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The Maximum Weight Stable Set (MWS) Problem is one of the fundamental problems on graphs. It is well-known to

be NP-complete for triangle-free graphs, and Mosca has shown that it is solvable in polynomial time when restricted

to P6- and triangle-free graphs. We give a complete structure analysis of (nonbipartite) P6- and triangle-free graphs

which are prime in the sense of modular decomposition. It turns out that the structure of these graphs is simple

implying bounded clique-width and thus, efficient algorithms exist for all problems expressible in terms of Monadic

Second Order Logic with quantification only over vertex predicates. The problems Vertex Cover, MWS, Maximum

Clique, Minimum Dominating Set, Steiner Tree, and Maximum Induced Matching are among them.

Our results improve the previous one on the MWS problem by Mosca with respect to structure and time bound but

also extends a previous result by Fouquet, Giakoumakis, and Vanherpe which have shown that bipartite P6-free graphs

have bounded clique-width. Moreover, it covers a result by Randerath, Schiermeyer, and Tewes on polynomial time

3-colorability of P6- and triangle-free graphs.
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1 Introduction

Basic problems on graphs such as Vertex Cover and Maximum Weight Stable Set (MWS) which are NP-

complete in general can be solved efficiently for various graph classes. Thus, for example, the problems

Vertex Cover and MWS are NP-complete even for triangle-free graphs [24] but can be solved in polyno-

mial time for bipartite graphs. Mosca [21] has shown that MWS can be solved in time O(n4.5) for any

P6- and triangle-free graph. Let Pk denote the induced path of k vertices and let Si,j,k denote the tree

with exactly one vertex r of degree 3 and three leaves which have distance i, j, k from r, respectively.

In this paper, we give a complete structure analysis of P6- and triangle-free graphs by showing that

such graphs which are not bipartite but prime in the sense of modular decomposition have simple structure

which implies bounded clique-width for these graph classes. This leads to the following improvements

over previous results:

• it improves the time bound of the MWS algorithm in [21] from O(n4.5) to O(n2) by using the

clique-width approach;
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• it leads to more efficient algorithms not only for the MWS problem but also for problems such as

Maximum Clique, Minimum Dominating Set, Steiner Tree, and Maximum Induced Matching and

in general for all problems expressible in terms of Monadic Second Order Logic with quantification

only over vertex predicates - see [10] - based on a so-called k-expression of the input graph;

• it extends the previous result by Fouquet, Giakoumakis and Vanherpe [12] on bounded clique-width

from bipartite P6-free graphs to (P6,K3)-free graphs;

• it extends efficient algorithms to larger classes: the input graph is not necessarily assumed to be

(P6,K3)-free. Our algorithm for constructing a k-expression of the input graph either results in

such an expression or proves that the input graph contains a P6 or K3. This approach is called

robust in [27].

Remark. There is great and constant interest in triangle-free graphs and in particular, P6- and triangle-

free graphs and variants; many papers are dealing with such graphs. Some examples are:

1. Prömel, Schickinger and Steger [25] have shown that with “high probability”, a triangle-free graph

can be made bipartite by removing a single vertex (which extends the famous result by Erdös,

Kleitman and Rothschild saying that almost all triangle-free graphs are bipartite).

2. Liu and Zhou [16] showed that a triangle-free graph G is P6-free if and only if every connected

induced subgraph of G has a dominating complete bipartite subgraph or a dominating C6.

3. Brandt [5] also studied the structure of P6- and triangle-free graphs but neither the results of Liu

and Zhou nor the results of Brandt lead to a complete structure analysis and bounded clique-width

for this graph class.

4. Sumner [28] proved that P6-, C6- and triangle-free graphs are 3-colorable. This result was extended

by Randerath, Schiermeyer and Tewes [26] to 4-colorability of P6- and triangle-free graphs and a

polynomial time algorithm for 3-colorability on P6-free graphs.

5. In [17], Lozin shows that bipartite S1,2,3-free graphs (an extension of P6-free bipartite graphs) have

bounded clique-width.

Recently, there is increasing interest in classes of bipartite graphs of bounded clique-width. The motiva-

tion partially comes from applications in Model Checking which is crucial in the theory of Database Sys-

tems as well as Constraint Satisfaction of Artificial Intelligence - see [14]. The model checking problem

can be formulated in terms of hypergraphs, and the corresponding bipartite vertex-hyperedge incidence

graph of a hypergraph H uniquely determines H . It turns out that bounded clique-width of this bipartite

incidence graph is one of the most general conditions under which the model checking problem can be

solved efficiently.

Subsequently, we always focus on the nonbipartite case since bipartite P6-free graphs were studied in

[12, 17]. The main result of this paper, namely Theorem 1, gives a complete structure analysis of P6- and

triangle-free graphs and implies bounded clique-width of these graphs.
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2 Basic Notions and Tools

Throughout this paper, let G = (V,E) be a finite undirected graph without self-loops and multiple edges

and let |V | = n, |E| = m. For a vertex v ∈ V , let N(v) = {u | uv ∈ E} denote the neighborhood of v
in G, and, more generally, let N i(v) denote the set of vertices with distance i to v, i ≥ 1.

Disjoint vertex sets X, Y form a join, denoted by X 1©Y (co-join, denoted by X 0©Y ) if for all pairs

x ∈ X , y ∈ Y , xy ∈ E (xy /∈ E) holds.

Subsequently, we will consider join and co-join also as operations, i.e., the join operation between

disjoint vertex sets X, Y adds all edges between them, whereas the co-join operation for X and Y is the

disjoint union of the subgraphs induced by X and Y (without edges between them).

Let u ∼ v if uv ∈ E and u 6∼ v otherwise. We will call u 6∼ v a coedge. A vertex z ∈ V distinguishes

vertices x, y ∈ V if zx ∈ E and zy /∈ E.

A vertex set M ⊆ V is a module if no vertex from V \M distinguishes two vertices from M , i.e., every

vertex v ∈ V \ M has either a join or a co-join to M . A vertex set is trivial if it is empty, one-elementary

or the entire vertex set. Note that trivial vertex sets are modules, the so-called trivial modules. Nontrivial

modules are called homogeneous sets.

