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A repetition is a sequence of symbols in which the first half is the same as the second half. An edge-coloring of a graph is repetition-

free or nonrepetitive if there is no path with a color pattern that is a repetition. The minimum number of colors so that a graph has

a nonrepetitive edge-coloring is called its Thue edge-chromatic number.

We improve on the best known general upper bound of 4∆ − 4 for the Thue edge-chromatic number of trees of maximum degree

∆ due to Alon, Grytczuk, Haluszczak and Riordan (2002) by providing a simple nonrepetitive edge-coloring with 3∆− 2 colors.
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1 Introduction

A repetition is a sequence of even length (for example abacabac), such that the first half of the sequence is identical to

the second half. In 1906 Thue [13] proved that there are infinite sequences of 3 symbols that do not contain a repetition

consisting of consecutive elements in the sequence. Such sequences are called Thue sequences. Thue studied these

sequences as words that do not contain any square words ww and the interested reader can consult Berstel [2, 3] for

some background and a translation of Thue’s work using more current terminology. Thue sequences have been studied

and generalized in many views (see the survey of Grytczuk [9]), but in this paper we focus on the natural generalization

of the Thue problem to Graph Theory.

In 2002 Alon, Grytczuk, Hałuszczak and Riordan [1] proposed calling a coloring of the edges of a graph nonrepet-

itive if the sequence of colors on any open path in G is nonrepetitive. We will use π′(G) to denote the Thue chromatic

index of a graph G, which is the minimum number of colors in a nonrepetitive edge-coloring of G. In [1] the notation

π(G) was used for the Thue chromatic index, but by common practice we will instead use this notation for the Thue

chromatic number, which is the minimum number of colors in a nonrepetitive coloring of the vertices of G. Their

paper contains many interesting ideas and questions, the most intriguing of which is if π(G) is bounded by a constant

when G is planar. The best result in this direction is due to Dujmović, Frati, Joret, and Wood [7] who show that for

planar graphs on n vertices π(G) is O(log n). Conjecture 2 from [1] was settled by Currie [6] who showed that for the

n-cycle Cn, π(Cn) = 3 when n ≥ 18. One of the conjectures from [1] that remains open is whether π′(G) = O(∆)
when G is a graph of maximum degree ∆. At least ∆ colors are always needed, since nonrepetitive edge-colorings

must give adjacent edges different colors.

In this paper we study the seemingly easy question of nonrepetitive edge-colorings of trees. Thue’s sequence shows

that if Pn is the path on n vertices, then π′(Pn) = π(Pn−1) ≤ 3. (Keszegh, Patkós, and Zhu [10] extend this to more

general path-like graphs.) Using Thue sequences Alon, Grytczuk, Hałuszczak and Riordan [1] proved that every tree

of maximum degree ∆ ≥ 2 has a nonrepetitive edge-coloring with 4(∆ − 1) colors and stated that the same method

can be used to obtain a nonrepetitive vertex-coloring with 4 colors. However, while the star K1,t is the only tree

whose vertices can be colored nonrepetitively with fewer than 3 colors, it is still unknown which trees need 3 colors,

and which need 4 (see Brešar, Grytczuk, Klavžar, Niwczyk, Peterin [5].) Interestingly Fiorenzi, Ochem, Ossona de

Mendez, and Zhu [8] showed that for every integer k there are trees that have no nonrepetitive vertex-coloring from

lists of size k.

Up to this point the only paper we are aware of that narrows the large gap between the trivial lower bound of ∆
colors in a nonrepetitive edge-coloring of a tree of maximum degree ∆ and the 4∆ − 4 upper bound from [1] is by

Sudeep and Vishwanathan [12]. We will describe their results in the next section. The main result of this paper is to

give the first nontrivial improvement of the upper bound from [1].
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Theorem 1 If G is a tree of maximum degree ∆, then π′(G) ≤ 3∆− 2.

We will give a proof of this theorem in Section 4 using a coloring method we describe in Section 3 . We discuss

some possible ways for further improvements in Section 5.

2 Trees of small height

A k-ary tree is a tree with a designated root and the property that every vertex that is not a leaf has exactly k children.

