the structure of P_{6} - and triangle-free graphs but neither the results of Liu and Zhou nor the results of Brandt lead to a complete structure analysis and bounded clique-width for this graph class.
4. Sumner [28] proved that $P_{6^{-}}, C_{6}$ - and triangle-free graphs are 3-colorable. This result was extended by Randerath, Schiermeyer and Tewes [26] to 4-colorability of P_{6} - and triangle-free graphs and a polynomial time algorithm for 3-colorability on P_{6}-free graphs.
5. In [17], Lozin shows that bipartite $S_{1,2,3}$-free graphs (an extension of P_{6}-free bipartite graphs) have bounded clique-width.

Recently, there is increasing interest in classes of bipartite graphs of bounded clique-width. The motivation partially comes from applications in Model Checking which is crucial in the theory of Database Systems as well as Constraint Satisfaction of Artificial Intelligence - see [14]. The model checking problem can be formulated in terms of hypergraphs, and the corresponding bipartite vertex-hyperedge incidence graph of a hypergraph H uniquely determines H. It turns out that bounded clique-width of this bipartite incidence graph is one of the most general conditions under which the model checking problem can be solved efficiently.

Subsequently, we always focus on the nonbipartite case since bipartite P_{6}-free graphs were studied in [12, 17]. The main result of this paper, namely Theorem 1 , gives a complete structure analysis of P_{6} - and triangle-free graphs and implies bounded clique-width of these graphs.

2 Basic Notions and Tools

Throughout this paper, let $G=(V, E)$ be a finite undirected graph without self-loops and multiple edges and let $|V|=n,|E|=m$. For a vertex $v \in V$, let $N(v)=\{u \mid u v \in E\}$ denote the neighborhood of v in G, and, more generally, let $N^{i}(v)$ denote the set of vertices with distance i to $v, i \geq 1$.

Disjoint vertex sets X, Y form a join, denoted by X (1) Y (co-join, denoted by $X(0) Y$) if for all pairs $x \in X, y \in Y, x y \in E(x y \notin E)$ holds .

Subsequently, we will consider join and co-join also as operations, i.e., the join operation between disjoint vertex sets X, Y adds all edges between them, whereas the co-join operation for X and Y is the disjoint union of the subgraphs induced by X and Y (without edges between them).

Let $u \sim v$ if $u v \in E$ and $u \nsim v$ otherwise. We will call $u \nsim v$ a coedge. A vertex $z \in V$ distinguishes vertices $x, y \in V$ if $z x \in E$ and $z y \notin E$.

A vertex set $M \subseteq V$ is a module if no vertex from $V \backslash M$ distinguishes two vertices from M, i.e., every vertex $v \in V \backslash M$ has either a join or a co-join to M. A vertex set is trivial if it is empty, one-elementary or the entire vertex set. Note that trivial vertex sets are modules, the so-called trivial modules. Nontrivial modules are called homogeneous sets.

A graph is prime if it contains only trivial modules. The notion of module plays a crucial role in the modular (or substitution) decomposition of graphs (and other discrete structures) which is of basic importance for the design of efficient algorithms - see e.g. [20] for modular decomposition of discrete structures and its algorithmic use and [19] for a linear-time algorithm constructing the modular decomposition tree of a given graph.

For $U \subseteq V$, let $G[U]$ denote the subgraph of G induced by U. Throughout this paper, all subgraphs are understood to be induced subgraphs. Let \mathcal{F} denote a set of graphs. A graph is \mathcal{F}-free if none of its induced subgraphs is in \mathcal{F}.

A vertex set $U \subseteq V$ is stable (or independent) in graph G if the vertices in U are pairwise nonadjacent. For a given graph with vertex weights, the Maximum Weight Stable Set (MWS) Problem asks for a stable set of maximum vertex weight.

Let co- $G=\bar{G}=(V, \bar{E})$ denote the complement graph of G. A vertex set $U \subseteq V$ is a clique in G if U is a stable set in \bar{G}. Let K_{ℓ} denote the clique with ℓ vertices, and let ℓK_{1} denote the stable set with ℓ vertices. K_{3} is called triangle.

Recall that for $k \geq 1, P_{k}$ denotes a chordless path with k vertices and $k-1$ edges, and for $k \geq 3, C_{k}$ denotes a chordless cycle with k vertices and k edges.

Moreover, recall that $S_{i, j, k}$ denotes the tree with exactly one vertex r of degree 3 and three leaves which have distance i, j, k from r, respectively. Thus, the $S_{1,2,3}$ has vertices a, b, c, d, e, f, g and edges $a b, b c, c d, d e, e f, c g$.

The paw has vertices a, b, c, d and edges $a b, a c, b c, c d$. The house is the co- P_{5}. The bull has vertices a, b, c, d, e and edges $a b, b c, c d, b e, c e$. The double-gem has vertices a, b, c, d, e, f and edges $a b, a c, b c$, $b d, c d, c e, d e, d f, e f$.

For a subgraph H of G, a vertex not in H is a k-vertex of H (or for H) if it has exactly k neighbors in H. We say that H has no k-vertex if there is no k-vertex for H. The subgraph H dominates the graph G if there is no 0 -vertex for H in G.

In what follows, we need the following classes of bipartite and co-bipartite graphs:

- G is matched co-bipartite if its vertex set is partitionable into two cliques C_{1}, C_{2} with $\left|C_{1}\right|=\left|C_{2}\right|$ or $\left|C_{1}\right|=\left|C_{2}\right|-1$ such that the edges between C_{1} and C_{2} are a matching and at most one vertex
in C_{1} and C_{2} is not covered by the matching.
- G is co-matched bipartite if G is the complement graph of a matched co-bipartite graph.

If a graph is triangle-free but not bipartite, it must contain an odd cycle of length at least 5. For P_{6}-free graphs, this must be a C_{5}, say, C with vertices v_{1}, \ldots, v_{5} and edges $\left\{v_{i}, v_{i+1}\right\}, i \in\{1, \ldots, 5\}$ (throughout this paper, all index arithmetic with respect to a C_{5} is done modulo 5). Obviously, in a triangle-free graph, a $C_{5} C$ has no 3 -, 4 - and 5 -vertex, and 2 -vertices of C have nonconsecutive neighbors in C. Let X denote the set of 0 -vertices of C, and for $i \in\{1, \ldots, 5\}$, let Y_{i} denote the set of 1 -vertices of C being adjacent to v_{i}, and let $Z_{i, i+2}$ denote the set of 2-vertices of C being adjacent to v_{i} and v_{i+2}.

Moreover, let $Y=Y_{1} \cup \ldots \cup Y_{5}$ and $Z=Z_{1,3} \cup Z_{2,4} \cup Z_{3,5} \cup Z_{4,1} \cup Z_{5,2}$. Obviously, $\left\{v_{1}, \ldots, v_{5}\right\} \cup$ $X \cup Y \cup Z$ is a partition of V.

Lemma 1 Let G be a triangle-free graph containing a $C_{5} C$ with vertices v_{1}, \ldots, v_{5} and edges $\left\{v_{i}, v_{i+1}\right\}$, $i \in\{1, \ldots, 5\}$. Then the following properties hold for all $i \in\{1, \ldots, 5\}$:
(i) Y_{i} and $Z_{i, i+2}$ are stable sets;
(ii) $Y_{i}(0)\left(Z_{i, i+2} \cup Z_{i-2, i}\right)$;
(iii) $Z_{i, i+2}$ (0) $Z_{i+2, i+4}$;
(iv) if G is connected P_{6}-free then the set X of 0 -vertices of the $C_{5} C$ is a stable set, $Y_{i}(0) X$, and $Y_{i}(1) Y_{i+2}$ as well as $Y_{i}(0) Y_{i+1}$.