A graph is prime if it contains only trivial modules. The notion of module plays a crucial role in the

modular (or substitution) decomposition of graphs (and other discrete structures) which is of basic impor-

tance for the design of efficient algorithms - see e.g. [20] for modular decomposition of discrete structures

and its algorithmic use and [19] for a linear-time algorithm constructing the modular decomposition tree

of a given graph.

For U ⊆ V , let G[U ] denote the subgraph of G induced by U . Throughout this paper, all subgraphs

are understood to be induced subgraphs. Let F denote a set of graphs. A graph is F-free if none of its

induced subgraphs is in F .

A vertex set U ⊆ V is stable (or independent) in graph G if the vertices in U are pairwise nonadjacent.

For a given graph with vertex weights, the Maximum Weight Stable Set (MWS) Problem asks for a stable

set of maximum vertex weight.

Let co-G = G = (V, E) denote the complement graph of G. A vertex set U ⊆ V is a clique in G if

U is a stable set in G. Let Kℓ denote the clique with ℓ vertices, and let ℓK1 denote the stable set with ℓ
vertices. K3 is called triangle.

Recall that for k ≥ 1, Pk denotes a chordless path with k vertices and k − 1 edges, and for k ≥ 3, Ck

denotes a chordless cycle with k vertices and k edges.

Moreover, recall that Si,j,k denotes the tree with exactly one vertex r of degree 3 and three leaves

which have distance i, j, k from r, respectively. Thus, the S1,2,3 has vertices a, b, c, d, e, f, g and edges

ab, bc, cd, de, ef, cg.

The paw has vertices a, b, c, d and edges ab, ac, bc, cd. The house is the co-P5. The bull has vertices

a, b, c, d, e and edges ab, bc, cd, be, ce. The double-gem has vertices a, b, c, d, e, f and edges ab, ac, bc,

bd, cd, ce, de, df , ef .

For a subgraph H of G, a vertex not in H is a k-vertex of H (or for H) if it has exactly k neighbors in

H . We say that H has no k-vertex if there is no k-vertex for H . The subgraph H dominates the graph G
if there is no 0-vertex for H in G.

In what follows, we need the following classes of bipartite and co-bipartite graphs:

• G is matched co-bipartite if its vertex set is partitionable into two cliques C1, C2 with |C1| = |C2|
or |C1| = |C2| − 1 such that the edges between C1 and C2 are a matching and at most one vertex
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in C1 and C2 is not covered by the matching.

• G is co-matched bipartite if G is the complement graph of a matched co-bipartite graph.

If a graph is triangle-free but not bipartite, it must contain an odd cycle of length at least 5. For P6-free

graphs, this must be a C5, say, C with vertices v1, . . . , v5 and edges {vi, vi+1}, i ∈ {1, . . . , 5} (throughout

this paper, all index arithmetic with respect to a C5 is done modulo 5). Obviously, in a triangle-free graph,

a C5 C has no 3-, 4- and 5-vertex, and 2-vertices of C have nonconsecutive neighbors in C. Let X denote

the set of 0-vertices of C, and for i ∈ {1, . . . , 5}, let Yi denote the set of 1-vertices of C being adjacent to

vi, and let Zi,i+2 denote the set of 2-vertices of C being adjacent to vi and vi+2.

Moreover, let Y = Y1 ∪ . . .∪ Y5 and Z = Z1,3 ∪Z2,4 ∪Z3,5 ∪Z4,1 ∪Z5,2. Obviously, {v1, . . . , v5} ∪
X ∪ Y ∪ Z is a partition of V .

Lemma 1 Let G be a triangle-free graph containing a C5 C with vertices v1, . . . , v5 and edges {vi, vi+1},

i ∈ {1, . . . , 5}. Then the following properties hold for all i ∈ {1, . . . , 5}:

(i) Yi and Zi,i+2 are stable sets;

(ii) Yi 0©(Zi,i+2 ∪ Zi−2,i);

(iii) Zi,i+2 0©Zi+2,i+4;

(iv) if G is connected P6-free then the set X of 0-vertices of the C5 C is a stable set, Yi 0©X , and

Yi 1©Yi+2 as well as Yi 0©Yi+1.

Lemma 2 Let G be a prime (P6,K3)-free graph containing a C5 C with vertices v1, . . . , v5 and edges

{vi, vi+1}, i ∈ {1, . . . , 5}. Then the following properties hold for all i ∈ {1, . . . , 5}:

(i) every vertex in Zi−1,i+1 with a neighbor in Yi has a join to Zi−2,i and to Zi,i+2;

(ii) vertices in Yi can only be distinguished by vertices in Zi−1,i+1;

(iii) coedges between consecutive 2-vertex sets cannot be distinguished by 0-vertices;

(iv) there are no two 0-vertices x, y ∈ X with x adjacent to Zi,i+2 and y adjacent to Zi+2,i+4;

(v) if |Yi| ≥ 2 then Yi−2 = Yi+2 = ∅;

(vi) if x 6∼ y is a coedge with x ∈ Zi,i+2 and y ∈ Zi+1,i+3 then x 1©Yi+3 and y 1©Yi;

(vii) vertices x ∈ Zi,i+2, y ∈ Zi+1,i+3 with x 6∼ y cannot be distinguished by vertices in Yi+4;

Proof: In this proof and subsequent ones, without loss of generality, we choose some fixed values for

i ∈ {1, . . . , 5}.

(i) If x ∈ Y3, y ∈ Z2,4 and z ∈ Z3,5 with x ∼ y and y 6∼ z then x, y, v2, v1, v5, z induce a P6 in G.

(ii) By Lemma 1, Zi−2,i and Zi,i+2 have a co-join to Yi. Assume that x, y ∈ Y3 and z ∈ Z5,2 such that

x ∼ z and y 6∼ z. Then v1, v5, z, x, v3, y induce a P6 in G.
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( iii) If x ∈ Z1,3, y ∈ Z2,4 and z ∈ X such that x 6∼ y and z ∼ x, z 6∼ y then z, x, v1, v5, v4, y induce a

P6 in G.