The k-ary tree in which the distance from the root to every leaf is h is denoted by Tk,h. For convenience we will

assume that the vertices in Tk,h are labeled as suggested in Figures 1 and 2 with the root labeled 1, its children labeled

2, . . . , k+1, their children k+2, . . . k2 + k+1 and so on. This allows us to write u < v if u is to the left or above v,

and also gives the vertices at each level (distance from the root) a natural left to right order.

To obtain bounds on the Thue chromatic index of general trees G of maximum degree ∆ ≥ 2 it suffices to study

k-ary trees for k = ∆− 1, since G is a subgraph of Tk,h for sufficiently large h. Of course the Thue sequence shows

that for h > 4 we have π′(T1,h) = π′(Ph) = 3, and it is similarly obvious that π′(Tk,1) = π′(K1,k) = k. It is easy to

see that the next smallest tree T2,2 already requires 4 colors, and Figure 1 shows the only two such 4-colorings up to

isomorphism.
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Fig. 1: Nonrepetitive 4-edge-colorings of T2,2 of type I and II.

The Masters thesis of the second author [11] contains a proof of the fact that the type II coloring of T2,2 extends to

a unique 4-coloring of T2,3 whereas the type I coloring extends to exactly 5 non-isomorphic 4-colorings of T2,3, one

of which we show in Figure 2. It is furthermore shown that none of these 6 colorings can be extended to T2,4. In fact

π′(T2,4) = 5 as we can easily extend the coloring from Figure 2 by using color 5 on one of the two new edges at every

vertex from 8 through 15, and (for example) using colors 1,1,3,4,2,3,2,3 on the other edges in this order.
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Fig. 2: Nonrepetitive 4-edge-coloring of T2,3.

On a more general level, Sudeep and Vishwanathan [12] proved that π′(Tk,2) = ⌊ 3
2k⌋+1 (compare also Theorem 4

of [4]) and π′(Tk,3) >
√
5+1
2 k > 1.618k. Their lower bounds follow from counting arguments, whereas the construc-

tion for h = 2 consists of giving the edges at the first level colors 0, 1, . . . , k−1 and using all the ⌊k/2⌋+1 remaining

colors below each vertex at level 1. The remaining m = ⌈k/2⌉ − 1 edges below the edge of color i are colored with

i+ 1 mod k, i+ 2 mod k, . . . , i+mmod k, in other words cyclically.
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To explain the general upper bound of Alon, Grytczuk, Hałuszczak and Riordan [1] we let Tk denote the infinite

k-ary tree. It is not difficult to see that π′(Tk) is the minimum number of colors needed to color Tk,h for every h ≥ 1.

They prove that π′(Tk) ≤ 4k by giving a nonrepetitive edge-coloring of Tk on 4k colors as follows:

Starting with a Thue-sequence 123231 . . . insert 4 as every third symbol to obtain a nonrepetitive sequence S =
124324314 . . . that also does not contain a palindrome, that is a sequence of length at least 2 that reads forwards the

same as backwards, such as 121. Now color the edges with a common parent at distance h − 1 from the root with

k different copies s(1), . . . , s(k) of the symbol s in position h of S. For example, the type II coloring in Figure 1 is

isomorphic to the first two levels of this coloring of T2 if we replace 1(1), 1(2), 2(1), 2(2) by 1, 2, 3, 4 respectively. It

is now easy to verify that this coloring has no repetitively colored paths that are monotone (i.e. have all vertices at

different levels) since S is nonrepetitive, and none with a turning point (i.e. a vertex whose two neighbors on the path

are its children) since S is palindrome-free.

Sudeep and Vishwanathan noted the gap between the bounds 1.618k < π′(Tk) ≤ 4k, and stated their belief that

both can be improved. Even for k = 2 the gap 3.2 < π′(T2) ≤ 8 is large. Whereas obviously π′(T2) ≥ π′(T2,4) = 5
is not hard to obtain, the specific question of showing that π′(T2) < 8 is already raised in [1] at the end of Section

4.2. Theorem 1 implies that indeed π′(T2) ≤ 7. On the other hand, improving on the lower bound of 5 (if that is

possible) would require different ideas from those in [12] because [11] presents a nonrepetitive 5-coloring of T2,10 as

Example 3.2.6.