Lemma 2 Let G be a prime $\left(P_{6}, K_{3}\right)$-free graph containing a $C_{5} C$ with vertices v_{1}, \ldots, v_{5} and edges $\left\{v_{i}, v_{i+1}\right\}, i \in\{1, \ldots, 5\}$. Then the following properties hold for all $i \in\{1, \ldots, 5\}$:
(i) every vertex in $Z_{i-1, i+1}$ with a neighbor in Y_{i} has a join to $Z_{i-2, i}$ and to $Z_{i, i+2}$;
(ii) vertices in Y_{i} can only be distinguished by vertices in $Z_{i-1, i+1}$;
(iii) coedges between consecutive 2-vertex sets cannot be distinguished by 0-vertices;
(iv) there are no two 0 -vertices $x, y \in X$ with x adjacent to $Z_{i, i+2}$ and y adjacent to $Z_{i+2, i+4}$;
(v) if $\left|Y_{i}\right| \geq 2$ then $Y_{i-2}=Y_{i+2}=\emptyset$;
(vi) if $x \nsim y$ is a coedge with $x \in Z_{i, i+2}$ and $y \in Z_{i+1, i+3}$ then $x(1) Y_{i+3}$ and $y(1) Y_{i}$;
(vii) vertices $x \in Z_{i, i+2}, y \in Z_{i+1, i+3}$ with $x \nsim y$ cannot be distinguished by vertices in Y_{i+4};

Proof: In this proof and subsequent ones, without loss of generality, we choose some fixed values for $i \in\{1, \ldots, 5\}$.
(i) If $x \in Y_{3}, y \in Z_{2,4}$ and $z \in Z_{3,5}$ with $x \sim y$ and $y \nsim z$ then $x, y, v_{2}, v_{1}, v_{5}, z$ induce a P_{6} in G.
(ii) By Lemma 1, $Z_{i-2, i}$ and $Z_{i, i+2}$ have a co-join to Y_{i}. Assume that $x, y \in Y_{3}$ and $z \in Z_{5,2}$ such that $x \sim z$ and $y \nsim z$. Then $v_{1}, v_{5}, z, x, v_{3}, y$ induce a P_{6} in G.
(iii) If $x \in Z_{1,3}, y \in Z_{2,4}$ and $z \in X$ such that $x \nsim y$ and $z \sim x, z \nsim y$ then $z, x, v_{1}, v_{5}, v_{4}, y$ induce a P_{6} in G.
(iv) Assume that there are vertices $x, y \in X, x \neq y$ and $u \in Z_{1,3}, v \in Z_{3,5}$ such that $x \sim u$, $y \sim v$. Since x, u, v_{1}, v_{5}, v, y induce no P_{6}, either $x \sim v$ or $y \sim u$ but if $x \sim v$ and $y \nsim u$ then v_{2}, v_{1}, u, x, v, y induce a P_{6}. Thus, x and y have the same neighborhood in $Z_{1,3}$ and $Z_{3,5}$. Since G is prime, there must be a vertex z distinguishing x and y, say $z \sim x$ and $z \nsim y$. Recall that by Lemma 1 (iv), no 0 - and no 1 -vertex can distinguish x and y. Thus, z must be a 2 -vertex. If $z \in Z_{5,2}$ then y, v, x, z, v_{2}, v_{1} induce a P_{6}, and similarly for $z \in Z_{4,1}$. Finally, assume that $z \in Z_{2,4}$. Note that $z \nsim u$ and $z \nsim v$ since $z \sim x, x \sim u, x \sim v$ and G is triangle-free but now v, y, u, v_{1}, v_{2}, z induce a P_{6} - contradiction.
(v) If $\left|Y_{3}\right| \geq 2$ then, since Y_{3} is no module, there are $s, s^{\prime} \in Y_{3}, s \neq s^{\prime}$, and $x \in Z_{2,4}$ such that $x \sim s$ and $x \nsim s^{\prime}$. If $Y_{1} \neq \emptyset$ and $r \in Y_{1}$ then $s^{\prime}, r, s, x, v_{4}, v_{5}$ induce a P_{6}.
(vi) If $x \in Z_{1,3}, y \in Z_{2,4}$ and $u \in Y_{4}\left(v \in Y_{1}\right.$, respectively) with $x \nsim y$ and $x \nsim u$ ($y \nsim v$, respectively) then $u, v_{4}, y, v_{2}, v_{1}, x\left(v, v_{1}, x, v_{3}, v_{4}, y\right.$, respectively) induce a P_{6} in G.
(vii) If $x \in Z_{1,3}, y \in Z_{2,4}$ and $z \in Y_{5}$ such that $x \nsim y$ and $x \sim z, y \nsim z$ then $z, x, v_{1}, v_{2}, y, v_{4}$ induce a P_{6} in G.

Lemma iv can also be expressed in the following way:
If the set of 0 -vertices adjacent to $Z_{i, i+2}$ is nontrivial then the set of 0 -vertices adjacent to $Z_{i+2, i+4}$ is empty.

An immediate consequence of Lemma v is
Corollary 1 At most two of the 1-vertex sets are nontrivial, namely consecutive ones.
For the next section we need the following notions:
$Z_{i, i+2}^{0}:=\left\{x \mid x \in Z_{i, i+2}\right.$ and x has a nonneighbor in $Z_{i-1, i+1}$ or in $\left.Z_{i+1, i+3}\right\}$ for $i \in\{1, \ldots, 5\}$, and let
$Z_{0}:=\bigcup_{i=1}^{5} Z_{i, i+2}^{0}$. We say that
2-vertices $v \in Z_{0}$ are of type 0 and 2-vertices $v \in Z \backslash Z_{0}$ are of type 1 .
Let X_{0} denote the set of 0 -vertices being adjacent to a vertex in Z_{0}, and let
$G_{0}:=G\left[X_{0} \cup Z_{0}\right]$.

3 Structure of the Subgraph $G_{0}:=G\left[X_{0} \cup Z_{0}\right]$

Throughout this section, let G be a P_{6} - and triangle-free graph containing $C_{5} C$ with vertices v_{1}, \ldots, v_{5} and edges $\left\{v_{i}, v_{i+1}\right\}, i \in\{1, \ldots, 5\}$. The aim of this section is to describe the structure of G_{0} as a first step of the complete structure description of G. We first focus on the structure of the subgraph $G\left[Z_{0}\right]$. In the subsequent Lemmas 3, 4, 5 and 6 , primality of the graph is not required.

Lemma 3 (i) There are no four vertices $x, u \in Z_{i, i+2}, y, v \in Z_{i+1, i+3}$ such that $x \sim y, x \nsim v, u \nsim y$, and $u \nsim v$.
(ii) There are no four vertices $x \in Z_{i-1, i+1}, y, y^{\prime} \in Z_{i, i+2}$ and $z \in Z_{i+1, i+3}$ such that $x \sim y, x \nsim y^{\prime}$, $y \nsim z$, and $y^{\prime} \sim z$.
(iii) There are no four vertices $u \in Z_{i-1, i+1}, v \in Z_{i, i+2}, x \in Z_{i+1, i+3}, y \in Z_{i+2, i+4}$ such that $u \nsim v$, $v \sim x$ and $x \nsim y$.

