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In his thesis Baire defined functions of Baire class 1. A function f is of Baire class 1 if it is the pointwise
limit of a sequence of continuous functions. Baire proves the following theorem. A function f is not of
class 1 if and only if there exists a closed nonempty set F such that the restriction of f to F has no
point of continuity. We prove the automaton version of this theorem. An ω-rational function is not of
class 1 if and only if there exists a closed nonempty set F recognized by a Büchi automaton such that
the restriction of f to F has no point of continuity. This gives us the opportunity for a discussion on
Hausdorff’s analysis of ∆0

2, ordinals, transfinite induction and some applications of computer science.
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1 Introduction

We would like to dedicate this work to the memory of Pierre Dugac, who was a great historian
of Mathematics, and the French specialist of Baire’s work.

In his thesis Baire introduced the hierarchy of Baire classes of functions. A function f belongs
to class 0 if it is continuous. A function f belongs to class 1 if it is the pointwise limit of a sequence
of functions of class 0. A function f belongs to class 2 if it is the pointwise limit of a sequence
of functions of class 1, and so on. The present work concerns functions f : Aω → Bω which are
ω-rational (Aω and Bω sets of infinite words on finite alphabets A and B). We study these objects
from a topological point of view. Let us describe the work done on ω-rational relations.

Acceptance of infinite words by finite automata was first considered in the sixties by Büchi in
order to study decidability of the monadic second order of one successor over the integers [14].
Since this paper the ω-regular languages have been intensively studied especially because the
topological space of infinite words with the usual prefix distance has very interesting properties
[69, 95, 92].

Rational relations on finite words are relations computable by finite automata with two tapes.
They were first studied by Rabin and Scott [74]. A number of their properties were established
by Elgot and Mezei [30]. The Decomposition Theorem characterizing functional rational trans-
ductions is one of them. A sequential function is a function whose graph is a rational relation
with a condition of determinism on the input. A right (resp. left) sequential function reads words
from right to left (resp. left to right). A functional rational transduction f satisfying f(ε) = ε
is a composition of a left sequential function and of a right sequential function [29, 12, 78]. The
extension of rational relations to infinite words, called ω-rational relations, were first studied in
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[7, 56, 13, 40]. ω-rational relations are relations computable by a finite automaton with two tapes
with a Büchi acceptance condition (and a condition to avoid A∗×B∗, Aω×B∗ and A∗×Bω). In
[41] Gire shows that functionality is decidable for a ω-rational relation. In [37] Sakarovitch and
Frougny show that ω-rational relations of Aω ×Bω with bounded delay are exactly the ω-regular
languages on the product alphabet A×B. In addition, they prove some undecidability results on
ω-rational relations which can be deduced from corresponding undecidability results on rational
relations over finite words. The reader should also see [55, 24] for other properties and references.

It is only in [31, 32] that the topological complexity of ω-rational relations is really investigated.
Links between descriptive set theory and automata theory are not new. They go back to Büchi
and Landweber’s work [54, 18, 100]. Büchi talks very early about analytic set and games [16]. In
[107] Wagner and Staiger shows that a subset of Aω (A finite) is recognized by a nondeterministic
turing machine with Müller conditions if and only if it is an effective analytic set, that is to say
a Σ1

1 set (see Rogers [75] and Moschovakis [65] for a definition of the class Σ1
1). In Staiger papers

[88, 90, 89, 91, 92] one can have a good overview of the subject. We give here a short account of
Finkel’s recent work.