( iv) Assume that there are vertices x, y ∈ X , x 6= y and u ∈ Z1,3, v ∈ Z3,5 such that x ∼ u,

y ∼ v. Since x, u, v1, v5, v, y induce no P6, either x ∼ v or y ∼ u but if x ∼ v and y 6∼ u
then v2, v1, u, x, v, y induce a P6. Thus, x and y have the same neighborhood in Z1,3 and Z3,5.

Since G is prime, there must be a vertex z distinguishing x and y, say z ∼ x and z 6∼ y. Recall

that by Lemma 1 ( iv), no 0- and no 1-vertex can distinguish x and y. Thus, z must be a 2-vertex.

If z ∈ Z5,2 then y, v, x, z, v2, v1 induce a P6, and similarly for z ∈ Z4,1. Finally, assume that

z ∈ Z2,4. Note that z 6∼ u and z 6∼ v since z ∼ x, x ∼ u, x ∼ v and G is triangle-free but now

v, y, u, v1, v2, z induce a P6 - contradiction.

( v) If |Y3| ≥ 2 then, since Y3 is no module, there are s, s′ ∈ Y3, s 6= s′, and x ∈ Z2,4 such that x ∼ s
and x 6∼ s′. If Y1 6= ∅ and r ∈ Y1 then s′, r, s, x, v4, v5 induce a P6.

(vi) If x ∈ Z1,3, y ∈ Z2,4 and u ∈ Y4 (v ∈ Y1, respectively) with x 6∼ y and x 6∼ u (y 6∼ v, respectively)

then u, v4, y, v2, v1, x (v, v1, x, v3, v4, y, respectively) induce a P6 in G.

( vii) If x ∈ Z1,3, y ∈ Z2,4 and z ∈ Y5 such that x 6∼ y and x ∼ z, y 6∼ z then z, x, v1, v2, y, v4 induce a

P6 in G.

✷

Lemma iv can also be expressed in the following way:

If the set of 0-vertices adjacent to Zi,i+2 is nontrivial then the set of 0-vertices adjacent to Zi+2,i+4 is

empty.

An immediate consequence of Lemma v is

Corollary 1 At most two of the 1-vertex sets are nontrivial, namely consecutive ones.

For the next section we need the following notions:

Z0
i,i+2 := {x | x ∈ Zi,i+2 and x has a nonneighbor in Zi−1,i+1 or in Zi+1,i+3} for i ∈ {1, . . . , 5},

and let

Z0 :=
⋃5

i=1 Z0
i,i+2. We say that

2-vertices v ∈ Z0 are of type 0 and 2-vertices v ∈ Z \ Z0 are of type 1.

Let X0 denote the set of 0-vertices being adjacent to a vertex in Z0, and let

G0 := G[X0 ∪ Z0].

3 Structure of the Subgraph G0 := G[X0 ∪ Z0]
Throughout this section, let G be a P6- and triangle-free graph containing C5 C with vertices v1, . . . , v5

and edges {vi, vi+1}, i ∈ {1, . . . , 5}. The aim of this section is to describe the structure of G0 as a first

step of the complete structure description of G. We first focus on the structure of the subgraph G[Z0]. In

the subsequent Lemmas 3, 4, 5 and 6, primality of the graph is not required.
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Lemma 3 (i) There are no four vertices x, u ∈ Zi,i+2, y, v ∈ Zi+1,i+3 such that x ∼ y, x 6∼ v, u 6∼ y,

and u 6∼ v.

(ii) There are no four vertices x ∈ Zi−1,i+1, y, y′ ∈ Zi,i+2 and z ∈ Zi+1,i+3 such that x ∼ y, x 6∼ y′,

y 6∼ z, and y′ ∼ z.

(iii) There are no four vertices u ∈ Zi−1,i+1, v ∈ Zi,i+2, x ∈ Zi+1,i+3, y ∈ Zi+2,i+4 such that u 6∼ v,

v ∼ x and x 6∼ y.

Proof:

(i) If there are four vertices x, u ∈ Z1,3, y, v ∈ Z2,4 such that x ∼ y, x 6∼ v, u 6∼ y, and u 6∼ v then

u, v1, x, y, v4, v induce a P6 in G.

( ii) If there are four vertices x ∈ Z1,3, y, y′ ∈ Z2,4 and z ∈ Z3,5 such that x ∼ y, x 6∼ y′, y 6∼ z, and

y′ ∼ z then y, x, v1, v5, z, y′ induce a P6 in G.

(iii) If there are four vertices u ∈ Z5,2, v ∈ Z1,3, x ∈ Z2,4, y ∈ Z3,5 such that u 6∼ v, v ∼ x and x 6∼ y
then v, x, v2, u, v5, y induce a P6 in G.

✷

Figure 1 shows the three forbidden configurations of Lemma 3 (boldface edges indicate P6).

Fig. 1: Forbidden configurations of Lemma 3

A simple consequence of Lemma 3 is the following:

Lemma 4 If there are x ∈ Z0
i,i+2, y ∈ Z0

i−1,i+1, z ∈ Z0
i−2,i such that x ∼ y and y 6∼ z then Z0

i+1,i+3 =

∅. Analogously, if there are x ∈ Z0
i,i+2, y ∈ Z0

i−1,i+1, z ∈ Z0
i−2,i such that x 6∼ y and y ∼ z then

Z0
i−3,i−1 = ∅.

Proof: Let x ∈ Z0
5,2, y ∈ Z0

4,1 and z ∈ Z0
3,5 such that x ∼ y and y 6∼ z. Then x 1©Z0

1,3, since otherwise

there is a u ∈ Z0
1,3 with x 6∼ u, and then z, y, x, u contradict to Lemma 3 ( iii). Since x ∈ Z0, x must
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have a nonneighbor y′ ∈ Z0
4,1. Assume that there is a vertex u ∈ Z0

1,3. Then u 1©Z0
2,4, since otherwise

there is a w ∈ Z0
2,4 with u 6∼ w, and then y′, x, u, w contradict to Lemma 3 ( iii). Thus, since u ∈ Z0, u

must have a nonneighbor x′ ∈ Z0
5,2. Now x′ 6∼ y′, otherwise y′, x′, x, u contradict to Lemma 3 ( ii), and

x′ ∼ y, otherwise y, y′, x, x′ contradict to Lemma 3 ( i), but now z, y, x′, u contradict to Lemma 3 ( iii)

Thus, Z0
1,3 = ∅. The second claim follows by symmetry. ✷

Another consequence of Lemma 3 ( i) and Lemma 2 is the following property:

Lemma 5 Vertices x, x′ ∈ Z0
i,i+2 having a common nonneighbor y ∈ Z0

i−1,i+1 (y ∈ Z0
i+1,i+3, respectively)

can only be distinguished by a vertex y′ ∈ Z0
i+1,i+3 (y′ ∈ Z0

i−1,i+1, respectively).

