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Generalized connected domination in graphs
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As a generalization of connected domination in a graph G we consider domination by sets having at most k compo-

nents. The order γ
k

c (G) of such a smallest set we relate to γc(G), the order of a smallest connected dominating set.

For a tree T we give bounds on γ
k

c (T ) in terms of minimum valency and diameter. For trees the inequality γ
k

c (T ) ≤
n − k − 1 is known to hold, we determine the class of trees, for which equality holds.

Keywords: connected domination, domination, tree

Mathematics Subject Classification: 05C69

1 Introduction

We consider simple non-oriented graphs. The largest valency in G is denoted by ∆(G) = ∆, the smallest

by δ(G) = δ. By Pn we denote a path on n vertices and Cn denotes a circuit on n vertices. In a graph a

leaf or pendant vertex is a vertex of valency one and a stem is a vertex adjacent to at least one leaf. In

K2 each vertex is both a leaf and a stem. The set of leaves in a graph G is denoted by Ω(G). The set of

neighbours to a vertex x is denoted N(x). By K1,k we denote a star with one central vertex joined to k

other vertices. A subdivided star is a star with a subdivision vertex on each edge. By the corona graph

on H we understand the graph G = H ◦K1 obtained from the graph H by adding for each vertex x in H

one new vertex x′ and one new edge xx′. In a corona graph each vertex is either a leaf or a stem adjacent

to exactly one leaf. In particular, if H is a tree, we obtain a corona tree T = H ◦ K1.

The eccentricity e(x) of a vertex x is defined by e(x) = max{d(x, y)|y ∈ V (G)}. The diameter

of G is diam(G)=max{e(x)|x ∈ V (G)}. Let D ⊆ V (G), then N(D) is the set of vertices which have

a neighbour in D and N [D] is the set of vertices which are in D or have a neighbour in D, N [D] =
D ∪ N(D). A set D ⊆ V (G) dominates G if V (G) ⊆ N [D], i.e. each vertex not in D is adjacent to a

vertex in D. The domination number γ(G) is the cardinality of a smallest dominating set in G.

For a given graph G it is NP-hard to determine its domination number γ(G), but we can search for for

upper bounds as O. Ore started doing about fifty years ago. Also it may be more tractable to restrict the
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minimum dominating set problem to consider only such dominating sets which induce a connected subset

of G, this problem is called the minimum connected dominating problem and it is still NP-complete;

In network design theory it is called the maximum leaf spanning tree problem [4], the name will be

clear from Section 2 below. We shall study a concept intermediate to the classical and the connected

domination, namely by demanding the dominating set to induce at most a given number k of components,

we aim at presenting upper bounds for its order γk
c . Quite likely there is a corresponding problem in

network design theory, although we are aware of no reference.

A comprehensive introduction to domination theory is given in [7, 14] and variations are discussed in

[5, 13, 15].

Ore [10] proved the inequality below while C. Payan and N. H. Xuong [11], Fink, Jacobsen, Kinch and

Roberts [3] determined its extremal graphs.

Proposition 1 Let G be a connected graph with n vertices, n ≥ 2. Then γ(G) ≤
n

2
and equality holds if

and only if G is either a corona graph or a 4-circuit.

If a tree T has γ(T ) =
n

2
, then n is even and Proposition 1 implies that T is a corona tree.

Definition For a positive integer k and a graph G with at most k components we define

γk
c (G) = min {|D||D ⊆ V (G), D has at most k components and D dominates G} .

A set D attaining the minimum above is called a γk
c -set for G.

Example

γk
c (Pn) = γk

c (Cn) =

{

n − 2k for n ≥ 3k

⌈
n

3
⌉ for 1 ≤ n ≤ 3k

For k = 1 we have that γ1
c is the usual connected domination number, γ1

c (G) = γc(G).
There exists for every graph G a k such that γk

c (G) = γ(G), e.g. k = |G|.
For G connected and k ≥ 1, obviously, γ(G) ≤ γk

c (G) ≤ γc(G).