Descriptive set theory is the study of definable sets in Polish spaces. A Polish space is a
topological space P which is separable (it has a countable dense subset) and have a compatible
metric d such that (P, d) is complete. Compact metric spaces are Polish(2ω the Cantor space,
[0, 1]). Complete separable metric spaces are Polish (R, C, C[0, 1]). The most important Polish
space is the Baire space ωω, that is the space of infinite sequence of integers. The family of Borel
sets, of a polish space P , is the smallest family of subsets of P which contains open sets and
is closed under complements and countable unions. A set E of a polish space P is an analytic
set if it is a continuous image of the Baire space ωω. Another equivalent definition say that E
is an analytic set if it is the projection of a Borel set F ⊂ ωω × P on P . It is easy to construct
analytic sets. Let L ⊂ A∗, and let L∗ be the monoid generated by L. Replace star operation
∗ by ω operation, then Lω is an analytic set. If L is finite Lω is compact. If L is not finite L
is countable, so we can enumerate elements of L = {u0, u1, . . . , un, . . .}. Define an application
φ : ω −→ A∗ by φ(n) = un. Extend φ in monoid morphism φ : ω∗ −→ A∗. Next extend φ in
continuous application φ : ωω −→ Aω . Since the graph of φ is closed, then Lω is analytic as
projection of a closed set. In 1988 Louveau showed that there exists an L such that Lω is not
Borel. Unfortunately, he only proved the existence of a such L, he didn’t give effectively such a
L. His work remains unpublished. An analytic complete set is an analytic set so that any other
analytic set can be obtained by continuous inverse image of it. In 2000, Finkel showed that a
very simple context free language L is such that Lω is analytic complete [33]. Finally in 2001,
Finkel showed that one can define an ω-rational relation R such that R is analytic complete (in
particular R is not Borel) [31]. From this, and using the Post correspondance problem, Finkel
discovered new undecidability results about ω-rational relations and gave another proof of the
undecidability results of Sakarovitch and Frougny [32].

In this paper an ω-rational function is an (everywhere defined) application f : Aω → Bω whose
graph is an ω-rational relation. The ω-rational functions are of Baire class 2. Baire proves the
following theorem.

Theorem 1 A function f is not of class 1 if and only if there exists a closed nonempty set F
such that the restriction of f to F has no point of continuity.
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We prove the automaton version of this theorem.

Theorem 2 An ω-rational function is not of class 1 if and only if there exists a closed no-
nempty set F recognized by a Büchi automaton such that the restriction of f to F has no point
of continuity.

The original proof of Baire uses transfinite induction [5, 25]. The proof presented in [53, 47]
is Hausdorff’s proof ; we will give a detailed proof of it. The characterization theorem of Baire
appears as a corollary of the analysis of ∆0

2 sets in an uncountable complete separable metric
space. A ∆0

2 set is a set which is both Fσ(countable union of closed sets) and Gδ (countable
intersection of open sets). The analysis of ∆0

2 sets uses a transfinite derivation over closed sets
which is of the same kind of Cantor’s derivation. Recall that Cantor discovered countable ordinals
iterating in a transfinite way the operation of elimination of the isolated points of a closed set of
reals (see Kechris Louveau [48]).

In fact our theorem is just a remark : when we restrict Hausdorff’s derivation to ω-regular sets,
it stops the derivation at an integer (a greatest fixpoint). This was remarked by the first author
in 1986, who, in addition, showed a connection between an old separation theorem and work of
Arnold and Nivat [4] about theory of parallelism.

Hausdorff’s result is a first step in the study of Wadge’s classes of Borel sets [105]. Wadge’s
degrees of Borel sets are essentially well ordered and the type order of the hierarchy is an old
uncountable ordinal studied first by Veblen [102]. It is usual to present Wadge’s degrees with
games [103]. The restriction of the Wadge’s hierarchy to ω-regular sets gives Wagner’s hierarchy
[106]. This is easily seen with Büchi Landweber’s result on games such that the winning set is an
ω-regular set [18, 100]. The type order of Wagner’s hierarchy is the countable ordinal ωω. Our
proof is of the same type of combinatorial proofs appearing in Wagner’s paper [106].

This separation result can be extended to all Wagner classes [83, 84], this is easy using well
known things from descriptive set theory and Büchi Landweber’s result on game [18]. On this
subject one can also study the work of Barua [6]. These results are also automata analogue of
effective results of Louveau [60] which give classical results in the plane [76, 62].

For more on Wagner’s hierarchy, we refer the reader to the works of Kaminski [46], Carton
and Perrin [22], Wagner [106], Selivanov [79], Staiger [92, 93]. It turns out that the topological
invariants for Wagner’s classes can be described with the algebra of finite monoı̈ds, see Carton
and Perrin [22], Wilke [109] and Perrin and Pin [69]. For more on Wadge’s hierarchy we refer the
reader to the papers of Wadge [103, 105], the book of Kechris[47], and works from Louveau [60],
Saint Raymond[77], Duparc [27] , Finkel [35] , Ressayre [26].