Proof: Let x, x′ ∈ Z0
5,2 and let y ∈ Z0

4,1 be a common nonneighbor of x and x′. By Lemma 2 ( iii) x and

x′ cannot be distinguished by 0-vertices of C since a 0-vertex z being adjacent to x is also adjacent to y
and thus to x′. Since G is K3-free, x and x′ do not have edges to Y5 and Y2. By Lemma 2 ( i), x and x′

do not have edges to Y1. By Lemma 2 ( vi, x and x′ have a join to Y4. By Lemma 2 ( vii), x and x′ cannot

be distinguished by Y3 vertices. By Lemma 3 ( i), x and x′ cannot be distinguished by a vertex from Z4,1.

Thus, if y′ distinguishes x and x′ then necessarily y′ ∈ Z0
1,3. ✷

Lemma 6 If there is an edge between a vertex in Z0
i,i+2 and Z0

i+1,i+3 then the following conditions are

fulfilled:

(i) Z0
i+2,i+4 = ∅ or Z0

i−1,i+1 = ∅.

(ii) If Z0
i−1,i+1 6= ∅ then Z0

i−1,i+1 0© Z0
i,i+2.

Proof: Let xy ∈ E be an edge with x ∈ Z0
5,2 and y ∈ Z0

4,1

( i) Assume that Z0
1,3 6= ∅ and Z0

3,5 6= ∅. If y has a nonneighbor in Z0
3,5 then by Lemma 4, Z0

1,3 = ∅,

and analogously, if x has a nonneighbor in Z0
1,3 then by Lemma 4, Z0

3,5 = ∅. Thus, for every edge

xy ∈ E, x ∈ Z0
5,2, y ∈ Z0

4,1, x 1©Z0
1,3 and y 1©Z0

3,5 holds.

Since x ∈ Z0
5,2, x has a nonneighbor y′ ∈ Z0

4,1, and analogously, y has a nonneighbor x′ ∈ Z0
5,2.

By Lemma 3 ( i), x′ ∼ y′. Now let z ∈ Z0
1,3. By Lemma 4, applied to y′, x, z, Z0

2,4 = ∅ follows.

Thus, z must have a nonneighbor x′′ ∈ Z0
5,2, x′′ 6= x, x′′ 6= x′ (note that by Lemma 3 ( ii), applied

to z, x, x′, y′, also x′ ∼ z). If x′′ has a neighbor y′′ ∈ Z0
4,1 then by Lemma 4, z, x′′, y′′ imply

Z0
3,5 = ∅ - contradiction. Thus, x′′ has a co-join to Z0

4,1, but now x, y, x′′, y′ contradict to Lemma

3 ( i). Thus ( i) holds.

( ii) Let Z0
3,5 6= ∅ and assume that there is an edge between Z0

3,5 and Z0
4,1. Then by ( i), Z0

1,3 = Z0
2,4 = ∅.

Let z ∈ Z0
3,5 have a neighbor y′ ∈ Z0

4,1, and recall that x ∈ Z0
5,2 has neighbor y ∈ Z0

4,1. If x and z
have no common neighbor in Z0

4,1 (i.e., x 6∼ y′ and z 6∼ y) then x, y, y′, z contradicts to

Lemma 3 ( ii). Thus x and z have a common neighbor, say w ∈ Z0
4,1.

Since Z0
1,3 = Z0

2,4 = ∅, x has a nonneighbor u ∈ Z0
4,1 and z has a nonneighbor u′ ∈ Z0

4,1. If x
and z have no common nonneighbor in Z0

4,1 then x, u, u′, z contradict to Lemma 3 ( ii). Thus let

u ∈ Z0
4,1 be a common nonneighbor of x and z. Then w has a nonneighbor x′ ∈ Z0

5,2 or z′ ∈ Z0
3,5;

without loss of generality, say x′w /∈ E. By Lemma 3 ( i), x′ ∼ u but now x′, u, w, z contradict to

Lemma 3 ( ii). Thus, ( ii) holds.
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✷

Lemma 7 Let G be a prime P6- and triangle-free graph containing C5 as above. If there is an edge

between a vertex in Z0
i,i+2 and a vertex in Z0

i+1,i+3 then G[Z0
i,i+2 ∪ Z0

i+1,i+3] is a co-matched bipartite

graph.

Proof: Let ab ∈ E with a ∈ Z0
4,1 and b ∈ Z0

5,2. By Lemma 6 ( i), Z0
1,3 = ∅ or Z0

3,5 = ∅, say Z0
1,3 = ∅.

Assume that Z0
4,1 ∪ Z0

5,2 do not induce a co-matched bipartite graph. Then two vertices in one of the two

sets have a common nonneighbor in the other. First assume that x, x′ ∈ Z0
5,2 have a common nonneighbor

y ∈ Z0
4,1. Then, by Lemma 5, only vertices in Z0

1,3 can distinguish x and x′ but Z0
1,3 = ∅. Now assume

that x, x′ ∈ Z0
4,1 have a common nonneighbor y ∈ Z0

5,2. Then, again by Lemma 5, only vertices in Z0
3,5

can distinguish x and x′ but by Lemma 6 ( ii), there are no edges between Z0
3,5 and Z0

4,1. Since G is

prime, G[Z0
4,1 ∪ Z0

5,2] is co-matched bipartite. ✷

Corollary 2 G[Z0] is either the disjoint union of two co-matched bipartite graphs (which are possibly

empty or one of their color classes is empty and the other is trivial) or for each i ∈ {1, . . . , 5}, |Z0
i,i+2| =

1.