2 General graphs

Let G be a connected graph with n vertices and k a positive integer. Let ǫF (G) be the maximum number of

leaves among all spanning forests of G, and ǫT (G) be the maximum number of leaves among all spanning

trees of G. With this notation Niemen [9] proved statement (i) below about γ and Hedetniemi and Laskar

[8] generalized it to statement (ii) about γc.

(i) γ(G) = n − ǫF (G),

(ii) γc(G) = n − ǫT (G).

In the next two theorems we extend these results to γk
c .

Theorem 1 Let G be a connected graph with n vertices and k a positive integer. Let ǫFk
(G) be the

maximum number of leaves among all spanning forests of G with at most k trees. Then

γk
c (G) = n − ǫFk

(G).
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Proof: In any spanning forest F with at most k trees the leaves will be dominated by their stems, so

γk
c (G) ≤ n − |Ω(F )| and hence γk

c (G) ≤ n − ǫFk
(G).

Conversely, let D = D1∪D2∪· · ·∪Dt, 1 ≤ t ≤ k, be a γk
c -set for G. Choose for each Di a spanning

tree Ti, 1 ≤ i ≤ t. For each vertex in V (G) \ D choose one edge which is incident with a vertex in D.

We have constructed a spanning forest F with t components and at least n − |D| = n − γk
c (G) leaves.

Therefore ǫFk
(G) ≥ n − γk

c (G) and Theorem 1 is proved. ✷

Theorem 2 Let k be a positive integer and G a connected graph. Then

γk
c (G) = min

{

γk
c (Fk)|Fk is a spanning forest of G with at most k trees

}

= min
{

γk
c (T )|T is a spanning tree of G

}

Proof: Let Fk be a spanning forest of G with at most k trees. Certainly γk
c (G) ≤ γk

c (Fk) since a set

which dominates Fk also dominates G. Conversely, we can in G find a spanning forest Fk with at most k

components such that γk
c (G) = γk

c (Fk): As was originally also done in the proofs for (i) and (ii) above

we construct Fk from a γk
c -set D = D1 ∪ D2 ∪ · · · ∪ Dt, 1 ≤ t ≤ k, by choosing a spanning tree

Ti in each connected subgraph Di and joining each vertex in V (G) \ D to precisely one vertex in D.

Obviously, γk
c (Fk) ≤ |D| = γk

c (G). This proves the first equality. For the second equality we observe

that the first minimum is chosen among a larger set, so that min γk
c (Fk) ≤ min γk

c (T ), and also that any

Fk by addition of edges can produce a tree T with γk
c (T ) ≤ γk

c (Fk). ✷

Hartnell and Vestergaard [6] proved the following result.

Proposition 2 For k ≥ 1 and G connected

γc(G) − 2(k − 1) ≤ γk
c (G) ≤ γc(G).

From Proposition 2 we can easily derive the following corollary which is a classical result proven by

Duchet and Meyniel. [2]

Corollary 3 For any connected graph G, γc(G) ≤ 3γ(G) − 2.

Proof: Let G be a connected graph with domination number γ(G). Choose k = γ(G), then γk
c (G) =

γ(G). Substituting into Proposition 2 above we obtain γc(G) − 2(k − 1) ≤ γ(G) and that proves the

corollary. ✷

2.1 Other bounds on γ
k

c

Theorem 4 For a positive integer k and a connected graph G with maximum valency ∆ we have

(A) γc(G) ≤ n−∆ and for trees T equality holds if and only if T has at most one vertex of valency ≥ 3.

(B) γk
c (G) ≤ n−

(r − 1)(δ − 2)

3
−2k if G has diameter r ≥ 3k−1 and the minimum valency δ = δ(G)

is at least 3.
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(C) If G is a connected graph with two vertices of valency ∆ at distance d apart, d ≥ 3, then

γk
c (G) ≤ n − 2(∆ − 1) − 2 min{k − 1,

d − 2

3
}. (1)

(D) Let x ∈ V (G) have valency d(x) and eccentricity e(x). Then

γk
c (G) ≤ n − d(x) − 2 min{k − 1,

e(x) − 2

3
}. (2)

Proof:

(A) Let T be a spanning tree of G with ∆(T ) = ∆(G) = ∆, then T has at least ∆ leaves, and hence

γc(G) ≤ γc(T ) ≤ n − ∆.