For recent problems in theory of parallelism one can see [11].
Now we return to Elgot Mezei’s decomposition theorem. A left sequential machine which reads

infinite words is a continuous function. The idea to read from left to right in a right sequential
finite state machine suggests non determinism. Moreover, if we work on infinite words rather than
finite words, this suggests discontinuity and the Baire hierarchy. If an ω-rational function is not
of Baire class 1, one can find a rational tree (tree with a finite number of subtrees) whose set of
infinite branches is a Perfect set P (closed set without isolated points [53]) and the restriction of
f to P has no point of continuity. This may be interesting, even for finite words.

If the graph of f : Aω → Bω is recognized by a Büchi automaton on the product alphabet
A × B we say that f is a synchronous function. Recently we have shown that one can decide if
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a synchronous function is Baire class 1 [20]. Our proof is topological and it is an easy corollary
of Sierpinski [81] and Landweber [54]. In the present paper we would like to obtain some missing
links with works by Beal, Carton, Choffrut, Frougny, Michel, Prieur, Sakarovitch. They have
given more algorithmic proofs [23, 9, 38, 39, 70, 71, 8, 21]. Talks with Finkel and Carton have
given us the impression that for an ω-rational function, being of Baire class 1 is an undecidable
property.

This paper is adressed to both computer scientists or set theorists and analysts. We hope that
our presentation will be useful for computer scientists. For example, it may help to understand
recent results of Duparc [28] and Lecomte [57]. On the other hand will expect that a descriptive
set theorist will learn automata theory through our examples. He may solve some definability
problems about sets recognized by tree automata.

This paper is organized as follows. In sections 2, 3, 4, 5 we present some definitions and
properties from automata theory and descriptive set theory. In section 6 we present an example
which may be useful to understand the result of Baire. In section 7, we present the difference
hierarchy and we give a detailed proof of Hausdorff’s result in section 8. In section 9, we give
the proof of Baire’s result. In section 10, we prove the automaton version of Baire’s result. In
section 11, we present briefly the Wadge’s game and separation games ; we think that this sheds
light about results of sections 8 and 10. Finally, we start the discussion about relations between
Hausdorff’s analysis of ∆0

2 sets, ordinals, transfinite induction and applications of computer
science.

2 Automata on infinite words

2.1 infinite words

For the concepts introduced in this section we refer the reader to [7, 29, 69].
Let ω be the set of natural numbers (the first infinite ordinal). Complement of a set E will be
noted Ě. Let A be a finite alphabet or countable alphabet (A = ω). All alphabets that we consider
will have at least two letters. A finite word u over the alphabet A is a finite sequence of elements
of A. The set of finite words on A will be called A∗. The length (number of letters) of a word u
will be noted |u|. A particular word is the empty word ǫ, |ǫ| = 0. As usual A+ = A∗ − {ǫ}. With
concatenation, A∗ is a monöıd with unit element ǫ.
An infinite word α over alphabet A is an infinite sequence of elements of A :
α = α(0)α(1)...α(n).... The set of infinite words on the alphabet A will be noted Aω. We note

α[n] the finite word formed with the n first letters of the infinite word α, α[0] = ǫ, α[1] = α(0).
The set Aω , viewed as a product of infinitely many copies of A with the discrete topology, is a
metrizable space :

d(α, β) =

{

1/2n with n = min{i ∈ ω | α(i) 6= β(i)} if α 6= β

0 if α = β

The collection (uAω)u∈A∗ is a countable basis of clopen sets for this topology. Recall that if
A is finite then (Aω, d) is a compact metric space. If A = ω, then (ωω, d) is a complete metric
space, known as the Baire space, which is not compact.
The prefix ordering is called <. A finite word u ∈ A∗ is a prefix of the finite word v ∈ A∗ (resp
infinite word α ∈ Aω) if there exists a finite word w ∈ A∗ (resp infinite word β ∈ Aω) so that
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v = u.w (resp α = u.β).