Proof: If there are no edges between consecutive sets Z0
i,i+2, i ∈ {1, . . . , 5}, then by Lemma 5, all Z0

i,i+2

are modules, and since G is prime, |Z0
i,i+2| ≤ 1. If in addition at least one of them is empty, G[Z0] is the

disjoint union of two (trivial) co-matched bipartite graphs.

Now assume without loss of generality that there is an edge between Z0
4,1 and Z0

5,2. Then by Lemma

7, Z0
4,1 and Z0

5,2 induce a co-matched bipartite graph, and by Lemma 6 ( i), Z0
3,5 = ∅ or Z0

1,3 = ∅, say

Z0
1,3 = ∅, and if also Z0

3,5 = ∅ then Z0
2,4 = ∅ by definition of type 0 2-vertices. If Z0

3,5 6= ∅ then Z0
3,5 0©

Z0
4,1 by Lemma 6 ( ii). Now, if there is an edge between Z0

2,4 and Z0
3,5 then again by Lemma 7, Z0

2,4 and

Z0
3,5 induce a co-matched bipartite graph, and if there is no edge between Z0

2,4 and Z0
3,5 then by Lemma

5, both sets have at most one vertex since G is prime In either case, G[Z0] is the disjoint union of two

co-matched bipartite graphs. ✷

Now, we add the 0-vertices X0 being adjacent to Z0 to G[Z0]. A copath in G[Z0] is a sequence of

coedges xixi+1, i ∈ {1, . . . , k}, such that xi ∈ Z0
j,j+2, xi+1 ∈ Z0

j+1,j+3 or xi ∈ Z0
j,j+2, xi+1 ∈

Z0
j−1,j+1 for some j ∈ {1, . . . , 5}. A cocomponent in G[Z0] is a maximal vertex subset U ⊆ Z0 such

that for every x and y in U , there is a copath connecting x and y.

Lemma 8 For each cocomponent Q in G[Z0], the set XQ of 0-vertices being adjacent to Q is a module

in G.

Proof: Let Q be a cocomponent in G[Z0], and let XQ denote the set of 0-vertices being adjacent to Q.

Assume that XQ is no module in G. Then there are x, y ∈ XQ and z /∈ XQ such that x ∼ z and y 6∼ z.

By Lemma 2 ( iii), every 0-vertex adjacent to Q has a join to Q, i.e., x 1©Q and y 1©Q. Let u ∈ Z0
1,3,

v ∈ Z0
2,4, u 6∼ v, be neighbors of x, y: {x, y} 1©{u, v}.

By Lemma 1 ( iv), the distinguishing vertex z is no 0-vertex since X is a stable set, and z is no 1-vertex

since X 0©Y . Thus, z must be a 2-vertex.

By Lemma 2 ( iv), z 6∈ (Z3,5 ∪ Z4,1 ∪ Z5,2). Thus, let z ∈ Z1,3 (z ∈ Z2,4, respectively). Then z 6∼ v
(z 6∼ u, respectively), since otherwise x, z, v (x, z, u, respectively) induce a triangle but now z and v (z
and u, respectively) form a coedge distinguished by y, a contradiction to Lemma 2 ( iii). ✷
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Since G is prime, |XQ| ≤ 1 for all cocomponents Q of G[Z0]. Thus, if G[Z0] has only one cocompo-

nent then there is at most one 0-vertex being adjacent to Z0. Note that by Lemma 6 ( ii) and by Corollary

2, if G[Z0] consists of two nonempty co-matched bipartite graphs then it has only one cocomponent. In

the case in which G[Z0] consists of only one co-matched bipartite graph, it may have arbitrarily many

cocomponents (which are just single coedges), and then by Lemma 8, every coedge of G[Z0] can have

exactly one neighbor in X . Since G is K3-free, every 0-vertex is adjacent to at most one coedge (note

that in a co-matched bipartite graph every two coedges are connected by two edges).

4 Structure of Nonbipartite Prime (P6,K3)-free Graphs

The aim of this section is to give a complete structure description of nonbipartite prime (P6,K3)-free

graphs G which also will lead to bounded clique-width. For this purpose, we subdivide G into the sub-

graph G0 and into five bipartite subgraphs based on the other 2-vertex sets, the 1-vertex sets and the other

0-vertices. It is already clear that {v1, . . . , v5}, X , Y and Z define a partition of the vertex set V of G.

Let Z1
i,i+2 := Zi,i+2 \Z0

i,i+2 and Z1 := Z \Z0. For i ∈ {1, . . . , 5}, let Xi denote the set of 0-vertices

being adjacent to Z1
i−1,i+1. Now, if for i ∈ {0, 1, . . . , 5}, Xi is trivial, we will omit the single vertex in

Xi, i.e., let

X ′

i =

{

Xi if Xi is nontrivial

∅ otherwise

For i ∈ {1, . . . , 5}, let Bi := G[X ′

i ∪ Yi ∪ Z1
i−1,i+1]. By Lemma 1 ( iv), X ∪ Yi is a stable set, and

thus, Bi is bipartite. Let XT denote the union of trivial Xi, i ∈ {0, 1, . . . , 5}.

The basic subgraphs in G are the subgraphs G0 and Bi, i ∈ {1, . . . , 5}.

Lemma 9 The vertex sets X ′

0, Z0 of G0 and the vertex sets X ′

i , Yi, Z1
i−1,i+1 of Bi, i ∈ {1, . . . , 5}, define

a partition of V \ ({v1, . . . , v5} ∪ XT ).

Proof: Obviously, X , Y and Z define a partition of V \ {v1, . . . , v5}, Z0 and Z1 define a partition of

Z, and Z1
i,i+2, i ∈ {1, . . . , 5}, define a partition of Z1. Moreover, G0 contains no 1-vertices, and Yi,

i ∈ {1, . . . , 5}, define a partition of Y .

Claim 4.1 If a 0-vertex is adjacent to some Z1
i,i+2 then it is not adjacent to Z0

i,i+2.

