Independent Sets in Graphs with an Excluded Clique Minor

David R. Woodit

Departament de Matemàtica Aplicada II
Universitat Politècnica de Catalunya
Barcelona, Spain
david.wood@upc.es
received December 7, 2006, accepted August 22, 2007.

Let G be a graph with n vertices, with independence number α, and with no K_{t+1}-minor for some $t \geq 5$. It is proved that $(2 \alpha-1)(2 t-5) \geq 2 n-5$. This improves upon the previous best bound whenever $n \geq \frac{2}{5} t^{2}$.

Keywords: graph, minor, independent set, Hadwiger's Conjecture.
Mathematics Subject Classification: 05C15 (Coloring of graphs and hypergraphs)

1 Introduction

In 1943, Hadwiger [7] made the following conjecture, which is widely considered to be one of the most important open problems in graph theory ${ }^{(i)}$, see [19] for a survey.
Hadwiger's Conjecture. For every integer $t \geq 1$, every graph with no K_{t+1}-minor is t-colourable. That is, $\chi(G) \leq \eta(G)$ for every graph G.

Hadwiger's Conjecture is trivial for $t \leq 2$, and is straightforward for $t=3$; see [4, 7, 22]. In the cases $t=4$ and $t=5$, Wagner [20] and Robertson et al. [16] respectively proved that Hadwiger's Conjecture is equivalent to the Four-Colour Theorem [2, 3, 6, 15]. Hadwiger's Conjecture is open for all $t \geq 6$.

[^0]1365-8050 © 2007 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

Progress on the $t=6$ case has been recently been obtained by Kawarabayashi and Toft [10] (without using the Four-Colour Theorem). The best known upper bound is $\chi(G) \leq c \cdot \eta(G) \sqrt{\log \eta(G)}$ for some constant c, independently due to Kostochka [11] and Thomason [17, 18].

Woodall [21] observed that since $\alpha(G) \cdot \chi(G) \geq|V(G)|$ for every graph G, Hadwiger's Conjecture implies that

$$
\begin{equation*}
\alpha(G) \cdot \eta(G) \geq|V(G)| \tag{1}
\end{equation*}
$$

Equation (1) holds for $\eta(G) \leq 5$ since Hadwiger's Conjecture holds for $t \leq 5$. For example, $\alpha(G) \geq$ $\frac{1}{4}|V(G)|$ for every planar graph G. It is interesting that the only known proof of this result depends on the Four-Colour Theorem. The best bound not using the Four-Colour Theorem is $\alpha(G) \geq \frac{2}{9}|V(G)|$ due to Albertson [1].

Equation (1) is open for $\eta(G) \geq 6$. In general, (1) is weaker than Hadwiger's Conjecture, but for graphs with $\alpha(G)=2$ (that is, graphs whose complements are triangle-free), Plummer et al. [13] proved that (1) is in fact equivalent to Hadwiger's Conjecture. The first significant progress towards (1) was made by Duchet and Meyniel [5] (also see [12]), who proved that

$$
\begin{equation*}
(2 \alpha(G)-1) \cdot \eta(G) \geq|V(G)| \tag{2}
\end{equation*}
$$

This result was improved by Kawarabayashi et al. [8] to

$$
\begin{equation*}
(2 \alpha(G)-1) \cdot \eta(G) \geq|V(G)|+\omega(G) \tag{3}
\end{equation*}
$$

Assuming $\alpha(G) \geq 3$, Kawarabayashi et al. [8] proved that

$$
\begin{equation*}
(4 \alpha(G)-3) \cdot \eta(G) \geq 2|V(G)| \tag{4}
\end{equation*}
$$

which was further improved by Kawarabayashi and Song [9] to

$$
\begin{equation*}
(2 \alpha(G)-2) \cdot \eta(G) \geq|V(G)| \tag{5}
\end{equation*}
$$

The following theorem is the main contribution of this note.
Theorem 1 Every graph G with $\eta(G) \geq 5$ satisfies

$$
(2 \alpha(G)-1)(2 \eta(G)-5) \geq 2|V(G)|-5
$$

Observe that Theorem 1 represents an improvement over (2), (4) and (5) whenever $\eta(G) \geq 5$ and $|V(G)| \geq \frac{2}{5} \eta(G)^{2}$. For example, Theorem 1 implies that $\alpha(G)>\frac{1}{7}|V(G)|$ for every graph G with $\eta(G) \leq 6$, whereas each of (2), (4) and (5) imply that $\alpha(G)>\frac{1}{12}|V(G)|$.

2 Proof of Theorem 1

Theorem 1]employs the following lemma by Duchet and Meyniel [5]. The proof is included for completeness.