2.2 Automata on infinite words

Definition 1 A Büchi automaton A is a 5-tuple : A = 〈A,Q, I, T, F 〉, where A is a finite al-
phabet, Q is a finite set of states, I ⊂ Q is the set of initial states, T ⊂ Q× A×Q is the set of
transitions and F ⊂ Q the set of final states.
An infinite word α ∈ Aω is recognized by A if there is β ∈ Qω such that :
β(0) ∈ I, ∀ n ∈ ω, (β(n), α(n), β(n + 1)) ∈ T and β(n) ∈ F for infinitely many n.
The set of words recognized by a Büchi automaton A is noted Lω(A).

Remark 1 Instead of Büchi automaton one can say automaton with Büchi’s acceptation.

T can be viewed as a partial function δ : Q×A→ P(Q) where δ(p, a) = {q ∈ Q | (p, a, q) ∈ T }.
Function δ can be extended to δ : Q× A∗ → P(Q) by δ(p, ua) = δ(δ(p, u), a) where u is a finite
word and a a letter and δ(p, ǫ) = p.

An infinite path c in A is an infinite word c = c(0)c(1)...c(n)... ∈ (Q × A × Q)ω such that
∀n ∈ ω, c(n) ∈ T . For each n, c(n) is of the form c(n) = (β(n), α(n), β(n + 1)). This will be
denoted by the following graphical notation of path.

c = β(0)
α(0)
−−−→ β(1)

α(1)
−−−→ β(2)

α(2)
−−−→ . . .

The infinite word α ∈ Aω , α = α(0)α(1) . . . α(n) . . ., is the label of the path c. Let us note
Infinity(c) as the set of states which appears infinitely many times in c. A path c is said to be
successful if β(0) ∈ I and Infinity(c)

⋂
F 6= ∅. Note that an infinite word α is recognized by A if

there is a successful path c in A of label α.
An automaton is called deterministic if it has a unique initial state and for each state p and

each letter a there exists at most one transition (p, a, q) ∈ T . Consequently the transition partial
function δ can be can be viewed as δ : Q×A→ Q. Function δ can be extended to δ : Q×A∗ → Q
by δ(p, ua) = δ(δ(p, u), a), where u is a finite word and a a letter and δ(p, ǫ) = p. Then for all
infinite word α there exists at most one path c of label α.

Example 1 Let A be the deterministic Büchi’s automaton on alphabet A = {0, 1}, with states
Q = {0, 1}, initial states I = {0}, final states F = {1} and transitions T = {(0, 0, 0), (0, 1, 1),
(1, 0, 1), (1, 1, 1)}. Figure 1 gives the representation of A. This automaton recognizes the set

O = {α ∈ 2ω| ∃m α(m) = 1}.
If we takes F = {0} then this automaton recognizes the complement of O :
Ǒ = {α ∈ 2ω| ∀m α(m) = 0}.

Example 2 Let B be the deterministic Büchi automaton on alphabet A = {0, 1}, with states Q =
{0, 1}, initial states I = {0}, final states F = {1} and transitions T = {(0, 0, 0), (0, 1, 1), (1, 0, 0),
(1, 1, 1)}

Figure 2 gives the representation of B. Let Q = {α ∈ 2ω| ∃m ∀n ≥ m α(n) = 0}. This
automaton recognizes the complement of Q :

Q̌ = {α ∈ 2ω| ∀m ∃n > m α(n) = 1}.
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0 1
1

0 0,1

Fig. 1: The open set

0 1

1

0

0 1

Fig. 2: The set reset automaton, a deterministic Büchi automaton which recognizes the Gδ set homeo-
morphic to Baire space ωω

Example 3 Let C be the non deterministic Büchi’s automaton on alphabet A = {0, 1}, with
states Q = {0, 1, 2}, initial states I = {0, 1}, final states F = {0, 2} and transitions T =
{(0, 0, 0), (1, 0, 1), (1, 1, 1), (1, 1, 2), (2, 0, 2)}

Figure 3 gives the representation of C. Let Q = {α ∈ 2ω| ∃m ∀n ≥ m α(n) = 0}, Q is a
countable dense subset of 2ω The automaton C recognizes Q.