Proof:

(i) If there are four vertices $x, u \in Z_{1,3}, y, v \in Z_{2,4}$ such that $x \sim y, x \nsim v, u \nsim y$, and $u \nsim v$ then u, v_{1}, x, y, v_{4}, v induce a P_{6} in G.
(ii) If there are four vertices $x \in Z_{1,3}, y, y^{\prime} \in Z_{2,4}$ and $z \in Z_{3,5}$ such that $x \sim y, x \nsim y^{\prime}, y \nsim z$, and $y^{\prime} \sim z$ then $y, x, v_{1}, v_{5}, z, y^{\prime}$ induce a P_{6} in G.
(iii) If there are four vertices $u \in Z_{5,2}, v \in Z_{1,3}, x \in Z_{2,4}, y \in Z_{3,5}$ such that $u \nsim v, v \sim x$ and $x \nsim y$ then v, x, v_{2}, u, v_{5}, y induce a P_{6} in G.

Figure 1 shows the three forbidden configurations of Lemma 3 (boldface edges indicate P_{6}).

Fig. 1: Forbidden configurations of Lemma 3

A simple consequence of Lemma 3 is the following:
Lemma 4 If there are $x \in Z_{i, i+2}^{0}, y \in Z_{i-1, i+1}^{0}, z \in Z_{i-2, i}^{0}$ such that $x \sim y$ and $y \nsim z$ then $Z_{i+1, i+3}^{0}=$ \emptyset. Analogously, if there are $x \in Z_{i, i+2}^{0}, y \in Z_{i-1, i+1}^{0}, z \in Z_{i-2, i}^{0}$ such that $x \nsim y$ and $y \sim z$ then $Z_{i-3, i-1}^{0}=\emptyset$.

Proof: Let $x \in Z_{5,2}^{0}, y \in Z_{4,1}^{0}$ and $z \in Z_{3,5}^{0}$ such that $x \sim y$ and $y \nsim z$. Then $x(1) Z_{1,3}^{0}$, since otherwise there is a $u \in Z_{1,3}^{0}$ with $x \nsim u$, and then z, y, x, u contradict to Lemma 3 (iii). Since $x \in Z_{0}, x$ must
have a nonneighbor $y^{\prime} \in Z_{4,1}^{0}$. Assume that there is a vertex $u \in Z_{1,3}^{0}$. Then $u(1) Z_{2,4}^{0}$, since otherwise there is a $w \in Z_{2,4}^{0}$ with $u \nsim w$, and then y^{\prime}, x, u, w contradict to Lemma 3 (iii). Thus, since $u \in Z_{0}, u$ must have a nonneighbor $x^{\prime} \in Z_{5,2}^{0}$. Now $x^{\prime} \nsim y^{\prime}$, otherwise $y^{\prime}, x^{\prime}, x, u$ contradict to Lemma 3 (ii), and $x^{\prime} \sim y$, otherwise $y, y^{\prime}, x, x^{\prime}$ contradict to Lemma 3 (i), but now z, y, x^{\prime}, u contradict to Lemma 3 (iii) Thus, $Z_{1,3}^{0}=\emptyset$. The second claim follows by symmetry.

Another consequence of Lemma 3 (i) and Lemma 2 is the following property:
Lemma 5 Vertices $x, x^{\prime} \in Z_{i, i+2}^{0}$ having a common nonneighbor $y \in Z_{i-1, i+1}^{0}\left(y \in Z_{i+1, i+3}^{0}\right.$, respectively $)$ can only be distinguished by a vertex $y^{\prime} \in Z_{i+1, i+3}^{0}\left(y^{\prime} \in Z_{i-1, i+1}^{0}\right.$, respectively).

Proof: Let $x, x^{\prime} \in Z_{5,2}^{0}$ and let $y \in Z_{4,1}^{0}$ be a common nonneighbor of x and x^{\prime}. By Lemma 2 (iii) x and x^{\prime} cannot be distinguished by 0 -vertices of C since a 0 -vertex z being adjacent to x is also adjacent to y and thus to x^{\prime}. Since G is K_{3}-free, x and x^{\prime} do not have edges to Y_{5} and Y_{2}. By Lemma 2 (i), x and x^{\prime} do not have edges to Y_{1}. By Lemma 2 (vi, x and x^{\prime} have a join to Y_{4}. By Lemma 2 (vii), x and x^{\prime} cannot be distinguished by Y_{3} vertices. By Lemma 3 (i), x and x^{\prime} cannot be distinguished by a vertex from $Z_{4,1}$. Thus, if y^{\prime} distinguishes x and x^{\prime} then necessarily $y^{\prime} \in Z_{1,3}^{0}$.

Lemma 6 If there is an edge between a vertex in $Z_{i, i+2}^{0}$ and $Z_{i+1, i+3}^{0}$ then the following conditions are fulfilled:
(i) $Z_{i+2, i+4}^{0}=\emptyset$ or $Z_{i-1, i+1}^{0}=\emptyset$.
(ii) If $Z_{i-1, i+1}^{0} \neq \emptyset$ then $Z_{i-1, i+1}^{0}$ (0) $Z_{i, i+2}^{0}$.

Proof: Let $x y \in E$ be an edge with $x \in Z_{5,2}^{0}$ and $y \in Z_{4,1}^{0}$
(i) Assume that $Z_{1,3}^{0} \neq \emptyset$ and $Z_{3,5}^{0} \neq \emptyset$. If y has a nonneighbor in $Z_{3,5}^{0}$ then by Lemma $4, Z_{1,3}^{0}=\emptyset$, and analogously, if x has a nonneighbor in $Z_{1,3}^{0}$ then by Lemma $4, Z_{3,5}^{0}=\emptyset$. Thus, for every edge $x y \in E, x \in Z_{5,2}^{0}, y \in Z_{4,1}^{0}, x(1) Z_{1,3}^{0}$ and $y(1) Z_{3,5}^{0}$ holds.
Since $x \in Z_{5,2}^{0}$, x has a nonneighbor $y^{\prime} \in Z_{4,1}^{0}$, and analogously, y has a nonneighbor $x^{\prime} \in Z_{5,2}^{0}$. By Lemma 3 (i), $x^{\prime} \sim y^{\prime}$. Now let $z \in Z_{1,3}^{0}$. By Lemma 4, applied to $y^{\prime}, x, z, Z_{2,4}^{0}=\emptyset$ follows. Thus, z must have a nonneighbor $x^{\prime \prime} \in Z_{5,2}^{0}, x^{\prime \prime} \neq x, x^{\prime \prime} \neq x^{\prime}$ (note that by Lemma 3 (ii), applied to $z, x, x^{\prime}, y^{\prime}$, also $x^{\prime} \sim z$). If $x^{\prime \prime}$ has a neighbor $y^{\prime \prime} \in Z_{4,1}^{0}$ then by Lemma $4, z, x^{\prime \prime}, y^{\prime \prime}$ imply $Z_{3,5}^{0}=\emptyset$ - contradiction. Thus, $x^{\prime \prime}$ has a co-join to $Z_{4,1}^{0}$, but now $x, y, x^{\prime \prime}, y^{\prime}$ contradict to Lemma 3 (i). Thus (i) holds.
(ii) Let $Z_{3,5}^{0} \neq \emptyset$ and assume that there is an edge between $Z_{3,5}^{0}$ and $Z_{4,1}^{0}$. Then by (i), $Z_{1,3}^{0}=Z_{2,4}^{0}=\emptyset$. Let $z \in Z_{3,5}^{0}$ have a neighbor $y^{\prime} \in Z_{4,1}^{0}$, and recall that $x \in Z_{5,2}^{0}$ has neighbor $y \in Z_{4,1}^{0}$. If x and z have no common neighbor in $Z_{4,1}^{0}$ (i.e., $x \not \not \not y^{\prime}$ and $z \nsucc y$) then x, y, y^{\prime}, z contradicts to
Lemma 3 (ii). Thus x and z have a common neighbor, say $w \in Z_{4,1}^{0}$.
Since $Z_{1,3}^{0}=Z_{2,4}^{0}=\emptyset, x$ has a nonneighbor $u \in Z_{4,1}^{0}$ and z has a nonneighbor $u^{\prime} \in Z_{4,1}^{0}$. If x and z have no common nonneighbor in $Z_{4,1}^{0}$ then x, u, u^{\prime}, z contradict to Lemma 3 (ii). Thus let $u \in Z_{4,1}^{0}$ be a common nonneighbor of x and z. Then w has a nonneighbor $x^{\prime} \in Z_{5,2}^{0}$ or $z^{\prime} \in Z_{3,5}^{0}$; without loss of generality, say $x^{\prime} w \notin E$. By Lemma 3 (i), $x^{\prime} \sim u$ but now x^{\prime}, u, w, z contradict to Lemma 3 (ii). Thus, (ii) holds.