If T has two vertices of valency ≥ 3, the number of leaves in T will be larger than ∆, and we get

strict inequality in (A). Clearly, a tree T with exactly one vertex of valency ∆ ≥ 3 has equality in

(A) and for ∆ = 2, we obtain a path Pn with γc(Pn) = n − 2.

(B) Let P = v1v2v3 . . . v3t+u, k ≤ t, 0 ≤ u ≤ 2, be a diametrical path in G. The diameter of T

equals the length of P , which is r = 3t + u − 1. For i = 1, . . . , t let v3i−1 have neighbours

v3i−2, v3i on P and aij off P , j = 1, . . . , si si ≥ δ − 2 ≥ 1. In G − {v3iv3i+1|1 ≤ i ≤ k − 1}
consider the k − 1 disjoint stars with center v3i−1 and neighbours N(v3i−1), 1 ≤ i ≤ k −
1, and the remaining tree to the right consisting of the path v3k−2v3k−1v3k . . . v3t+u and leaves

v3i−1a3i−1, j = 1, . . . , si, si ≥ δ − 2 ≥ 1 adjacent to vertices v3i−1, k ≤ i ≤ t.

Extend this forest of k trees to a spanning forest F with k trees in G − {v3iv3i+1|1 ≤ i ≤ k − 1}.

The number of leaves in F is at least t(δ − 2) + 2k and hence γk
c (G) ≤ n − t(δ − 2) − 2k. From

t =
r + 1 − u

3
≥

r − 1

3
we obtain the desired result γk

c (G) ≤ n −
(r − 1)(δ − 2)

3
− 2k.

C Let v1, vs be two vertices in G with maximum valency, d(v1) = d(vs) = ∆, and let P = v1v2 . . . vs

be a shortest v1vs-path, s = 3t + 1 + u, t ≥ 1, 0 ≤ u ≤ 2.

Case 1, t ≥ k − 1: In G − {v3i−1v3i|1 ≤ i ≤ k − 2} we extend the k trees listed below to a

spanning forest F of G,

1. The star consisting of v1 joined to all its neighbours,

2. the k − 2 paths of length two v3iv3i+1v3i+2, 1 ≤ i ≤ k − 2,

3. the path v3k−3v3k−2 . . . vs together with all ∆ − 1 neighbours of vs outside of P .

F will have at least 2(∆ − 1) + 2(k − 1) leaves.

Case 2, t ≤ k − 2: s = 3t + 1 + u, d = d(v1, vs) = s − 1 = 3t + u, t − 1 =
d − u

3
− 1 ≥

d − 2

3
−1. As before, we can find a spanning forest F of G whose number of leaves is at least

2∆ + 2(t − 1) ≥ 2(∆ − 1) + 2
d − 2

3
and consequently γk

c (G) ≤ n − 2(∆ − 1) − 2
d − 2

3
.

The proof of D is similar.

✷
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3 Trees

For trees Hartnell and Vestergaard [6] found

Proposition 3 Let k be a positive integer and T a tree with |V (T )| = n, n ≥ 2k + 1. Then γk
c (T ) ≤

n − k − 1.

This inequality is best possible. For k = 1 the extremal trees are paths Pn and for k ≥ 2 extremal trees

will be described in the following Theorem 5.

A tree T is of type A if it contains a vertex x0 such that T −x0 is a forest of trees T1, T2, . . . , Tα, α ≥ 1,

such that each tree Ti is a corona tree and x0 is joined to a stem in each of the trees Ti, 1 ≤ i ≤ α. We

note that a subdivision of a star is a tree of type A.