0

1 2
1

0

0,1 0

Fig. 3: A non deterministic automaton which recognizes the countable dense set Q = {α ∈ 2ω| ∃m ∀n ≥
m α(n) = 0}

Definition 2 A Muller automaton A is a 5-tuple : A = 〈A,Q, I, T,F〉, where A is a finite
alphabet, Q is a finite set of states, I ⊂ Q is the set of initial states, T ⊂ Q×A×Q is the set of



Baire and automata 261

transitions and F ⊂ P(Q).
An infinite word α ∈ Aω is recognized by A if there is an infinite path c of label α so that
Infinity(c) ∈ F .

Example 4 Let again B be the deterministic automaton of example 2 and take F = {{0}}. Then
this automaton recognizes Q.

If we take F = {{1}, {0, 1}} then this automaton recognizes Q̌.

2.3 S1S : the monadic second order theory of one successor

We now define the terms, atomic formulas, and formulas of S1S the monadic theory of one
successor. Let V be a set of variables, its elements noted by x, y, z... , the constant symbol 0 and
a unary function symbol s (as successor). We define the set of the terms T by :

i) A variable is a term.

ii) 0 is a term.

iii) if t ∈ T then s(t) ∈ T .

Let P be another set of variables. Its variables are noted X , Y, Z... and two predicate symbols
=, ∈. Atomic formulas are of the form t = t′ or t ∈ X where (t, t′) ∈ T 2 and X ∈ P .

Definition 3 A formula of S1S is defined as follows :

i) An atomic formula is in S1S.

ii) If φ ∈ S1S then ¬φ, ∀xφ, ∃xφ and ∀Xφ, ∃Xφ are in S1S, where x ∈ V, X ∈ P.

iii) If φ and ψ are in S1S, then φ ∧ ψ, φ ∨ ψ, φ⇒ ψ and φ⇔ ψ are in S1S.

The interpretation of these formulas is the following : the variables of V are interpreted as
natural numbers, symbol 0 as 0 ∈ ω, symbol s as the successor function in ω, the variables of
P as subsets of ω and the predicate symbols as equality relation and membership relation in
ω. If each integer is assimilated to a singleton and each subset of ω to an infinite word over
alphabet {0, 1}, then a S1S formula φ(X1,X2, ...,Xn), with X1,X2, ...,Xn free variables defines
an ω-language Lφ ⊂ 2N × . . . 2N

︸ ︷︷ ︸

n

.

An ω-language L is said definable in S1S if there exists a formula φ in S1S such that L = Lφ.

2.4 ω-regular sets

Recall the following result [100, 69] :

Theorem 3 for all ω-language L, the following assertions are equivalent :

i) L =
⋃

1≤i≤nAiB
ω
i where Ai, Bi are regular sets and n ∈ ω − {0}.

ii) L = Lω(A), where A is a non deterministic Büchi automaton.

iii) L = Lω(A), where A is a deterministic Muller automaton.

iv) L is definable in S1S.

The family of languages which verify the equivalent conditions of the preceding theorem are
usually call the ω-regular sets. We denote by Rec(Aω) the class of ω-regular sets on alphabet
A. Following Louveau 1987, we denote by Auto the family of ω-regular sets. ω-regular sets are
denoted by ω regular expression [69].
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Example 5

α ∈ O⇔ ∃m α(m) = 1

An ω regular expression for O is 0∗1(0 + 1)ω

α ∈ Ǒ⇔ ∀m α(m) = 0

An ω regular expression for Ǒ is 0ω

α ∈ Q⇔ ∃m ∀n ≥ m α(n) = 0

An ω regular expression for Q is (0 + 1)∗0ω

α ∈ Q̌⇔ ∀m ∃n > m α(n) = 1

An ω regular expression for Q̌ is (0∗1)ω

3 ω-rational relations

In this section, we introduce ω-rational relations which extend the notion of ω-langages (see
[37, 40, 41, 56]).

Definition 4 A Büchi transducer T is a 6-tuple : T = 〈A,B,Q, I, T, F 〉, where A and B are
finite alphabets, Q is a finite set of states, I ⊂ Q is the set of initial states, T ⊂ Q×A∗×B∗×Q
is the finite set of transitions and F ⊂ Q the set of final states.