Lemma 1 ([5]) Every connected graph G has a connected dominating set D and an independent set $S \subseteq D$ such that $|D|=2|S|-1$.

Proof: Let D be a maximal connected set of vertices of G such that D contains an independent set S of G and $|D|=2|S|-1$. There is such a set since $D:=S:=\{v\}$ satisfies these conditions for each vertex v. We claim that D is dominating. Otherwise, since G is connected, there is a vertex v at distance 2 from D, and there is a neighbour w of v at distance 1 from D. Let $D^{\prime}:=D \cup\{v, w\}$ and $S^{\prime}:=S \cup\{v\}$. Thus D^{\prime} is connected and contains an independent set S^{\prime} such that $\left|D^{\prime}\right|=2\left|S^{\prime}\right|-1$. Hence D is not maximal. This contradiction proves that D is dominating.

The next lemma is the key to the proof of Theorem 1 .
Lemma 2 Suppose that for some integer $t \geq 1$ and for some real number $p \geq t$, every graph G with $\eta(G) \leq t$ satisfies $p \cdot \alpha(G) \geq|V(G)|$. Then every graph G with $\eta(G) \geq t$ satisfies

$$
\alpha(G) \geq \frac{2|V(G)|-p}{4 \eta(G)+2 p-4 t}+\frac{1}{2}
$$

Proof: We proceed by induction on $\eta(G)-t$. If $\eta(G)=t$ the result holds by assumption. Let G be a graph with $\eta(G)>t$. We can assume that G is connected. By Lemma $1, G$ has a connected dominating set D and an independent set $S \subseteq D$ such that $|D|=2|S|-1$. Now $\alpha(G) \geq|S|=\frac{|D|+1}{2}$. Thus we are done if

$$
\begin{equation*}
\frac{|D|+1}{2} \geq \frac{2|V(G)|-p}{4 \eta(G)+2 p-4 t}+\frac{1}{2} \tag{6}
\end{equation*}
$$

Now assume that (6) does not hold. That is,

$$
|D| \leq \frac{2|V(G)|-p}{2 \eta(G)+p-2 t}
$$

Thus

$$
|V(G \backslash D)|=|V(G)|-|D| \geq \frac{(2 \eta(G)+p-2 t-2)|V(G)|+p}{2 \eta(G)+p-2 t}
$$

Since D is dominating and connected, $\eta(G \backslash D) \leq \eta(G)-1$. Thus by induction,

$$
\begin{aligned}
\alpha(G) \geq \alpha(G \backslash D) & \geq \frac{2|V(G \backslash D)|-p}{4 \eta(G \backslash D)+2 p-4 t}+\frac{1}{2} \\
& \geq \frac{2(2 \eta(G)+p-2 t-2)|V(G)|+2 p}{(2 \eta(G)+p-2 t)(4 \eta(G)-4+2 p-4 t)}-\frac{p}{4 \eta(G)-4+2 p-4 t}+\frac{1}{2} \\
& =\frac{2|V(G)|-p}{4 \eta(G)+2 p-4 t}+\frac{1}{2}
\end{aligned}
$$

This completes the proof.
Lemma 3 Suppose that Hadwiger's Conjecture is true for some integer t. Then every graph G with $\eta(G) \geq t$ satisfies

$$
(2 \eta(G)-t)(2 \alpha(G)-1) \geq 2|V(G)|-t
$$

Proof: If Hadwiger's Conjecture is true for t then $t \cdot \alpha(G) \geq|V(G)|$ for every graph G with $\eta(G) \leq t$. Thus Lemma 2 with $p=t$ implies that every graph G with $\eta(G) \geq t$ satisfies

$$
\alpha(G) \geq \frac{2|V(G)|-t}{4 \eta(G)-2 t}+\frac{1}{2}
$$

which implies the result.
Theorem 1 follows from Lemma 3 with $t=5$ since Hadwiger's Conjecture holds for $t=5$ [16].

3 Concluding Remarks

The proof of Theorem 1 is substantially simpler than the proofs of (3)-(5), ignoring its dependence on the proof of Hadwiger's Conjecture with $t=5$, which in turn is based on the Four-Colour Theorem. A bound that still improves upon (2), (4) and (5) but with a completely straightforward proof is obtained from Lemma 3 with $t=3$: Every graph G with $\eta(G) \geq 3$ satisfies $(2 \eta(G)-3)(2 \alpha(G)-1) \geq 2|V(G)|-3$.

We finish with an open problem. The method of Duchet and Meyniel [5] was generalised by Reed and Seymour [14] to prove that the fractional chromatic number $\chi_{f}(G) \leq 2 \eta(G)$. For sufficiently large $\eta(G)$, is $\chi_{f}(G) \leq 2 \eta(G)-c$ for some constant $c \geq 1$?