A tree T is of type B if it contains a path uvw such that T − {u, v, w} is a forest of corona trees

T1, T2, . . . , Ts, Ts+1,, . . . , Tα, α ≥ 2, 1 ≤ s < α and u is joined to a stem in each of the trees

T1, T2, . . . , Ts, while w is joined to a stem in each of the trees Ts+1,, . . . , Tα.

Proposition 4 below was proven by Randerath and Volkmann [12], Baogen, Cockayne, Haynes, Hedet-

niemi and Shangchao [1].

Proposition 4 If T is a tree with n vertices, n odd, and γ(T ) = ⌊
n

2
⌋ then T is a tree of type A or B.

We shall now determine the trees extremal for Proposition 3.

Theorem 5 Let k ≥ 2 be a positive integer and T a tree with n vertices, n ≥ 2k + 1. Then γk
c (T ) =

n − k − 1 if and only if one of cases (i)-(iii) below occur.

(i) k =
n − 1

2
, γk

c (T ) = γ(T ) =
n − 1

2
and T is of type A or B.

(ii) k =
n − 2

2
, γk

c (T ) = γ(T ) =
n

2
and T is a corona tree.

(iii) k =
n − 3

2
, γk

c (T ) =
n + 1

2
, γ(T ) =

n − 1

2
and T is a star K1,k+1 with a subdvision vertex on

each edge.

Proof: First, let k ≥ 2 and a tree T of order n be given such that n ≥ 2k + 1 and γk
c (T ) = n − k − 1.

We shall prove that T is as described in one of the three cases (i)-(iii).

We note in passing that

Remark 1 γ(T ) ≤ k implies γk
c (T ) = γ(T ), and that likewise γk

c (T ) ≤ k implies γk
c (T ) = γ(T ).

If n = 2k + 1, or equivalently k =
n − 1

2
, we have by assumption γk

c (T ) = n− k− 1 = k and, as just

observed above, that implies that also γ(T ) = k. Since k = ⌊
n

2
⌋ we obtain from Proposition 4 that T is

a tree of type A or B, so Case (i) occurs.

If n = 2k + 2, or equivalently k =
n − 2

2
we have by assumption γk

c (T ) = n − k − 1 = k + 1.

Certainly γ(T ) ≤ γk
c (T ), but if γ(T ) ≤ k then we should have that γk

c (T ) = γ(T ) ≤ k in contradiction
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to γk
c (T ) = k + 1, therefore γ(T ) = k + 1 =

n

2
. From Proposition 1 we obtain that T is a corona tree,

i.e. Case (ii) occurs.

We may now assume n ≥ 2k + 3, and we shall prove that, in fact, n equals 2k + 3 and that Case (iii)

occurs.

Let v1v2 . . . vα be a longest path in T . Since γk
c (T ) = n − k − 1 ≥ k + 2 ≥ 4, T is neither a star nor

a bistar and therefore α ≥ 5. We must have dT (v2) = 2, because otherwise dT (v2) ≥ 3 and we could

from T delete three leaves adjacent to v2, if dT (v2) ≥ 4, and in case dT (v2) = 3 we could delete v2 and

its two adjacent leaves. In both cases we would obtain a tree T ′ of order n − 3 ≥ 2(k − 1) + 1 which by

Proposition 3 has γk−1
c (T ′) ≤ (n−3)− (k−1)−1 ≤ n−k−3. Adding v2 to a γk−1

c (T ′)-set we would

obtain γk
c (T ) ≤ n − k − 2, a contradiction. Therefore dT (v2) = 2.

The vertex v3 cannot be adjacent to two leaves c and d, say, because, then the tree T ′ = T−{v1, v2, c, d}
would have order n− 4 ≥ 2(k− 1)+1. Thus Proposition 3 gives that γk−1

c (T ′) ≤ (n− 4)− (k− 1)− 1
≤ n − k − 4 and adding v2, v3 to a γk−1

c (T ′)-set we would obtain γk
c (T ) ≤ n − k − 2, a contradiction.

So v3 can be adjacent to at most one leaf. The case dT (v3) = 3 and v3 adjacent to one leaf c can similarly

be seen to be impossible by considering T ′ = T \ {v1, v2, v3, c}.