3 Derived colorings

In this section, which can also be found in [11], we present a way to color the edges of Tk that is different from that

used by Alon, Grytczuk, Hałuszczak and Riordan [1]. While their idea is in some sense the natural generalization

of the type II coloring in the sense that the coloring precedes by level, our coloring generalizes the type I coloring

by moving diagonally. The fact that the type I colorings could be extended in 5 nonisomorphic ways, whereas the

extension of the type II coloring was unique encourages this notion.

Definition 1 Let S = s1, s2, . . . be a sequence. The edge-coloring of a k-ary tree T derived from S is obtained as

follows: The edges incident with the root receive colors s1, s2, . . . , sk going from left to right in this order. If v is

any vertex other than the root and if the edge between v and its parent has color si, then the edges between v and its

children receive colors si+1, si+2, . . . , si+k again going from left to right in this order.

To color the edges of the infinite k-ary tree Tk in this fashion we need S to be infinite. To color the edges of Tk,h it

suffices for the length of S to be at least kh (which is rather small considering that there about kh edges) as each level

will use k entries of S more than the previous level (on the edges incident with the right-most vertex). For example the

type I coloring of T2,2 is the coloring derived from S = 1, 2, 3, 4, whereas the coloring of T2,3 in Figure 2 is derived

from S = 1, 2, 3, 4, 1, 2. The next definition will enable us to characterize infinite sequences whose derived coloring

is nonrepetitive.

Definition 2 Let S = s1, s2, . . . be a (finite or infinite) sequence. A sequence of indices i1, i2, . . . , i2r is called k-bad

for S if there is an m with 1 < m ≤ 2r such that the following four conditions hold:

a) si1 , si2 , . . . , si2r is a repetition

b) i1 > i2 > . . . > im < im+1 < im+2 < . . . < i2r

c) |ij − ij+1| ≤ k for all j with 1 ≤ j < 2r

d) im+1 < im + k if m < 2r.

S is called k-special if it has no k-bad sequence of indices.

The following proposition says something about the structure of a k-special sequence, namely that identical entries

must be at least 2k apart.

Proposition 1 A sequence S has a k-bad sequence of length at most four with m ≤ 3 if and only if si = sj for some

i < j < i+ 2k.
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Proof: For the back direction observe that if j ≤ i + k, then the sequence of indices j, i is k-bad with m = 2. If

i+ k ≤ j < i+ 2k, then the sequence i+ k − 1, i, i+ k − 1, j is k-bad with m = 2.

For the forward direction, observe that if i1, i2 is k-bad (necessarily with m = 2), then we can let j = i1 and i = i2.

If i1, i2, i3, i4 is k-bad with m = 2 then we let i = i2 and j = i4 and observe that i < i3 < j ≤ i3 + k ≤ i+ 2k − 1.

So we may assume that i1, i2, i3, i4 is k-bad with m = 3. If i2 = i4, then we let i = i3 and j = i1 and obtain

i < i2 < j ≤ i4 + k − 1 = i2 + k − 1 ≤ i + 2k − 1 as desired. Otherwise i2, i4 are distinct numbers x with

i3 < x ≤ i3 + k and we can let {i, j} = {i2, i4}. ✷

We are now ready to prove the following.

Theorem 2 An infinite sequence S is k-special if and only if the edge-coloring of Tk derived from S is nonrepetitive.

Proof: (⇒) Suppose that a k-special sequence S creates a repetition on a path P = v0, v1, . . . , v2r in Tk, that

is R = c(v0v1), c(v1v2), . . . , c(v2r−1v2r) satisfies c(vivi+1) = c(vi+rvi+r+1) for 0 ≤ i ≤ r − 1. Observe that

c(vjvj+1) = sij+1
where 0 ≤ j ≤ 2r − 1, for some sij+1

∈ S. There are two possibilities; v0, v1, . . . , v2r is

monotone or it has a single turning point.

Case 1: Suppose v0, v1, . . . , v2r is monotone.