An (infinite) path c in T is an infinite word c = c(0)c(1)...c(n)... ∈ (Q ×A∗ × B∗ ×Q)ω such
that ∀n ∈ ω c(n) ∈ T .

So for each n, c(n) is of the form c(n) = (qn, un, vn, qn+1), with un ∈ A∗ and vn ∈ B∗ This will
be denoted by the following graphical notation of path :

c = q0
u0,v0
−−−→ q1

u1,v1
−−−→ q2

u2,v2
−−−→ . . .

Let α = u0u1 . . . un . . . and β = v0v1 . . . vn . . ., (α, β) is the label of the path c. A path c is said
to be successful if q0 ∈ I and Infinity(c)

⋂
F 6= ∅, where Infinity(c) is still the set of states which

appears infinitely many times in c. Let α ∈ A∗ ∪Aω and β ∈ B∗ ∪Bω, (α, β) is recognized by T
if there is a successful path c in T of label (α, β).

Remark 2 A path c of label (α, β) is called admissible if α and β are both infinite words. In [37]
it is shown that for every finite Büchi transducer T , it is possible to construct another one T ′ so
that every successful path in T ′ is admissible and the paths that are both successful and admissible
are the same in T and T ′. In the sequel of this paper all the labels (α, β) will be in Aω ×Bω.

An ω-rational relation is a subset of Aω × Bω which is recognizable by a Büchi’s transducer.
An ω-rational function f : Aω → Bω is a function whose graph is an ω-rational relation. Recall
that a left sequential function f : A∗ → B∗ is a function that can be realized by a deterministic
automaton with output (sequential transducer). A left sequential function can be extended im-
mediately to f : Aω → Bω ∪B∗. If the image of f is in Bω then this is an example of continuous
ω-rational function. This is the case when the deterministic automaton with output realizing f
output one letter when he read a letter. We call 1-sequential functions these functions and these
functions will be used as strategy for player 2 later.
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Example 6 Let T be the Büchi transducer with A = B = {0, 1}, states Q = {1, 2, 3, 4, 5}, initial
states I = {1, 3, 4}, final states F = {1, 3, 5} and transitions

T = {(1, (0, 0), 1), (1, (1, 1), 2), (2, (0, 0), 1), (2, (1, 1), 2),

(3, (1, 1), 3), (4, (0, 0), 4), (4, (1, 1), 4), (4, (0, 1), 5), (5, (1, 0), 5)}

Figure 4 gives the representation of T . This automaton recognizes the graph of function S :
2ω → 2ω defined by S(α) = α if α has infinitely many 0’s, S(1ω) = 1ω and S(u01ω) = u10ω

for all u ∈ 2∗. Let µ2 : 2ω −→ [0, 1] defined by µ2(α) =
∑∞

i=0
α(i)
2i+1 . One can easily check that

S(α) is the lexicographic maximum of the binary representations of µ2(α) for all α ∈ 2ω. S is
known as normalization in base 2. In fact for any Pisot number θ, normalisation in base θ is an
ω-rationnal function( see Frougny [39]).

� ✁

✂☎✄✆✂ �✆✄☎�

�✆✄☎�

✂☎✄✆✂

✝

�✆✄☎�

✞

�✆✄☎�

✂☎✄✆✂

✟
✂☎✄☎�

�✆✄✆✂

Fig. 4: Normalization in base 2

4 Borel sets in Polish spaces

For all of the topological concepts introduced in this section we refer the reader to [53, 47, 69,
87].

4.1 Ordinals

For a short and comprehensive presentation of ordinals we refer the reader to Srivastava [87].
We say that two sets E and F have the same cardinal if there is a bijection from E to F . We say
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that two well-ordered sets E and F have the same ordinal if there is an order-preserving bijection
from E to F . To each well-ordered set W we can associate a particular well-ordered set t(W )
called the type of W which is the ordinal associate to W . Results in the theory of ordinals use
the axiom of choice and axiom of remplacement.

It is common in set theory to identify an ordinal with the set of its predecessors, i.e., α =
{β | β < α} and to identify the finite ordinals with the natural numbers. Here are the first
ordinals 0, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2} . . . n = {0, 1, . . . , n− 1} The successor of an ordinal
α is the least ordinal > α. An ordinal is successor if it is the successor of some ordinal, and it
is limit if it is not 0 or successor.