Lemma 7 Let G be a prime P_{6} - and triangle-free graph containing C_{5} as above. If there is an edge between a vertex in $Z_{i, i+2}^{0}$ and a vertex in $Z_{i+1, i+3}^{0}$ then $G\left[Z_{i, i+2}^{0} \cup Z_{i+1, i+3}^{0}\right]$ is a co-matched bipartite graph.

Proof: Let $a b \in E$ with $a \in Z_{4,1}^{0}$ and $b \in Z_{5,2}^{0}$. By Lemma 6 (i), $Z_{1,3}^{0}=\emptyset$ or $Z_{3,5}^{0}=\emptyset$, say $Z_{1,3}^{0}=\emptyset$. Assume that $Z_{4,1}^{0} \cup Z_{5,2}^{0}$ do not induce a co-matched bipartite graph. Then two vertices in one of the two sets have a common nonneighbor in the other. First assume that $x, x^{\prime} \in Z_{5,2}^{0}$ have a common nonneighbor $y \in Z_{4,1}^{0}$. Then, by Lemma 5, only vertices in $Z_{1,3}^{0}$ can distinguish x and x^{\prime} but $Z_{1,3}^{0}=\emptyset$. Now assume that $x, x^{\prime} \in Z_{4,1}^{0}$ have a common nonneighbor $y \in Z_{5,2}^{0}$. Then, again by Lemma 5 , only vertices in $Z_{3,5}^{0}$ can distinguish x and x^{\prime} but by Lemma 6 (ii), there are no edges between $Z_{3,5}^{0}$ and $Z_{4,1}^{0}$. Since G is prime, $G\left[Z_{4,1}^{0} \cup Z_{5,2}^{0}\right]$ is co-matched bipartite.

Corollary $2 G\left[Z_{0}\right]$ is either the disjoint union of two co-matched bipartite graphs (which are possibly empty or one of their color classes is empty and the other is trivial) or for each $i \in\{1, \ldots, 5\},\left|Z_{i, i+2}^{0}\right|=$ 1.

Proof: If there are no edges between consecutive sets $Z_{i, i+2}^{0}, i \in\{1, \ldots, 5\}$, then by Lemma 5 , all $Z_{i, i+2}^{0}$ are modules, and since G is prime, $\left|Z_{i, i+2}^{0}\right| \leq 1$. If in addition at least one of them is empty, $G\left[Z_{0}\right]$ is the disjoint union of two (trivial) co-matched bipartite graphs.

Now assume without loss of generality that there is an edge between $Z_{4,1}^{0}$ and $Z_{5,2}^{0}$. Then by Lemma 7, $Z_{4,1}^{0}$ and $Z_{5,2}^{0}$ induce a co-matched bipartite graph, and by Lemma 6 (i), $Z_{3,5}^{0}=\emptyset$ or $Z_{1,3}^{0}=\emptyset$, say $Z_{1,3}^{0}=\emptyset$, and if also $Z_{3,5}^{0}=\emptyset$ then $Z_{2,4}^{0}=\emptyset$ by definition of type 02 -vertices. If $Z_{3,5}^{0} \neq \emptyset$ then $Z_{3,5}^{0}$ (0) $Z_{4,1}^{0}$ by Lemma 6 (ii). Now, if there is an edge between $Z_{2,4}^{0}$ and $Z_{3,5}^{0}$ then again by Lemma $7, Z_{2,4}^{0}$ and $Z_{3,5}^{0}$ induce a co-matched bipartite graph, and if there is no edge between $Z_{2,4}^{0}$ and $Z_{3,5}^{0}$ then by Lemma 5, both sets have at most one vertex since G is prime In either case, $G\left[Z_{0}\right]$ is the disjoint union of two co-matched bipartite graphs.

Now, we add the 0 -vertices X_{0} being adjacent to Z_{0} to $G\left[Z_{0}\right]$. A copath in $G\left[Z_{0}\right]$ is a sequence of coedges $x_{i} x_{i+1}, i \in\{1, \ldots, k\}$, such that $x_{i} \in Z_{j, j+2}^{0}, x_{i+1} \in Z_{j+1, j+3}^{0}$ or $x_{i} \in Z_{j, j+2}^{0}, x_{i+1} \in$ $Z_{j-1, j+1}^{0}$ for some $j \in\{1, \ldots, 5\}$. A cocomponent in $G\left[Z_{0}\right]$ is a maximal vertex subset $U \subseteq Z_{0}$ such that for every x and y in U, there is a copath connecting x and y.

Lemma 8 For each cocomponent Q in $G\left[Z_{0}\right]$, the set X_{Q} of 0 -vertices being adjacent to Q is a module in G.

Proof: Let Q be a cocomponent in $G\left[Z_{0}\right]$, and let X_{Q} denote the set of 0 -vertices being adjacent to Q. Assume that X_{Q} is no module in G. Then there are $x, y \in X_{Q}$ and $z \notin X_{Q}$ such that $x \sim z$ and $y \nsim z$. By Lemma 2 (iii), every 0 -vertex adjacent to Q has a join to Q, i.e., $x(1) Q$ and $y(1) Q$. Let $u \in Z_{1,3}^{0}$, $v \in Z_{2,4}^{0}, u \nsim v$, be neighbors of $x, y:\{x, y\}(1)\{u, v\}$.

By Lemma 1 (iv), the distinguishing vertex z is no 0 -vertex since X is a stable set, and z is no 1 -vertex since $X(0) Y$. Thus, z must be a 2 -vertex.

By Lemma 2 (iv), $z \notin\left(Z_{3,5} \cup Z_{4,1} \cup Z_{5,2}\right)$. Thus, let $z \in Z_{1,3}\left(z \in Z_{2,4}\right.$, respectively). Then $z \nsim v$ ($z \nsim u$, respectively), since otherwise $x, z, v(x, z, u$, respectively) induce a triangle but now z and $v(z$ and u, respectively) form a coedge distinguished by y, a contradiction to Lemma 2 (iii).

Since G is prime, $\left|X_{Q}\right| \leq 1$ for all cocomponents Q of $G\left[Z_{0}\right]$. Thus, if $G\left[Z_{0}\right]$ has only one cocomponent then there is at most one 0 -vertex being adjacent to Z_{0}. Note that by Lemma 6 (ii) and by Corollary 2 , if $G\left[Z_{0}\right]$ consists of two nonempty co-matched bipartite graphs then it has only one cocomponent. In the case in which $G\left[Z_{0}\right]$ consists of only one co-matched bipartite graph, it may have arbitrarily many cocomponents (which are just single coedges), and then by Lemma 8, every coedge of $G\left[Z_{0}\right]$ can have exactly one neighbor in X. Since G is K_{3}-free, every 0 -vertex is adjacent to at most one coedge (note that in a co-matched bipartite graph every two coedges are connected by two edges).