References

[1] Michael O. Albertson. A lower bound for the independence number of a planar graph. J. Combinatorial Theory Ser. B, 20(1):84-93, 1976.
[2] Kenneth Appel and Wolfgang Haken. Every planar map is four colorable. I. Discharging. Illinois J. Math., 21(3):429-490, 1977.
[3] Kenneth Appel, Wolfgang Haken, and John Koch. Every planar map is four colorable. II. Reducibility. Illinois J. Math., 21(3):491-567, 1977.
[4] Gabriel A. Dirac. A property of 4-chromatic graphs and some remarks on critical graphs. J. London Math. Soc., 27:85-92, 1952.
[5] Pierre Duchet and Henri Meyniel. On Hadwiger's number and the stability number. Annals of Discrete Mathematics, 13:71-73, 1982.
[6] Georges Gonthier. A computer-checked proof of the four colour theorem. 2005. Microsoft Research, Cambridge, U.S.A.
[7] Hugo Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Naturforsch. Ges. Zürich, 88:133-142, 1943.
[8] Ken-ichi Kawarabayashi, Michael D. Plummer, and Bjarne Toft. Improvements of the theorem of Duchet and Meyniel on Hadwiger's conjecture. J. Combin. Theory Ser. B, 95(1):152-167, 2005.
[9] Ken-ichi Kawarabayashi and Zi-Xia Song. Independence number and clique minors. J. Graph Theory, to appear.
[10] Ken-ichi Kawarabayashi and Bjarne Toft. Any 7-chromatic graph has K_{7} or $K_{4,4}$ as a minor. Combinatorica, 25(3):327-353, 2005.
[11] Alexandr V. Kostochka. The minimum Hadwiger number for graphs with a given mean degree of vertices. Metody Diskret. Analiz., 38:37-58, 1982.
[12] Frédéric Maffray and Henri Meyniel. On a relationship between Hadwiger and stability numbers. Discrete Math., 64(1):39-42, 1987.
[13] Michael D. Plummer, Michael Stiebitz, and Bjarne Toft. On a special case of Hadwiger's conjecture. Discuss. Math. Graph Theory, 23(2):333-363, 2003.
[14] Bruce Reed and Paul Seymour. Fractional colouring and Hadwiger's conjecture. J. Combin. Theory Ser. B, 74(2):147-152, 1998.
[15] Neil Robertson, Daniel P. Sanders, Paul D. Seymour, and Robin Thomas. The fourcolour theorem. J. Combin. Theory Ser. B, 70(1):2-44, 1997.
[16] Neil Robertson, Paul D. Seymour, and Robin Thomas. Hadwiger's conjecture for K_{6}-free graphs. Combinatorica, 13(3):279-361, 1993.
[17] Andrew Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc., 95(2):261-265, 1984.
[18] Andrew Thomason. The extremal function for complete minors. J. Combin. Theory Ser. B, 81(2):318-338, 2001.
[19] Bjarne Toft. A survey of Hadwiger's conjecture. Congr. Numer., 115:249-283, 1996.
[20] Klaus Wagner. Über eine Eigenschaft der ebene Komplexe. Math. Ann., 114:570-590, 1937.
[21] Douglas R. Woodall. Subcontraction-equivalence and Hadwiger's conjecture. J. Graph Theory, 11(2):197-204, 1987.
[22] Douglas R. Woodall. A short proof of a theorem of Dirac's about Hadwiger's conjecture. J. Graph Theory, 16(1):79-80, 1992.

[^0]: ${ }^{\dagger}$ Research supported by a Marie Curie Fellowship from the European Commission under contract MEIF-CT-2006-023865, and by the projects MEC MTM2006-01267 and DURSI 2005SGR00692.
 ${ }^{(i)}$ All graphs considered in this note are undirected, simple and finite. Let G be a graph with vertex set $V(G)$. Let $X \subseteq V(G)$. X is connected if the subgraph of G induced by X is connected. X is dominating if every vertex of $G \backslash X$ has a neighbour in $X . X$ is independent if no two vertices in X are adjacent. The independence number $\alpha(G)$ is the maximum cardinality of an independent set of G. X is a clique if every pair of vertices in X are adjacent. The clique number $\omega(G)$ is the maximum cardinality of a clique in G. A k-colouring of G is a function that assigns one of k colours to each vertex of G such that adjacent vertices receive distinct colours. The chromatic number $\chi(G)$ is the minimum integer k such that G is k-colourable. A minor of G is a graph that can be obtained from a subgraph of G by contracting edges. The Hadwiger number $\eta(G)$ is the maximum integer n such that the complete graph K_{n} is a minor of G.