On the other hand dT (v3) ≥ 3, for assume dT (v3) = 2, then T ′ = T \ {v1, v2, v3} has γk−1
c (T ′) ≤

n − k − 3 and addition of v2 to a γk−1
c (T ′)-set would give γk

c (T ) ≤ n − k − 2, a contradiction.

Assume therefore that v3 besides v2 and v4 is adjacent to precisely one leaf c and to at least one further

vertex a, where a has valency two and is adjacent to the leaf b. Then T ′ = T \ {v1, v2, a, b} has order

n− 4 ≥ 2(k− 1) + 1 and Proposition 3 gives that (3) γk−1
c (T ′) ≤ (n− 4)− (k− 1)− 1 ≤ n− k− 4. In

T ′ the vertex c is a leaf and as any γk−1
c -set for T ′ must contain one of {v3, c}, we may assume it contains

v3. Addition of {v2, a} to a γk−1
c (T ′)-set now gives the contradiction γk

c (T ) ≤ n − k − 2.

Assume finally that v3 has no leaf but besides v2 and v4 is adjacent to a1, a2, . . . , at, t ≥ 1, where each

ai has valency two and is adjacent to the leaf bi, 1 ≤ i ≤ t.

We have k − t ≥ 1 because V (T ) \ {v1, b1, b2, . . . , bt, vα} is a connected subgraph with n − t − 2
vertices which dominate T , so that n − k − 1 = γk

c (T ) ≤ n − t − 2 giving k − t ≥ 1. Consider the tree

T ′ = T \ {v1, v2, a1, a2, . . . , b1, b2, . . . , bt, v3} of order n − 2t − 3.

If n− 2t− 3 ≥ 2(k− t) + 1 we obtain by Proposition 3 that γk−t
c (T ′) ≤ (n− 2t− 3)− (k− t)− 1 ≤

n−k−t−4, and by addition of the t+2 vertices {v2, v3, a1, a2, . . . , at}, (which span a connected subgraph

of T ), to a γk−t
c (T ′)-set we obtain γk

c (T ) ≤ n−k−2, a contradiction. So we have n−2t−3 ≤ 2(k− t)

and now |V (T ′)| = n − 2t − 3 ≤ 2(k − t) implies γ(T ′) ≤
|V (T ′)|

2
≤ k − t which by remark 1 gives

that γk−t
c (T ′) = γ(T ′) and hence addition of the t + 2 vertices {v2, v3, a1, a2, . . . , at} to a γk−t

c (T ′)-
set (having at most k − t vertices) gives γk−t+1

c (T ) ≤ k + 2. We now have n − k − 1 = γk
c (T ) ≤

γk−t+1
c (T ) ≤ k +2 giving n ≤ 2k +3, so the assumption n ≥ 2k +3 implies n = 2k +3. By hypothesis

γk
c (T ) = k + 2 and we have γ(T ) ≤ k + 1 by Proposition 1.

Thus γ(T ) = k + 1, (because otherwise γk
c (T ) = γ(T ) < k + 2), and any γ(T )-set must consist of

k + 1 isolated vertices. As γ(T ) = ⌊
n

2
⌋ the tree T by Proposition 4 is of type A or B. But T cannot be of

type B, for assume T is of type B. Then T consists of a 3-path , uvw, with each of its ends joined to stems

of corona trees, and since we have just seen that v3, vα−2 are neither stems nor leaves, they must play the

role of u, w, so α = 7 and T consists of two subdivided stars centered respectively at u = v3 and w = v5

and a vertex v = v4 joined to u and w. Among its γ-sets this tree T has one with two adjacent vertices,

namely v2 and v3, a contradiction, so T is of type A .
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Using, in analogy to v2, v3, that dT (vα−1) = 2 and that vα−2 is not a stem, we get that α = 5 and T is

a subdivided star so that (iii) occurs.

Conversely, it is easy to see that if (i), (ii) or (iii) holds then γk
c (T ) = γ(T ) = n − k + 1. This proves

Theorem 5. ✷
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