4 Structure of Nonbipartite Prime (P_{6}, K_{3})-free Graphs

The aim of this section is to give a complete structure description of nonbipartite prime (P_{6}, K_{3})-free graphs G which also will lead to bounded clique-width. For this purpose, we subdivide G into the subgraph G_{0} and into five bipartite subgraphs based on the other 2-vertex sets, the 1-vertex sets and the other 0 -vertices. It is already clear that $\left\{v_{1}, \ldots, v_{5}\right\}, X, Y$ and Z define a partition of the vertex set V of G.

Let $Z_{i, i+2}^{1}:=Z_{i, i+2} \backslash Z_{i, i+2}^{0}$ and $Z_{1}:=Z \backslash Z_{0}$. For $i \in\{1, \ldots, 5\}$, let X_{i} denote the set of 0 -vertices being adjacent to $Z_{i-1, i+1}^{1}$. Now, if for $i \in\{0,1, \ldots, 5\}, X_{i}$ is trivial, we will omit the single vertex in X_{i}, i.e., let

$$
X_{i}^{\prime}= \begin{cases}X_{i} & \text { if } X_{i} \text { is nontrivial } \\ \emptyset & \text { otherwise }\end{cases}
$$

For $i \in\{1, \ldots, 5\}$, let $B_{i}:=G\left[X_{i}^{\prime} \cup Y_{i} \cup Z_{i-1, i+1}^{1}\right]$. By Lemma 1 (iv), $X \cup Y_{i}$ is a stable set, and thus, B_{i} is bipartite. Let X_{T} denote the union of trivial $X_{i}, i \in\{0,1, \ldots, 5\}$.

The basic subgraphs in G are the subgraphs G_{0} and $B_{i}, i \in\{1, \ldots, 5\}$.
Lemma 9 The vertex sets X_{0}^{\prime}, Z_{0} of G_{0} and the vertex sets $X_{i}^{\prime}, Y_{i}, Z_{i-1, i+1}^{1}$ of $B_{i}, i \in\{1, \ldots, 5\}$, define a partition of $V \backslash\left(\left\{v_{1}, \ldots, v_{5}\right\} \cup X_{T}\right)$.

Proof: Obviously, X, Y and Z define a partition of $V \backslash\left\{v_{1}, \ldots, v_{5}\right\}, Z_{0}$ and Z_{1} define a partition of Z, and $Z_{i, i+2}^{1}, i \in\{1, \ldots, 5\}$, define a partition of Z_{1}. Moreover, G_{0} contains no 1-vertices, and Y_{i}, $i \in\{1, \ldots, 5\}$, define a partition of Y.
Claim 4.1 If a 0 -vertex is adjacent to some $Z_{i, i+2}^{1}$ then it is not adjacent to $Z_{i, i+2}^{0}$.
Proof. Without loss of generality, let $x \in Z_{1,3}^{1}$ and $y \in Z_{1,3}^{0}$ with a nonneighbor $z \in Z_{2,4}^{0}, z \nsim y$. If for a 0 -vertex $u, u \sim x$ and $u \sim y$ then by Lemma 2 (iii), $u \sim z$ but now x, u, z induce a triangle contradiction. This shows Claim 4.1.
Claim 4.2 If a 0 -vertex from X_{i+1}^{\prime} is adjacent to some $Z_{i, i+2}^{1}$ then it is not adjacent to $Z_{j, j+2}^{0}$ and not adjacent to $Z_{j, j+2}^{1}$ for $j \neq i$.

Proof. Since G is K_{3}-free, a 0-vertex being adjacent to $Z_{i, i+2}^{1}$ is nonadjacent to $Z_{i-1, i+1}$ and $Z_{i+1, i+3}$, and by Lemma 2 (iv), if X_{i+1} is nontrivial then no vertex of X_{i+1} is adjacent to $Z_{i-2, i}$ or $Z_{i+2, i+4}$. This shows Claim 4.2.

By Claims 4.1 and 4.2, $X_{0} \cap\left(X_{1} \cup \ldots \cup X_{5} \backslash X_{T}\right)=\emptyset$. Now by Claim 4.2 the sets $X_{i}, X_{j}, i \neq j$, are disjoint Thus, $X_{0}, X_{1}, \ldots, X_{5}$ form a partition of $X \backslash X_{T}$. This completes the proof of Lemma 9 .

Recall that by Lemma 2 (ii), vertices in Y_{i} can only be distinguished by vertices in $Z_{i-1, i+1}$. Thus, every vertex in $Z_{i-1, i+1}$ has either a join or a co-join to Y_{i+2} (Y_{i+3}, respectively).

Let $Z_{i-1, i+1 ; 00}\left(Z_{i-1, i+1 ; 01}, Z_{i-1, i+1 ; 10}, Z_{i-1, i+1 ; 11}\right.$, respectively) be the set of 2-vertices in $Z_{i-1, i+1}$ having a co-join to Y_{i+2} and Y_{i+3} (having a co-join to Y_{i+2} and a join to Y_{i+3}, having a join to Y_{i+2} and a co-join to Y_{i+3}, having a join to Y_{i+2} and Y_{i+3}, respectively). Moreover, let $Z_{i-1, i+1 ; b c}^{a}=Z_{i-1, i+1}^{a} \cap$ $Z_{i-1, i+1 ; b c}, a \in\{0,1\}, b c \in\{00,01,10,11\}$.

The basic vertex subsets of G are $X_{0}^{\prime}, X_{1}^{\prime}, \ldots, X_{5}^{\prime}, Y_{1}, \ldots, Y_{5}$, and $Z_{i-1, i+1 ; b c}^{a}, i \in\{1, \ldots, 5\}, a \in$ $\{0,1\}, b c \in\{00,01,10,11\}$.

Lemma 10 For all pairs of basic vertex subsets U, W from different basic subgraphs, either $U(1) W$ or $U(0) W$.

Proof: First assume that $U \in\left\{X_{0}^{\prime}, X_{1}^{\prime}, \ldots, X_{5}^{\prime}\right\}$. If also $W \in\left\{X_{0}^{\prime}, X_{1}^{\prime}, \ldots, X_{5}^{\prime}\right\}$ then $U(0) W$ since by Lemma 1 (iv), X is a stable set.

If $W \in\left\{Y_{1}, \ldots, Y_{5}\right\}$ then $U(0) W$ since by Lemma 1 (iv), there are no edges between 0 -vertices and 1 -vertices.

If W is a basic subset of 2 -vertices, we have the following cases:
First assume that $U=X_{0}^{\prime}$. Let $W=Z_{i-1, i+1 ; b c}^{1}$ (note that $W=Z_{i-1, i+1 ; b c}^{0}$ is impossible since W belongs to another basic subgraph). Assume that $u \in U$ with u being adjacent to some $x \in Z_{4,1}^{0}$ and $y \in Z_{5,2}^{0}, x \nsim y$. Then $u(0) W$ for $W \in\left\{Z_{3,5}^{1}, Z_{4,1}^{1}, Z_{5,2}^{1}, Z_{1,3}^{1}\right\}$ since G is K_{3}-free, and $u(0) W$ for $W=Z_{2,4}^{1}$ by Lemma 2 (iv) since X_{0}^{\prime} is assumed to be nontrivial or empty.

Now assume that $U \in\left\{X_{1}^{\prime}, \ldots, X_{5}^{\prime}\right\}$, say $U=X_{1}^{\prime}$. Then, by Lemma 9, $U\left(0 Z_{0}\right.$ since $X_{0} \cap X_{1}^{\prime}=\emptyset$. This completes the case analysis when U is a basic set of 0 -vertices.