If v0, v1, v2 . . . , v2r is monotone then we may assume v0 > v1 > v2 > . . . > v2r. Since vj > vj+1 we know that vj
is the child of vj+1 so we have that ij > ij+1 and |ij − ij+1| ≤ k. The subsequence si1 , si2 , . . . , si2r is a repetition,

so that i1, . . . , i2r is k-bad with m = 2r, a contradiction.

Case 2: Suppose v0, v1, . . . , v2r has a turning point vm for some m with 0 < m < 2r. By the definition of a turning

point vm−1 and vm+1 are the children of vm, and thus v0 > v1 > . . . > vm−1 > vm < vm+1 < . . . < v2r . We may

also assume without loss of generality that vm−1 < vm+1. Observe that v0, v1, . . . , vm is moving towards the root

and vm, vm+1, . . . , v2r is moving away from the root. Let c(vjvj+1) = sij+1
. We will show that i1 > i2 > . . . >

im−1 > im < im+1 < . . . < i2r and that this sequence is k-bad for S. Since vj−1 > vj > vj+1 for 1 ≤ j < m we

know that vj is the child of vj+1 and the parent of vj−1 so we have ij > ij+1 and |ij − ij+1| ≤ k. Similarly, since

vj−1 < vj < vj+1 for m < j < 2r we know that vj is the child of vj−1 and the parent of vj+1 so ij < ij+1 and

|ij − ij+1| ≤ k. Finally, since vm is the parent of vm−1 and vm+1 so |im − im+1| < k and im < im+1 since we

assumed vm−1 < vm+1. The subsequence si1 , si2 , . . . , si2r is a repetition, leading to the contradiction that i1, . . . , i2r
is k-bad.

(⇐) We proceed by contrapositive. So suppose S has a k-bad sequence i1, i2, . . . , i2r. We will show that there is a

path on vertices v0, v1, v2, . . . , v2r with c(vjvj+1) = sij+1
where the color pattern c(v0v1), c(v1v2) . . . , c(v2r−1v2r)

is a repetition in the derived edge-coloring of Tk. The left child of a vertex v is the child with the smallest label, and

we will denote this child as v′. Observe that if c(vp(v)) = sα, then c(vv′) = sα+1.

If m = 2r then we start at the root and successively go to the left child of the current vertex until we find a vertex

v2r such that c(v2rv
′
2r) = si2r and let v2r−1 = v′2r. Let v2r−2 be the child of v2r−1 with c(v2r−1v2r−2) = si2r−1

(this exists since |ij − ij+1| ≤ k). We continue in this way until we have found v0. Now observe that the color pattern

of v0, v1, . . . , v2r is si1 , si2 , . . . , si2r as desired.

If m < 2r then we start at the root and successively go to the left child of the current vertex until we find a vertex vm
such that c(vmv′m) = sim and let vm−1 = v′m. Let vm+1 be the child of vm with c(vmvm+1) = sim+1

(this exists since

im < im+1 < im + k). Now, for 0 ≤ p ≤ (m− 1) we successively find a child vp−1 of vp such that c(vpvp−1) = sip .

The existence of vp−1 is guaranteed by the fact |ip − ip−q| ≤ k as in the case m = 2r. For m + 1 ≤ q ≤ 2r we

successively find a child vq+1 of vq such that c(vqvq+1) = siq−1
which we can do since |iq − iq+1| ≤ k. Now observe

that the color pattern of v0, v1, . . . , v2r is si1 , si2 , . . . , si2r as desired. ✷

Remark 1 Observe that the proof of the forward direction also works for the finite case Tk,h, a fact we will use in

Section 5. However, the back direction need not hold in this case: We already mentioned that the coloring derived from

S = 1, 2, 3, 4, 1, 2 in Figure 2 is nonrepetitive (see also k = 2 in Proposition 3), but this sequence S is not 2-special,

because the index-sequence 3, 1, 2, 3, 5, 6 is 2-bad.