Proof. Without loss of generality, let x ∈ Z1
1,3 and y ∈ Z0

1,3 with a nonneighbor z ∈ Z0
2,4, z 6∼ y.

If for a 0-vertex u, u ∼ x and u ∼ y then by Lemma 2 ( iii), u ∼ z but now x, u, z induce a triangle -

contradiction. This shows Claim 4.1.

Claim 4.2 If a 0-vertex from X ′

i+1 is adjacent to some Z1
i,i+2 then it is not adjacent to Z0

j,j+2 and not

adjacent to Z1
j,j+2 for j 6= i.

Proof. Since G is K3-free, a 0-vertex being adjacent to Z1
i,i+2 is nonadjacent to Zi−1,i+1 and Zi+1,i+3,

and by Lemma 2 ( iv), if Xi+1 is nontrivial then no vertex of Xi+1 is adjacent to Zi−2,i or Zi+2,i+4. This

shows Claim 4.2.

By Claims 4.1 and 4.2, X0 ∩ (X1 ∪ . . .∪X5 \XT ) = ∅. Now by Claim 4.2 the sets Xi, Xj , i 6= j, are

disjoint Thus, X0, X1, . . . , X5 form a partition of X \ XT . This completes the proof of Lemma 9. ✷
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Recall that by Lemma 2 ( ii), vertices in Yi can only be distinguished by vertices in Zi−1,i+1. Thus,

every vertex in Zi−1,i+1 has either a join or a co-join to Yi+2 (Yi+3, respectively).

Let Zi−1,i+1;00 (Zi−1,i+1;01, Zi−1,i+1;10, Zi−1,i+1;11, respectively) be the set of 2-vertices in Zi−1,i+1

having a co-join to Yi+2 and Yi+3 (having a co-join to Yi+2 and a join to Yi+3, having a join to Yi+2 and

a co-join to Yi+3, having a join to Yi+2 and Yi+3, respectively). Moreover, let Za
i−1,i+1;bc = Za

i−1,i+1 ∩
Zi−1,i+1;bc, a ∈ {0, 1}, bc ∈ {00, 01, 10, 11}.

The basic vertex subsets of G are X ′

0, X
′

1, . . . , X
′

5, Y1, . . . , Y5, and Za
i−1,i+1;bc, i ∈ {1, . . . , 5}, a ∈

{0, 1}, bc ∈ {00, 01, 10, 11}.

Lemma 10 For all pairs of basic vertex subsets U,W from different basic subgraphs, either U 1©W or

U 0©W .

Proof: First assume that U ∈ {X ′

0, X
′

1, . . . , X
′

5}. If also W ∈ {X ′

0, X
′

1, . . . , X
′

5} then U 0©W since by

Lemma 1 ( iv), X is a stable set.

If W ∈ {Y1, . . . , Y5} then U 0©W since by Lemma 1 ( iv), there are no edges between 0-vertices and

1-vertices.

If W is a basic subset of 2-vertices, we have the following cases:

First assume that U = X ′

0. Let W = Z1
i−1,i+1;bc (note that W = Z0

i−1,i+1;bc is impossible since W

belongs to another basic subgraph). Assume that u ∈ U with u being adjacent to some x ∈ Z0
4,1 and

y ∈ Z0
5,2, x 6∼ y. Then u 0©W for W ∈ {Z1

3,5, Z
1
4,1, Z

1
5,2, Z

1
1,3} since G is K3-free, and u 0©W for

W = Z1
2,4 by Lemma 2 ( iv) since X ′

0 is assumed to be nontrivial or empty.

Now assume that U ∈ {X ′

1, . . . , X
′

5}, say U = X ′

1. Then, by Lemma 9, U 0©Z0 since X0 ∩ X ′

1 = ∅.

This completes the case analysis when U is a basic set of 0-vertices.

Next assume that U ∈ {Y1, . . . , Y5}. If also W ∈ {Y1, . . . , Y5} then U 1©W or U 0©W by Lemma 1

( iv).

Now, without loss of generality, let U = Y1, and assume that W is a basic subset from another basic

subgraph. Since G is K3-free, U 0©Z4,1 ∪ Z1,3. By Lemma 2 ( i), U 0©Z0
5,2. By definition of the basic

subsets Za
2,4;bc and Za

3,5;bc, U has join or co-join to all these basic subsets.

Finally, the connections between basic 2-vertex subsets from different basic subgraphs are join or co-

join by Lemma 1 ( iii), by definition of Z1
i,i+2 and by the definition of Bi and G0. Thus, Z1

i,i+2 has a join

to Zi−1,i+1 and Zi+1,i+3 and a co-join to Zi−2,i and Zi+2,i+4, i ∈ {1, . . . , 5}.

This shows Lemma 10. ✷

An immediate consequence of Lemma 9 and Lemma 10 is the following decomposition of G which is

the main result of this paper (notation of basic subsets and basic subgraphs as above):

Theorem 1 (Structure Theorem) Let G be a prime (P6,K3)-free graph which is not bipartite, and let C
be a C5 in G. Then the vertex set of G[V \ (V (C) ∪ XT )] can be partitioned into the (possibly empty)
basic subgraph G0 = G[Z0∪X0] and into the five (possibly empty) basic bipartite subgraphs B1, . . . , B5

such that the connections between the basic vertex subsets of different basic subgraphs are only join or

co-join.

Recall that G0 consists of the bipartite subgraph G[Z0] which, according to Corollary 2, is either the

disjoint union of two co-matched bipartite graphs or fulfills |Z0
i,i+2| = 1 for i ∈ {1, . . . , 5}, and the

0-vertices in X0 being adjacent to Z0.
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5 Bounded Clique-Width of (P6,K3)-free Graphs

The P4-free graphs (also called cographs) play a fundamental role in graph decomposition; see [8] for

linear time recognition of cographs, [6, 7, 8] for more information on P4-free graphs and [4] for a survey

on this graph class and related ones.

For a cograph G, either G or its complement is disconnected, and the cotree of G expresses how the

graph is recursively generated from single vertices by repeatedly applying join and co-join operations.

Note that the cographs are those graphs whose modular decomposition tree contains only join and co-join

nodes as internal nodes.