Next assume that $U \in\left\{Y_{1}, \ldots, Y_{5}\right\}$. If also $W \in\left\{Y_{1}, \ldots, Y_{5}\right\}$ then $U(1) W$ or $U(0) W$ by Lemma 1 (iv).

Now, without loss of generality, let $U=Y_{1}$, and assume that W is a basic subset from another basic subgraph. Since G is K_{3}-free, $U(0) Z_{4,1} \cup Z_{1,3}$. By Lemma 2 (i), $U\left(0 Z_{5,2}^{0}\right.$. By definition of the basic subsets $Z_{2,4 ; b c}^{a}$ and $Z_{3,5 ; b c}^{a}$, U has join or co-join to all these basic subsets.

Finally, the connections between basic 2 -vertex subsets from different basic subgraphs are join or cojoin by Lemma 1 (iii), by definition of $Z_{i, i+2}^{1}$ and by the definition of B_{i} and G_{0}. Thus, $Z_{i, i+2}^{1}$ has a join to $Z_{i-1, i+1}$ and $Z_{i+1, i+3}$ and a co-join to $Z_{i-2, i}$ and $Z_{i+2, i+4}, i \in\{1, \ldots, 5\}$.

This shows Lemma 10.
An immediate consequence of Lemma 9 and Lemma 10 is the following decomposition of G which is the main result of this paper (notation of basic subsets and basic subgraphs as above):

Theorem 1 (Structure Theorem) Let G be a prime $\left(P_{6}, K_{3}\right)$-free graph which is not bipartite, and let C be a C_{5} in G. Then the vertex set of $G\left[V \backslash\left(V(C) \cup X_{T}\right)\right]$ can be partitioned into the (possibly empty) basic subgraph $G_{0}=G\left[Z_{0} \cup X_{0}\right]$ and into the five (possibly empty) basic bipartite subgraphs B_{1}, \ldots, B_{5} such that the connections between the basic vertex subsets of different basic subgraphs are only join or co-join.

Recall that G_{0} consists of the bipartite subgraph $G\left[Z_{0}\right]$ which, according to Corollary 2 , is either the disjoint union of two co-matched bipartite graphs or fulfills $\left|Z_{i, i+2}^{0}\right|=1$ for $i \in\{1, \ldots, 5\}$, and the 0 -vertices in X_{0} being adjacent to Z^{0}.

5 Bounded Clique-Width of $\left(P_{6}, K_{3}\right)$-free Graphs

The P_{4}-free graphs (also called cographs) play a fundamental role in graph decomposition; see [8] for linear time recognition of cographs, $[6,7,8]$ for more information on P_{4}-free graphs and [4] for a survey on this graph class and related ones.

For a cograph G, either G or its complement is disconnected, and the cotree of G expresses how the graph is recursively generated from single vertices by repeatedly applying join and co-join operations. Note that the cographs are those graphs whose modular decomposition tree contains only join and co-join nodes as internal nodes.

Based on the following operations on vertex-labeled graphs, namely
(i) create a vertex u labeled by integer ℓ, denoted by $\ell(u)$,
(ii) disjoint union (i.e., co-join), denoted by \oplus,
(iii) join between all vertices with label i and all vertices with label j for $i \neq j$, denoted by $\eta_{i, j}$, and
(iv) relabeling all vertices of label i by label j, denoted by $\rho_{i \rightarrow j}$,
the notion of clique-width $\operatorname{cwd}(G)$ of a graph G is defined in [9] as the minimum number of labels which are necessary to generate G by using these operations. It is easy to see that cographs are exactly the graphs whose clique-width is at most two.

A k-expression for a graph G of clique-width k describes the recursive generation of G by repeatedly applying these operations using at most k different labels.

Proposition 1 ([10, 11])

(i) The clique-width $\operatorname{cwd}(G)$ of a graph G is the maximum of the clique-width of its prime induced subgraphs if G has nontrivial prime subgraphs.
(ii) $\operatorname{cwd}(\bar{G}) \leq 2 \cdot \operatorname{cwd}(G)$.

In [10], it is shown that every problem expressible in a certain kind of Monadic Second Order Logic, called $\operatorname{LinEMSOL}\left(\tau_{1, L}\right)$, is linear-time solvable on any graph class with bounded clique-width for which a k-expression can be constructed in linear time.

Roughly speaking, $\operatorname{MSOL}\left(\tau_{1}\right)$ is Monadic Second Order Logic with quantification over subsets of vertices but not of edges; $\operatorname{MSOL}\left(\tau_{1, L}\right)$ is the extension of $\operatorname{MSOL}\left(\tau_{1}\right)$ with the addition of labels added to the vertices, and $\operatorname{LinEMSOL}\left(\tau_{1, L}\right)$ is the extension of $\operatorname{MSOL}\left(\tau_{1, L}\right)$ which allows to search for sets of vertices which are optimal with respect to some linear evaluation functions. The problems Vertex Cover, Maximum Weight Stable Set, Maximum Weight Clique, Steiner Tree, Domination and Maximum Induced Matching are examples of $\operatorname{LinEMSOL}\left(\tau_{1, L}\right)$ expressible problems.
Theorem 2 ([10]) Let \mathcal{C} be a class of graphs of clique-width at most k such that there is an $\mathcal{O}(f(|E|,|V|))$ algorithm, which for each graph G in \mathcal{C}, constructs a k-expression defining it. Then for every $\operatorname{LinEMSOL}\left(\tau_{1, L}\right)$ problem on \mathcal{C}, there is an algorithm solving this problem in time $\mathcal{O}(f(|E|,|V|))$.
Observe that, trivially, the clique-width of a graph with n vertices is at most n. The following result by Johansson gives a slightly sharper bound.
Lemma 11 ([15]) If G has n vertices then $\operatorname{cwd}(G) \leq n-k$ as long as $2^{k}+2 k \leq n$.

Thus, for instance, the clique-width of a graph with nine vertices is at most seven. Another helpful tool is
Lemma 12 ([1]) Let $G=(V, E)$ be a graph and $V=F_{1} \cup F_{2}$ be a partition of V with $\left|F_{2}\right| \leq$ sfor some s. If there is a t-expression for $G\left[F_{1}\right]$ then there is a $\left(2^{s} \cdot(t+1)\right)$-expression for G.

This lemma means that adding a constant number s of vertices to a graph H from a class of bounded clique-width maintains bounded clique-width. This allows to disregard certain specific vertices and thus to reduce graph G to its essential part G^{\prime}.

We also need the following principle:
Principle 1 ([3]) Let $G=(V, E)$ be a graph and $V=V_{1} \cup \ldots \cup V_{p}$ be a partition of V. If there is a t-expression for G then there is a $p \cdot t$-expression for G such that finally for each $i \in\{1,2, \ldots, p\}$, vertices in V_{i} get the same label and $l(u) \neq l(v)$ for each pair $u \in V_{i}, v \in V_{j}, i \neq j$.

Our clique-width analysis of $\left(P_{6}, K_{3}\right)$-free graphs is based on the following results by Lozin [17] and, slightly earlier, by Fouquet, Giakoumakis and Vanherpe [12].

Theorem 3 ([17]) The clique-width of bipartite $S_{1,2,3}$-free graphs is at most 5 .
Theorem 4 ([12]) The clique-width of bipartite P_{6}-free graphs is at most 4, and given such a graph, a 4-expression can be constructed in linear time.