Thus to get a good upper bound on π′(Tk) we just need an infinite k-special sequence with few symbols. As every 2k
consecutive elements must be distinct, the following simple idea turns out to be useful: from a sequenceS on q symbols

we can form a sequence S(w) on qw symbols by replacing each symbol t in S by a block T = t(0), t(1), . . . t(w−1) of

w symbols. In [11] it is shown that if S is nonrepetitive and palindrome-free then S(k) is k-special. This gives a new

proof of the result from [1] that π′(Tk) ≤ 4k. In the next section we will improve on that.
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4 Main result

We begin with the simple observation, that if S is a sequence then S(k+1) = S+ has the property that if i, j are indices

with s+i = x(u) and s+j = y(v) then i < j ≤ i+k implies that either x = y and u < v, or s+i and s+j are in consecutive

blocks XY of S+ and u > v. In other words we can tell whether we are moving left or right through the sequence just

by looking at the superscripts (as long as consecutive symbols in S are distinct.) As a starting point we immediately

get the following result.

Corollary 1 For all k ≥ 1, π′(Tk) ≤ 3k + 3.

Proof: It is enough to show that S+ on 3(k + 1) is k-special whenever S is an infinite Thue sequence on 3 symbols.

Suppose there is a k-bad sequence of indices i1, . . . , i2r. Since every sequence of 2(k + 1) consecutive symbols in

S+ is distinct we get that r > 1 by Proposition 1. If m < 2r, then we can find an index j such that ij > ij+1 and

ir+j < ir+j+1 with sij = sir+j
= x(u) and sij+1

= sir+j+1
= y(v). Indeed, if 2 < m ≤ r we let j = 1, and

otherwise we let j = m− r. In this case x = y and u ≤ v would violate ij > ij+1 ≥ ij − k, whereas u ≥ v would

violate ir+j < ir+j+1 ≤ ir+j + k. Similarly if x 6= y, then u ≥ v would violate ij > ij+1 ≥ ij − k, whereas u ≤ v
would violate ir+j < ir+j+1 ≤ ir+j + k.

It remains to observe that in the case when m = 2r the sequence si1 , si2 , . . . , si2r in S+ yields a repetition in S by

erasing the superscripts and merging identical consecutive terms where necessary. ✷

This bound can be improved to 3k + 2 by removing all symbols of the form a(0) from S+ for one of the symbols a
from S and showing that the resulting sequence is still k-special. However, we can do a bit better. In fact, Theorem 1

follows directly from our main result in this section.

Theorem 3 There are arbitrarily long k-special sequences on 3k + 1 symbols.

One difficulty is that removing two symbols from S+ can easily result in the sequence not being k-special anymore.

To make the proof work we need to start with a Thue sequence with additional properties. The following result was

proved by Thue [14] and reformulated by Berstel [2, 3] using modern conventions.

Theorem 4 There are arbitrarily long nonrepetitive sequences with symbols a, b, c that do not contain aba or bab.

To give an idea of how such a sequence can be found, observe that it must be built out of blocks of the form

ca, cb, cab, and cba which we denote by x, y, z, u, respectively. (In fact, Thue primarily studied two-way infinite

sequences, but for our purposes we may simply assume our sequence starts with c.) We first build a sufficiently long

sequence on the 5 symbols A,B,C,D,E by starting with the sequence ”B” and then in each step simultaneously

replacing each letter as follows:

Replace A B C D E

by BDAEAC BDC BDAE BEAC BEAE

In the resulting sequence we then let A = zuyxu, B = zu, C = zuy, D = zxu, E = zxy. Lastly we replace x, y,

z and u as aforementioned. For example, from B we obtain BDC, and then after a second step BDCBEACBDAE.

This translates to the intermediate sequence

zuzxuzuyzuzxyzuyxuzuyzuzxuzuyxuzxy, which gives us the desired sequence

cabcbacabcacbacabcbacbcabcbacabcacbcabcbacbcacbacabcbacbcabcbacabcacbacabcbacbcacbacabcacb.
It is worth pointing out that Thue’s work goes deeper in that he essentially characterizes all two-way infinite se-

quences that meet the conditions from Theorem 4 as well as several other related sequences. We also want to mention

that the A,B,C in the following proof have nothing to do with the A,B,C in the previous paragraph, but we wanted

to maintain the notation used in [2, 3].