The first infinite ordinal is ω = {0, 1, 2, . . . , n, n + 1, . . .}, it is a limit ordinal, its successor is
ω + 1 = {0, 1, 2, . . . , n, n+ 1, . . . , ω}.

Next we have ω+ 2,. . ., ω+ n,. . . , ω+ω = ω.2,. . ., ω.3,. . ., ω.n,. . ., ω.ω = ω2, . . ., ωn, . . ., ωω.
An ordinal is countable if its cardinal is countable. All ordinals we have seen are small coun-

table ordinals. Let ω1 be the set of countable ordinals, one can show that ω1 is an uncountable
well-ordered set and that its cardinality is lower or equal to 2N. The Continuum hypothesis

says that the cardinality of ω1 is equal to 2N.

4.2 The Borel hierarchy

Borel subsets of a topological space X are obtained from open sets using complementation and
countable unions. When X is metrizable we can define the hierarchy of Borel sets of finite rank :

Definition 5 Let X be a metrizable space, for n ∈ ω−{0}, we define by induction classes Σ0
n(X),

Π0
n(X) and ∆0

n(X) :
Σ0

1(X) = G(X) the class of open sets of X
Π0

n(X) = {Ǎ | A ∈ Σ0
n(X)}, where Ǎ is the complement of A.

Σ0
n+1(X) = {∪mAm | Am ∈ Π0

n(X),m ∈ ω}

∆0
n(X) = Σ0

n(X) ∩Π0
n(X)

In particular, we have :
Π0

1 is the class of closed sets.
Σ0

2 = Fσ is the class of countable unions of closed sets.
Π0

2 = Gδ is the class of countable intersections of open sets.

One can prove that : Σ0
n ∪Π0

n ⊂∆0
n+1

This gives us the following picture where any class is contained in every class to the right of
it :

Σ0
1 Σ0

2 Σ0
3 Σ0

n

∆0
1 ∆0

2 ∆0
3 . . . ∆n . . .

Π0
1 Π0

2 Π0
3 Π0

n

The Borel hierarchy is also defined for transfinite levels ξ < ω1, but we shall not need them in
the present study.
For all n ∈ ω the classes Σ0

n(X), Π0
n(X), ∆0

n(X) are closed under finite unions and intersections,
moreover Σ0

n(X) is closed under countable unions, Π0
n(X) closed under countable intersections

and ∆0
n(X) closed under complement. All these classes are closed by inverse image by continuous

functions.
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Example 7 The set O is open but is not closed, i.e., O ∈ Σ0
1 and O /∈ Π0

1.

We will see that the set Q is Fσ but is not Gδ, i.e., Q ∈ Σ0
2 and Q /∈ Π0

2.

Sets which are recognized by deterministic Büchi automaton are Gδ. One can see this easily as
a deterministic automaton gives a continuous function f : Aω → Qω. Replace q /∈ F by 0 and
q ∈ F by 1. The set recognized by a deterministic Büchi automaton is the inverse image of Q̌ by
a continuous function.

Sets which are recognized by deterministic Müller automaton are boolean combinations of sets
which are recognized by deterministic Büchi automaton, so they are boolean combinations of Π0

2

sets hence ∆0
3.

4.3 Polish spaces

A Polish space P is a separable topological space which admits a compatible metric d such as
(P, d) is complete. A closed subset of a Polish space is Polish. An open subset of a Polish space is
Polish. A Gδ subset of a Polish space is Polish. This is not true for Fσ. Recall the Baire theorem :

Theorem 4 Let X be a complete space, the intersection of countably many dense open sets in
X is dense.

This is equivalent to say that in a complete space X , the union of countably many closed sets of
empty interior has empty interior.

Lemma 5 The set Q with the relative topology induced by the one of R is not Polish.