We also need:
Proposition 2 The clique-width is at most 4 for matched co-bipartite as well as for co-matched bipartite graphs, and corresponding k-expressions, $k \leq 4$, can be obtained in linear time.
The proof of Proposition 2 is straightforward.
To give an example, we describe how a graph $G=(X \cup Y \cup Z, E)$ with pairwise disjoint vertex sets X, Y, Z, each of size n, consisting of a prime co-matched bipartite graph $B=(X, Y, E)$ with coedges $x_{i} y_{i}, i \in\{1, \ldots, n\}$, and with an additional neighbor $z_{i} \in Z, i \in\{1, \ldots, n\}$, to each coedge $x_{i} y_{i}$, can be constructed with 6 labels:
$\alpha_{1}:=\rho_{5 \rightarrow 6}\left(\eta_{5,2}\left(\eta_{5,1}\left(5\left(z_{1}\right) \oplus\left(1\left(x_{1}\right) \oplus 2\left(y_{1}\right)\right)\right)\right)\right)$
For $i:=2$ to n let
$\alpha_{i}:=\rho_{4 \rightarrow 2}\left(\rho_{3 \rightarrow 1}\left(\rho_{5 \rightarrow 6}\left(\eta_{3,2}\left(\eta_{4,1}\left(\eta_{5,4}\left(\eta_{5,3}\left(5\left(z_{i}\right) \oplus\left(3\left(x_{i}\right) \oplus\left(4\left(y_{i}\right) \oplus \alpha_{i-1}\right)\right)\right)\right)\right)\right)\right)\right)\right)$.
Now, Theorem 1 implies:
Corollary 3 The clique-width of $\left(P_{6}, K_{3}\right)$-free graphs is bounded.
Proof: If G is bipartite then by Theorem 4, its clique-width is at most 4. Now assume that G is prime and not bipartite. Then Theorem 1 describes its structure. If all sets of $0-1$, and 2-vertices are trivial then G has at most 16 vertices and, by Lemma 11, its clique-width is at most 13 .

The clique-width of G_{0} is at most 6 as the example above shows, and for every $i \in\{1, \ldots, 5\}, B_{i}$ is bipartite and thus, by Theorem 4, its clique-width is at most 4.

Now, applying Principle 1, the 2-vertex subsets in the basic subgraphs G_{0} and B_{i} are subdivided into the four basic subsets. It is clear that there are k-expressions for G_{0} and B_{i} where the basic subsets finally get different labels. By Theorem 1, the edge sets between basic subsets from different basic subgraphs are only join or co-join. Thus, finally these edges can easily be generated. This gives bounded clique-width for G.

A more detailed analysis shows that the clique-width bound for $\left(P_{6}, K_{3}\right)$-free graphs can be improved to 36 since in all cases, some of the subsets are trivial.

In [18], it is shown that ($S_{1,1,3}, K_{3}$)-free graphs as well as ($S_{1,2,2}, K_{3}$)-free graphs have bounded cliquewidth.

The clique-width of $\left(P_{6}, K_{4}\right)$-free graphs is unbounded since in [2], it is shown that the clique-width for the smaller class of $\left(2 K_{2}, K_{4}\right)$-free graphs is unbounded (the $2 K_{2}$ is the complement of C_{4}). In the same paper, it is mentioned that for P_{7}-free bipartite graphs, it is unknown whether the clique-width of these graphs is bounded or unbounded. It also seems to be unknown whether the clique-width of $\left(P_{7}, K_{3}\right)$-free graphs is bounded or unbounded.

6 Time Bound for Robustly Constructing a k-Expression for G

By a result of Giakoumakis and Vanherpe [13], P_{6}-free bipartite graphs can be recognized in linear time. By Theorem 4, the clique-width of these graphs is at most 4, and given such a graph, a 4-expression can be constructed in linear time. From now on, we focus on nonbipartite graphs.

The aim of this section is to give an efficient algorithm which for arbitrary prime nonbipartite input graph G either determines a k-expression of G or finds out that G is not $\left(P_{6}, K_{3}\right)$-free. The time bound of our algorithm is $\mathcal{O}\left(n^{2}\right)$. Algorithm 1 does not check whether the input graph is indeed (P_{6}, K_{3})-free; instead, it tries to find an induced C_{5} or K_{3} or P_{6} in G, and if a C_{5} is found, it checks whether G fulfills the conditions of the Structure Theorem. Thus, for constructing a k-expression for G, it is of crucial importance to find a C_{5} in G.

Algorithm 1:

Input: An arbitrary prime nonbipartite graph $G=(V, E)$.
Output: An induced C_{5} or K_{3} or P_{6} in G.
(1) Pick a vertex $v \in V$ and determine the levels $N^{i}(v), i \geq 1$, by applying Breadth-First Search to G with start vertex v.
(2) Check whether $N^{5}(v) \neq \emptyset$. If yes then G contains a P_{6} - STOP. \{Otherwise, from now on, $N^{k}(v)=\emptyset$ for $\left.k \geq 5.\right\}$
(3) Check whether $N(v)$ is a stable set. If not then G contains a K_{3} - STOP.
(4) Check whether $N^{2}(v)$ is a stable set. If not then let $x \sim y$ for some $x, y \in N^{2}(v)$.
(4.1) Check whether x and y have a common neighbor in $N(v)$. If yes then G contains a K_{3} - STOP.
(4.2) Otherwise, let $u_{x}\left(u_{y}\right)$ be a neighbor of $x(y)$ in $N(v)$. Then v, u_{x}, x, y, u_{y} is a $C_{5}-$ STOP.
(5) Check whether $N^{3}(v)$ is a stable set. If not then let $x \sim y$ for some $x, y \in N^{3}(v)$.
(5.1) Check whether x and y have a common neighbor in $N^{2}(v)$. If yes then G contains a K_{3} - STOP.
(5.2) Otherwise, let $u_{x}\left(u_{y}\right)$ be a neighbor of $x(y)$ in $N^{2}(v)$. Check whether u_{x} and u_{y} have a common neighbor w in $N(v)$. If yes then w, u_{x}, x, y, u_{y} is a C_{5}-STOP. Otherwise, let $w_{x}\left(w_{y}\right)$ be a neighbor of $u_{x}\left(u_{y}\right)$ in $N(v)$. Then $w_{x}, u_{x}, x, y, u_{y}, w_{y}$ is a P_{6} - STOP.
(6) $\left\{\right.$ Now, since G is not bipartite, $N^{4}(v)$ is not a stable set.\} Determine an edge $x \sim y$ for some $x, y \in N^{4}(v)$.
(6.1) Check whether x and y have a common neighbor in $N^{3}(v)$. If yes then G contains a K_{3} - STOP.
(62) Otherwise, let $u_{x}\left(u_{y}\right)$ be a neighbor of $x(y)$ in $N^{3}(v)$. Check whether u_{x} and u_{y} have a common neighbor w in $N^{2}(v)$. If yes then w, u_{x}, x, y, u_{y} is a C_{5} - STOP. Otherwise, let $w_{x}\left(w_{y}\right)$ be a neighbor of $u_{x}\left(u_{y}\right)$ in $N^{2}(v)$. Then $w_{x}, u_{x}, x, y, u_{y}, w_{y}$ is a P_{6} - STOP.

Theorem 5 Algorithm 1 is correct and works in time $\mathcal{O}\left(n^{2}\right)$.
Proof: Correctness: Assume that G is a nonbipartite graph and $N^{k}(v), k \geq 1$, is a hanging of G with start vertex v. Obviously, if $N^{5}(v) \neq \emptyset$ then G contains a P_{6}. Otherwise, since G is not bipartite, one of the levels $N^{k}(v), 1 \leq k \leq 4$, contains an edge $x \sim y$. Let k_{0} be the smallest index k such that $N^{k}(v)$ contains an egde. If $k_{0}=1$ then G contains a K_{3}; if $k=2$ then G contains a K_{3} or C_{5} depending on the question whether x and y have a common neighbor in $N(v)$; if $k=3$ then G contains a K_{3}, C_{5} or P_{6} depending on the criteria given in steps (5.1), (5.2) of the algorithm. Finally, if $k=4$ then again G contains a K_{3}, C_{5} or P_{6} depending on the criteria given in steps (6.1), (6.2) of the algorithm. This shows the correctness of the algorithm.