Proof of Theorem 3: Start with an infinite sequence S in the form of Theorem 4 and replace each occurrence of

c by a block C of k + 1 consecutive symbols c(0), c(1), . . . , c(k), whereas we replace each occurrence of a or b by

shorter blocks A = a(1), . . . , a(k) and B = b(1), . . . , b(k) respectively. We claim that the resulting sequence S′ on

3k + 1 symbols is k-special. So suppose there is a k-bad sequence of indices i1, . . . , i2r. As before when m = 2r the

sequence si1 , si2 , . . . , si2r in S′ yields a repetition in S by erasing the superscripts and merging identical consecutive

terms where necessary, as we can not ”jump” over any of the blocks A,B or C in S′. So we may assume that

1 < m < 2r, and since every 2k consecutive elements are distinct Proposition 1 implies that r > 2.
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Claim: If there is an index j with 0 < j < r such that ij > ij+1 and ir+j < ir+j+1, then sij = sir+j
= x(u) and

sij+1
= sir+j+1

= y(u) for 1 ≤ u ≤ k and {x, y} = {a, b}. Consequently, ij − ij+1 = k = ir+j+1 − ir+j .

Indeed, sij = sir+j
= x(u) and sij+1

= sir+j+1
= y(v) for some u, v, x, y. If x = y, then u ≤ v would violate

ij > ij+1 ≥ ij − k, whereas u ≥ v would violate ir+j < ir+j+1 ≤ ir+j + k. Thus x 6= y. Now u > v would violate

ij > ij+1 ≥ ij − k, whereas u < v would violate ir+j < ir+j+1 + k. So we may assume that u = v. If x = c, then

this would violate ij > ij+1 ≥ ij + k (as the presence of c(0) means that the distance is k + 1). Similarly if y = c,
then this violates ir+j < ir+j+1 ≤ ir+j + k. Hence we must have {x, y} = {a, b} finishing the proof of the claim.

If r < m < 2r, then we can apply the claim with j = m− r and obtain consequently that im+1 − im = k, in direct

contradiction to condition d) from Definition 2.

So we suppose that 2 ≤ m ≤ r. In this case we will let j = m − 1 in our claim and we may assume due to the

symmetry of S in a, b that x = a and y = b. Thus for some u with 1 ≤ u ≤ k we get sim−1
= a(u) = sim+r−1

and

sim = b(u) = sim+r
. If m > 2, then we may apply the claim again with j = m − 2 to obtain that sim−2

= b(u) =

sim+r−2
. However, the fact that im−2 > im−1 > im correspond to symbols b(u), a(u), b(u) means that S′ must have

consecutive blocks BAB, yielding a contradiction to the fact that in S we had no consecutive symbols bab.
So we may assume that m = 2. Since r > 2 and si2 = b(u) and i2 < . . . < ir we have that for 3 ≤ j ≤ r either

all sij are of the form b(uj) or there is a smallest index j such that sij = x(uj) for some x 6= b. In the first case it

follows that there must be consecutive blocks BAB (yielding a contradiction) such that i1 and ir+1 are in the A block,

i2, . . . ir are in the first B-block and ir+2, . . . , i2r are in the second. In the second case it follows that since there must

be blocks BA with i1 in A and i2 in B, that ij must be in the A block again, that is sij = a(uj). However, since

ir+1 < . . . < ir+j it follows that there must be consecutive blocks ABA in S′ (our final contradiction), such that ir+1

is in the first A block, ir+j in the second and ir+2, . . . , ir+j−1 are in the B block. ✷

5 k-special sequences on at most 3k symbols

One possible way to improve on Theorem 1 is to study k-special sequences on at most 3k symbols. The sequence

Sn,c = 1, 2, . . . , n, 1, 2, . . . c for n > c ≥ 0 turns out to be a key example in this situation.

Recall that by Proposition 1 the entries in a block of length 2k of a k-special sequence must all be distinct. Thus, if

we let fk(n) denote the maximum length of a k-special sequence S on n symbols, then this observation immediately

implies that fk(n) = n when n < 2k and up to isomorphism the only sequence achieving this value is Sn,0. When

n ≥ 2k we can furthermore assume without loss of generality that if S is nonrepetitive on n symbols, then Si = i for

1 ≤ i ≤ 2k (just like Sn,c.)