Based on the following operations on vertex-labeled graphs, namely

(i) create a vertex u labeled by integer ℓ, denoted by ℓ(u),

(ii) disjoint union (i.e., co-join), denoted by ⊕,

(iii) join between all vertices with label i and all vertices with label j for i 6= j, denoted by ηi,j , and

(iv) relabeling all vertices of label i by label j, denoted by ρi→j ,

the notion of clique-width cwd(G) of a graph G is defined in [9] as the minimum number of labels

which are necessary to generate G by using these operations. It is easy to see that cographs are exactly

the graphs whose clique-width is at most two.

A k-expression for a graph G of clique-width k describes the recursive generation of G by repeatedly

applying these operations using at most k different labels.

Proposition 1 ([10, 11])

(i) The clique-width cwd(G) of a graph G is the maximum of the clique-width of its prime induced

subgraphs if G has nontrivial prime subgraphs.

(ii) cwd(G) ≤ 2 · cwd(G).

In [10], it is shown that every problem expressible in a certain kind of Monadic Second Order Logic,

called LinEMSOL(τ1,L), is linear-time solvable on any graph class with bounded clique-width for which

a k-expression can be constructed in linear time.

Roughly speaking, MSOL(τ1) is Monadic Second Order Logic with quantification over subsets of

vertices but not of edges; MSOL(τ1,L) is the extension of MSOL(τ1) with the addition of labels added

to the vertices, and LinEMSOL(τ1,L) is the extension of MSOL(τ1,L) which allows to search for sets of

vertices which are optimal with respect to some linear evaluation functions. The problems Vertex Cover,

Maximum Weight Stable Set, Maximum Weight Clique, Steiner Tree, Domination and Maximum Induced

Matching are examples of LinEMSOL(τ1,L) expressible problems.

Theorem 2 ([10]) Let C be a class of graphs of clique-width at most k such that there is an O(f(|E|, |V |))
algorithm, which for each graph G in C, constructs a k-expression defining it. Then for every LinEMSOL(τ1,L)
problem on C, there is an algorithm solving this problem in time O(f(|E|, |V |)).

Observe that, trivially, the clique-width of a graph with n vertices is at most n. The following result by

Johansson gives a slightly sharper bound.

Lemma 11 ([15]) If G has n vertices then cwd(G) ≤ n − k as long as 2k + 2k ≤ n.
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Thus, for instance, the clique-width of a graph with nine vertices is at most seven. Another helpful tool is

Lemma 12 ([1]) Let G = (V,E) be a graph and V = F1∪F2 be a partition of V with |F2| ≤ s for some

s. If there is a t-expression for G[F1] then there is a (2s · (t + 1))-expression for G.

This lemma means that adding a constant number s of vertices to a graph H from a class of bounded

clique-width maintains bounded clique-width. This allows to disregard certain specific vertices and thus

to reduce graph G to its essential part G′.

We also need the following principle:

Principle 1 ([3]) Let G = (V,E) be a graph and V = V1 ∪ . . . ∪ Vp be a partition of V . If there is

a t-expression for G then there is a p · t-expression for G such that finally for each i ∈ {1, 2, . . . , p},

vertices in Vi get the same label and l(u) 6= l(v) for each pair u ∈ Vi, v ∈ Vj , i 6= j.

Our clique-width analysis of (P6,K3)-free graphs is based on the following results by Lozin [17] and,

slightly earlier, by Fouquet, Giakoumakis and Vanherpe [12].

Theorem 3 ([17]) The clique-width of bipartite S1,2,3-free graphs is at most 5.

Theorem 4 ([12]) The clique-width of bipartite P6-free graphs is at most 4, and given such a graph, a

4-expression can be constructed in linear time.

We also need:

Proposition 2 The clique-width is at most 4 for matched co-bipartite as well as for co-matched bipartite

graphs, and corresponding k-expressions, k ≤ 4, can be obtained in linear time.

The proof of Proposition 2 is straightforward.

To give an example, we describe how a graph G = (X ∪ Y ∪ Z,E) with pairwise disjoint vertex sets

X, Y, Z, each of size n, consisting of a prime co-matched bipartite graph B = (X, Y,E) with coedges

xiyi, i ∈ {1, . . . , n}, and with an additional neighbor zi ∈ Z, i ∈ {1, . . . , n}, to each coedge xiyi, can

be constructed with 6 labels:

α1 := ρ5→6(η5,2(η5,1(5(z1) ⊕ (1(x1) ⊕ 2(y1)))))
For i := 2 to n let

αi := ρ4→2(ρ3→1(ρ5→6(η3,2(η4,1(η5,4(η5,3(5(zi) ⊕ (3(xi) ⊕ (4(yi) ⊕ αi−1))))))))).
Now, Theorem 1 implies:

Corollary 3 The clique-width of (P6,K3)-free graphs is bounded.

Proof: If G is bipartite then by Theorem 4, its clique-width is at most 4. Now assume that G is prime and

not bipartite. Then Theorem 1 describes its structure. If all sets of 0-, 1- and 2-vertices are trivial then G
has at most 16 vertices and, by Lemma 11, its clique-width is at most 13.

The clique-width of G0 is at most 6 as the example above shows, and for every i ∈ {1, . . . , 5}, Bi is

bipartite and thus, by Theorem 4, its clique-width is at most 4.

Now, applying Principle 1, the 2-vertex subsets in the basic subgraphs G0 and Bi are subdivided into

the four basic subsets. It is clear that there are k-expressions for G0 and Bi where the basic subsets finally

get different labels. By Theorem 1, the edge sets between basic subsets from different basic subgraphs are

only join or co-join. Thus, finally these edges can easily be generated. This gives bounded clique-width

for G. ✷
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A more detailed analysis shows that the clique-width bound for (P6,K3)-free graphs can be improved

to 36 since in all cases, some of the subsets are trivial.

In [18], it is shown that (S1,1,3,K3)-free graphs as well as (S1,2,2,K3)-free graphs have bounded clique-

width.