Time bound: Step (1): Breadth-First Search for one start vertex v can be done in linear time $\mathcal{O}(n+m)$. Steps (2), (3), (4), (5) and (6): can obviously be done in linear time.
Steps (4.1) and (4.2), (5.1) and (5.2), (6.1) and (6.2): can obviously be done in time $\mathcal{O}\left(n^{2}\right)$.
If Algorithm 1 ends with a $C_{5} C$ then the next task is to classify the vertices not in C as k-vertices, $0 \leq k \leq 5$. If there is a k-vertex for $k \in\{3,4,5\}$ then G contains a K_{3}. Otherwise, check whether C together with its 0 -, 1 - and 2 -vertices fulfill all the conditions of the Structure Theorem. If not then G is not $\left(P_{6}, K_{3}\right)$-free. Otherwise, a k-expression for G can be constructed by Corollary 3 .

7 Conclusion

In this paper, we give a complete structure description of (prime) $\left(P_{6}, K_{3}\right)$-free graphs. Moreover, we show that the clique-width of these graphs is bounded, and we give a robust algorithm which, for an arbitrary nonbipartite input graph G, either constructs a corresponding k-expression of G if Algorithm 1 returns a C_{5} and G fulfills the conditions of the Structure Theorem or states that G does not fulfill these conditions (in which case it cannot be (P_{6}, K_{3})-free) or finds an induced P_{6} or K_{3} in G. The running time of this algorithm is at most $\mathcal{O}\left(n^{2}\right)$.

The fact that $\left(P_{6}, K_{3}\right)$-free graphs have bounded clique-width can be extended to (P_{6}, paw)-free graphs by the following observation by Olariu [22]: A graph G is paw-free if and only if each component of G is either triangle-free or complete multipartite.

Moreover, in [23], Olariu has observed that if a prime graph contains a triangle then it contains a house, bull or double-gem (these are the minimal prime extensions of the non-prime paw graph). Thus also (P_{6},house,bull,double-gem)-free graphs have bounded clique-width.

It remains a challenging open problem whether there is a linear time algorithm for constructing k expressions of (P_{6}, K_{3})-free graphs (k-expressions for (P_{6},house,bull,double-gem)-free graphs, respectively) and whether the class of ($S_{1,2,3}, K_{3}$)-free graphs has bounded clique-width.

Acknowledgements

We are grateful to Van Bang Le for helpful discussions and to three anonymous referees for their valuable comments which lead to considerable improvements in the presentation of our results.

References

[1] R. Boliac and V.V. Lozin, On the clique-width of graphs in hereditary classes, Proceedings of ISAAC 2002, Lecture Notes in Computer Science 2518 (2002) 44-54
[2] A.Brandstädt, J. Engelfriet, H.-O. Le, V.V. Lozin, Clique-Width for Four-Vertex Forbidden Subgraphs, extended abstract in: M. Liśkiewicz and R. Reischuk (Eds.), FCT 2005, LNCS 3623, 174-185, 2005; full version accepted for Theory of Computing Systems
[3] A. Brandstädt, H.-O. Le, and R. Mosca, Gem- and co-gem-free graphs have bounded clique width, Internat. J. of Foundations of Computer Science 15 (2004) 163-185
[4] A. Brandstädt, V.B. Le, and J. Spinrad, Graph Classes: A Survey, SIAM Monographs on Discrete Math. Appl., Vol. 3, SIAM, Philadelphia (1999)
[5] S. Brandt, Triangle-free graphs and forbidden subgraphs, Discrete Applied Math. 120 (2002) 25-33
[6] D.G. Corneil, H. Lerchs, and L.K. Stewart-Burlingham, Complement reducible graphs, Discrete Applied Math. 3 (1981) 163-174
[7] D.G. Corneil, Y. Perl, and L.K. Stewart, Cographs: recognition, applications, and algorithms, Congressus Numer. 43 (1984) 249-258
[8] D.G. Corneil, Y. Perl, and L.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Computing 14 (1985) 926-934
[9] B. Courcelle, J. Engelfriet, and G. Rozenberg, Handle-rewriting hypergraph grammars, J Comput. Syst. Sciences, 46 (1993) 218-270
[10] B. Courcelle, J.A. Makowsky, and U. Rotics, Linear time solvable optimization problems on graphs of bounded clique width, Theory of Computing Systems 33 (2000) 125-150
[11] B. Courcelle and S. Olariu, Upper bounds to the clique-width of graphs, Discrete Appl. Math. 101 (2000) 77-114
[12] J.-L. Fouquet, V. Giakoumakis, and J.-M. Vanherpe, Bipartite graphs totally decomposable by canonical decomposition, Internat J. Foundations of Computer Science 10 (1999) 513-534
[13] V. Giakoumakis and J.-M. Vanherpe, Linear time recognition and optimization for weak-bisplit graphs, bi-cographs and bipartite P_{6}-free graphs, Internat. J. Foundations of Computer Science 14 (2003) 107-136
[14] G. Gottlob and R. Pichler, Hypergraphs in model checking: acyclicity and hypertree-width versus clique-width, SIAM J. Computing 33 (2004) 351-378
[15] Ö. Johansson, Clique-Decomposition, NLC-Decomposition, and Modular Decomposition-Relationships and Results for Random Graphs, Congressus Numerantium 132 (1998), 39-60; http://wwwnada.kth.se/~ojvind/papers/CGTC 98. pdf
[16] J. Liu and H. Zhou, Dominating subgraphs in graphs with some forbidden structure, Discrete Math. 135 (1994) 163-168
[17] V.V. Lozin, Bipartite graphs without a skew star, Discrete Math. 257 (2002) 83-100
[18] S Mahfud, Effiziente Algorithmen zur Bestimmung der Unabhängigkeitszahl in Graphen, Dissertation, Institut für Informatik, Universität Rostock, 2005
[19] R.M. McConnell and J. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1999) 189-241
[20] R.H. Möhring and F.J. Radermacher, Substitution decomposition for discrete structures and connections with combinatorial optimization, Annals of Discrete Math. 19 (1984) 257-356
[21] R. Mosca, Stable sets in certain P_{6}-free graphs, Discrete Applied Math 92 (1999) 177-191
[22] S. Olariu, Paw-free graphs, Infomation Processing Letters 28 (1988) 53-54
[23] S. Olariu, On the closure of triangle-free graphs under substitution, Infomation Processing Letters 34 (1990) 97-101
[24] S. Poljak, A note on stable sets and colorings of graphs, Commun. Math. Univ. Carolinae 15 (1974) 307-309
[25] H.-J. Prömel, T. Schickinger, and A. Steger, A note on triangle-free and bipartite graphs, Discrete Math. 257 (2002) 531-540
[26] B. Randerath, I. Schiermeyer, and M. Tewes, Three-colourability and forbidden subgraphs. II: polynomial algorithms, Discrete Math. 251 (2002) 137-153
[27] J.P. Spinrad, Efficient Graph Representations, Fields Institute Monographs, American Mathematical Society, 2003
[28] D.P. Sumner, Subtrees of a graph and chromatic number, In: The Theory and Applications of Graphs, eds. Chartrand et al., Wiley New York (1981) 557-576