If n = 2k then it follows from Proposition 1 that a sequence achieving fk(2k) must be of the form S2k,c. It is easy

to check S2k,1 is in fact k-special, whereas S2k,2 contains the k-bad index sequence k+1, 1, 2, k+ 1, 2k+ 1, 2k+ 2,

which yields the repetition k + 1, 1, 2, k + 1, 1, 2. Thus fk(2k) = 2k + 1 with S2k,1 being the unique sequence

achieving this value. This k-bad index sequence also explains why we could not have consecutive blocks ABA or

BAB in our construction for Theorem 3 . For the remaining range we get

Proposition 2

a) If n ≥ 2k, then Sn,n−k has a k-bad sequence only when n = 2k and such a sequence must have 2 = m < r.

b) If n ≥ 2k + 1, then fk(n) ≥ 2n− k.

Proof: It suffices to prove the first statement, as it immediately implies the second. So suppose n ≥ 2k and I =
i1, . . . , i2r is a k-bad sequence of indices for some m. If m = 2r, then I is decreasing and so the fact that sij = sij+r

for all 1 ≤ j ≤ r implies that i1 > . . . > ir ≥ n + 1 and n − k ≥ ir+1 > . . . > i2r, yielding the contradiction

ir − ir+1 > k. So we may assume that m < 2r.

If m > r, then let m′ = m−r. Since sim = sim′
and im′ > im, it follows that im = im′−n ∈ {1, . . . , n−k}. Since

im′ ≥ n, im ≤ n−k and for all j we have |ij − ij+1| ≤ k it follows that there must be some j with m′ < j < m such

that ij ∈ {n−k+1, . . . , n}. Since I yields a repetition with i1 > . . . > im, but the symbol sij = ij is unique in Sn,n−k

we conclude that ij = ij+r. It follows that j = m′ + 1, since otherwise im′ > ij−1 > ij and im < ij+r−1 < ij+r

would contradict sij−1
= sij+r−1

as the sets {sij+1, sij+2, . . . , sim′−1} and {sim+1, sim+2, . . . sij−1} are disjoint.

Now j = m′ + 1 implies that im′ − k = ij−1 − k ≤ ij = ij+r = im+1 ≤ im + k − 1, and since im′ = im + n we

get n ≤ 2k − 1, a contradiction.
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If m ≤ r, then let m′ = m + r. It follows again that im′ = im + n, and that there must be some j such that ij =
ij+r ∈ {n− k+1, . . . , n} and j < m < j+ r. Thus m′ > j+ r this time. It follows that j = m− 1, since otherwise

ij > ij+1 > im and ij+r < ij+r+1 < im′ would contradict sij+1
= sij+r+1

as the sets {sim+1, sim+2, . . . sij−1}
and {sij+1, sij+2, . . . , sim′−1} are still disjoint. Now j = m − 1 implies that im + k = ij+1 + k ≥ ij = ij+r =
im′−1 ≥ im′ − k, and since im′ = im + n we get n ≤ 2k, a contradiction unless n = 2k. In this case also

im + k = ij = ij+r = im′ − k = x for some k + 1 ≤ x ≤ n = 2k.

If we have m > 2 then j − 1 = m − 2 ≥ 1 and we consider ij−1. Since ij+r−1 < ij+r and k + 1 = n −
k + 1 ≤ sij ≤ n = 2k implies that sij+r−1

∈ {x − k, x − k + 1, . . . , x − 1}. Similarly ij−1 > ij implies that

sij−1
∈ {x+1, x+2, . . . , n}∪ {1, 2, . . . , k− (n− x) = x− k}. Since sij+r−1

= sij−1
it now follows that this value

must be x− k = im. Hence ij+r−1 = im and thus m = j + r− 1 = (m− 1) + r− 1. This implies the contradiction

2 = r ≥ m > 2. Hence m = 2 and the fact that r > 2 follows from Proposition 1 and the fact that the distance

between identical labels is 2k. ✷

We believe that for in Proposition 2 b) equality holds when 2k < n < 3k. An exhaustive search by computer

shows that this is the case when 2k < n < 3k with n ≤ 16. Moreover S2k+1,k+1 turns out to be the unique sequence

achieving fk(2k + 1) = 3k + 2, whereas for 2k + 2 ≤ n < 3k a typical sequence achieving fk(n) is obtained by

permuting the last n− k entries of Sn,n−k.