The clique-width of (P6,K4)-free graphs is unbounded since in [2], it is shown that the clique-width for

the smaller class of (2K2,K4)-free graphs is unbounded (the 2K2 is the complement of C4). In the same

paper, it is mentioned that for P7-free bipartite graphs, it is unknown whether the clique-width of these

graphs is bounded or unbounded. It also seems to be unknown whether the clique-width of (P7,K3)-free

graphs is bounded or unbounded.

6 Time Bound for Robustly Constructing a k-Expression for G

By a result of Giakoumakis and Vanherpe [13], P6-free bipartite graphs can be recognized in linear time.

By Theorem 4, the clique-width of these graphs is at most 4, and given such a graph, a 4-expression can

be constructed in linear time. From now on, we focus on nonbipartite graphs.

The aim of this section is to give an efficient algorithm which for arbitrary prime nonbipartite input

graph G either determines a k-expression of G or finds out that G is not (P6,K3)-free. The time bound

of our algorithm is O(n2). Algorithm 1 does not check whether the input graph is indeed (P6,K3)-free;

instead, it tries to find an induced C5 or K3 or P6 in G, and if a C5 is found, it checks whether G fulfills

the conditions of the Structure Theorem. Thus, for constructing a k-expression for G, it is of crucial

importance to find a C5 in G.

Algorithm 1:

Input: An arbitrary prime nonbipartite graph G = (V,E).
Output: An induced C5 or K3 or P6 in G.

(1) Pick a vertex v ∈ V and determine the levels N i(v), i ≥ 1, by applying Breadth-First Search to G
with start vertex v.

(2) Check whether N5(v) 6= ∅. If yes then G contains a P6 - STOP. {Otherwise, from now on,

Nk(v) = ∅ for k ≥ 5.}

(3) Check whether N(v) is a stable set. If not then G contains a K3 - STOP.

(4) Check whether N2(v) is a stable set. If not then let x ∼ y for some x, y ∈ N2(v).

(4.1) Check whether x and y have a common neighbor in N(v). If yes then G contains a K3 - STOP.

(4.2) Otherwise, let ux (uy) be a neighbor of x (y) in N(v). Then v, ux, x, y, uy is a C5 - STOP.

(5) Check whether N3(v) is a stable set. If not then let x ∼ y for some x, y ∈ N3(v).

(5.1) Check whether x and y have a common neighbor in N2(v). If yes then G contains a K3 - STOP.

(5.2) Otherwise, let ux (uy) be a neighbor of x (y) in N2(v). Check whether ux and uy have a common

neighbor w in N(v). If yes then w, ux, x, y, uy is a C5 - STOP. Otherwise, let wx (wy) be a neighbor

of ux (uy) in N(v). Then wx, ux, x, y, uy, wy is a P6 - STOP.
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(6) {Now, since G is not bipartite, N4(v) is not a stable set.} Determine an edge x ∼ y for some

x, y ∈ N4(v).

(6.1) Check whether x and y have a common neighbor in N3(v). If yes then G contains a K3 - STOP.

(62) Otherwise, let ux (uy) be a neighbor of x (y) in N3(v). Check whether ux and uy have a common

neighbor w in N2(v). If yes then w, ux, x, y, uy is a C5 - STOP. Otherwise, let wx (wy) be a

neighbor of ux (uy) in N2(v). Then wx, ux, x, y, uy, wy is a P6 - STOP.

Theorem 5 Algorithm 1 is correct and works in time O(n2).

Proof: Correctness: Assume that G is a nonbipartite graph and Nk(v), k ≥ 1, is a hanging of G with

start vertex v. Obviously, if N5(v) 6= ∅ then G contains a P6. Otherwise, since G is not bipartite, one of

the levels Nk(v), 1 ≤ k ≤ 4, contains an edge x ∼ y. Let k0 be the smallest index k such that Nk(v)
contains an egde. If k0 = 1 then G contains a K3; if k = 2 then G contains a K3 or C5 depending on

the question whether x and y have a common neighbor in N(v); if k = 3 then G contains a K3, C5 or

P6 depending on the criteria given in steps (5.1), (5.2) of the algorithm. Finally, if k = 4 then again G
contains a K3, C5 or P6 depending on the criteria given in steps (6.1), (6.2) of the algorithm. This shows

the correctness of the algorithm.

Time bound: Step (1): Breadth-First Search for one start vertex v can be done in linear time O(n +m).
Steps (2), (3), (4), (5) and (6): can obviously be done in linear time.

Steps (4.1) and (4.2), (5.1) and (5.2), (6.1) and (6.2): can obviously be done in time O(n2). ✷

If Algorithm 1 ends with a C5 C then the next task is to classify the vertices not in C as k-vertices,

0 ≤ k ≤ 5. If there is a k-vertex for k ∈ {3, 4, 5} then G contains a K3. Otherwise, check whether C
together with its 0-, 1- and 2-vertices fulfill all the conditions of the Structure Theorem. If not then G is

not (P6,K3)-free. Otherwise, a k-expression for G can be constructed by Corollary 3.

7 Conclusion

In this paper, we give a complete structure description of (prime) (P6,K3)-free graphs. Moreover, we

show that the clique-width of these graphs is bounded, and we give a robust algorithm which, for an

arbitrary nonbipartite input graph G, either constructs a corresponding k-expression of G if Algorithm 1

returns a C5 and G fulfills the conditions of the Structure Theorem or states that G does not fulfill these

conditions (in which case it cannot be (P6,K3)-free) or finds an induced P6 or K3 in G. The running time

of this algorithm is at most O(n2).
The fact that (P6,K3)-free graphs have bounded clique-width can be extended to (P6,paw)-free graphs

by the following observation by Olariu [22]: A graph G is paw-free if and only if each component of G is

either triangle-free or complete multipartite.

Moreover, in [23], Olariu has observed that if a prime graph contains a triangle then it contains a house,

bull or double-gem (these are the minimal prime extensions of the non-prime paw graph). Thus also

(P6,house,bull,double-gem)-free graphs have bounded clique-width.

It remains a challenging open problem whether there is a linear time algorithm for constructing k-

expressions of (P6,K3)-free graphs (k-expressions for (P6,house,bull,double-gem)-free graphs, respec-

tively) and whether the class of (S1,2,3,K3)-free graphs has bounded clique-width.
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