Proposition 3 The coloring of Tk,3 derived from S2k,k is nonrepetitive.

Proof: If the coloring of Tk,3 derived from S2k,k contains a repetition of length 2r, then as in the proof of Theorem 2

it follows that there must be a k-bad sequence of 2r indices. From Proposition 2 a) it now follows that r > m = 2.

Since a longest path in Tk,3 has 6 edges we must have r = 3. However, any repetition of length 6 would have to

connect two leaves and turn around at the root, and as such would have m = 3, a contradiction. ✷

Combining everything we know so far we get

Corollary 2 If h ≥ 3, then π′(Tk,h) ≤ ⌈h+1
2 k⌉.

Proof: If h = 3, then the result follows from Proposition 3. For h > 3we can apply Proposition 2 b) with n = ⌈h+1
2 k⌉.

Since 2n− k ≥ hk it now follows from Remark 1 that the coloring of Tk,h derived from Sn,n−k is nonrepetitive. ✷

The bound in Corollary 2 is better than that derived from Theorem 3 when h ≤ 5 and we obtain the following table

of values for π′(Th,k), where the presence of two values denotes a lower and an upper bound. The values marked by

an asterisk were confirmed by computer search. The programs used are based on those found in [11] and the Python

code is available at http://public.csusm.edu/akundgen/Python/Nonrepetitive.py

k\h 1 2 3 4 5 6-10 h ≥ 11
1 1 2 2 3 3 3 3

2 2 4 4 5 5∗ 5∗ 5,7

3 3 5 6∗ 6∗ 6,9 6,10 6,10

4 4 7 7∗ 7,10 7,12 7,13 7,13

5 5 8 9,10 9,13 9,15 9,16 9,16
...

...
...

...
...

...
...

...

k k ⌊1.5k⌋+1 1.61k, 2k 1.61k, ⌈2.5k⌉ 1.61k, 3k 1.61k, 3k+ 1 1.61k, 3k+ 1

It is worth noting that even though it may be possible to use derived colorings to improve individual columns of

this table by a more careful argument (as we did in Proposition 3), this seems unlikely to work for π′(Tk) in general.

Theorem 2 implies that the infinite sequence from which we derive the coloring must be k-special, and while we were

able to provide such a sequence on 3k + 1 symbols, it seems unlikely that there are such sequences on 3k symbols.

An exhaustive search shows that for k ≤ 5 the maximum length of a k-special sequence on n = 3k symbols is 5k+3,

which is only 3 more than the length of Sn,n−k. The k! examples achieving this value are all of the strange form

[1, 2k], 1, [2k + 1, 3k], x1, [k + 2, 2k], 1, x2, x3, . . . , xk, x1, 2k + 1 where {x1, . . . , xk} = {2, . . . , k + 1} and [a, b]
denotes a, a+ 1, a+ 2 . . . , b. In other words they are S3k,2k+1 with the last 2k + 1 entries permuted and with 1 and

x1 inserted after positions 2k and 3k.

A more promising next step would be to try to improve the lower bounds for π′(Tk,h) for h = 3, 4, 5.



8 André Kündgen, Tonya Talbot

References

[1] N. ALON, J. GRYTCZUK, M. HAŁUSZCZAK, AND O. RIORDAN, Nonrepetitive colorings of graphs, Random

Structures Algorithms, 21 (2002), pp. 336–346. Random structures and algorithms (Poznan, 2001).

[2] J. BERSTEL, Axel Thue’s papers on repetitions in words: a translation, vol. 20 of Publications du LaCIM,
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[14] , Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, vol. 10 of Skrifter udgivne af Vi-

denskabsselskabet i Christiania: Mathematisk-naturvidenskabelig Klasse, Norske Vid Selsk Skr I Mat Nat Kl

Christiana, 1912.