Proof: (Saint Raymond) We have :

Q =
⋃

n∈ω

{qn}

a countable union of closed sets. Suppose Q was Polish then by the preceding theorem there must
be an n such that {qn} has an nonempty interior, otherwise Q would have an empty interior,
hence will be empty. But every {qn} has an empty interior because Q is dense in itself. Hence Q
can’t be Polish. �

In fact by Baire’s theorem, every countable dense subset of a Polish space is not Polish. As a
Gδ subset of a Polish space is Polish, every countable dense subset of a Polish space is not Gδ.

Remark 3 It is well known (for a descriptive set theorist) that every Polish space is homeomor-
phic to a Gδ set in a compact metric space. For example the Baire space ωω is homeomorphic
to Q̌ = {α ∈ 2ω | ∀m, ∃n > m, α(n) = 1}. To see this, define an application ϕ : ω −→ 2∗

by ϕ(n) = 0n1. Notice that ϕ(ω) = 0∗1 is a regular prefix code. Extend ϕ in monöıd morphism
ϕ : ω∗ −→ 2∗, ϕ(ω∗) = (0∗1)∗. Next extend ϕ in continuous one to one application called again
ϕ : ωω −→ 2ω. We have ϕ(ωω) = (0∗1)ω = Q̌. The set of infinite subsets of ω is homeomorphic
to Baire space ωω.

When P is an uncountable Polish space , Borel hierarchy is strict. In the sequel P will be Aω

or Aω ×Bω or [a, b] with a and b reals.
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4.4 Analytic sets and coanalytic sets

There exists another hierarchy beyond the Borel one, called the projective hierarchy, which
is obtained from the Borel hierarchy by successive applications of operations of projection and
complementation. We need just the first level of this hierarchy. Let B ⊆ P × ωω , we will call
projP (B) the projection of B onto P , that is, projP (B) = {α ∈ P/∃β ∈ ωω (α, β) ∈ B}.

A set C ⊆ P is called analytic if there is a Borel set B ⊆ P×ωω such that C = projP (B). A set
C ⊆ P is coanalytic if its complement is analytic. The class of analytic sets in P (resp. coanalytic)
is called Σ1

1
(P ) (resp. Π1

1
(P )). Borel sets are analytic and coanalytic sets. The famous theorem

of Suslin says that in Polish space P , if B ⊆ P is analytic and coanalytic then B is Borel.

Existence of analytic sets which are not Borel is a kind of myth for descriptive set theorists. In
1905 Lebesgue said that the projection of Borel set in the plane was a Borel set. This was false as
Suslin discovered in 1917. He called a projection of Borel set an analytic set. Here is the French
evidence of Sierpinski [82] : “Par hasard j’étais présent au moment où Michel Souslin communiqua
à M. Lusin sa remarque et lui donna le manuscrit de son premier travail”. Büchi commented the
equivalence of theorem 3 :“What looks like an analytic set (set recognized by a nondeterministic
Büchi automaton) is in fact Borel set( a set recognized by a deterministic Müller automaton is a
∆0

3 set)” [16]. An ω-rational relation is an analytic set of Aω ×Bω.

4.5 Complete sets

Recall the notion of completeness with regard to reduction by continuous functions. Let Γ be
a class of sets in P Polish We call C ⊆ P Γ-complete if C ∈ Γ and for any B ∈ Γ there exists a
continuous function f : P −→ P , such that B = f−1(C).

Finding some simple examples of complete sets is an old tradition in descriptive set theory
which goes back to Hurewicz [45] ( see Louveau and Saint Raymond [62], Kechris [47]). It turns
out that some simple combinatorial examples of complete sets are recognized by automata.

Example 8 We will see that O = {α ∈ 2ω | ∃m α(m) = 1} is Σ0

1
-complete, hence Ǒ = {α ∈

2ω | ∀m α(m) = 0} is Π0
1-complete.

We will see that the set Q = {α ∈ 2ω | ∃m ∀n ≥ m α(n) = 0} is Σ0
2-complete, hence

Q̌ = {α ∈ 2ω | ∀m ∃n > m α(n) = 1} is Π0
2-complete. In fact a countable dense subset of [0, 1]

is Σ0
2-complete Hurewicz [45], and this true in all uncountable Polish space.

Here is some well known examples of coanalytic-complete sets :

The set WO, as Well Order, that is the set of E ⊂ ω × ω such that E is the graph of Well
ordered linear order, is Π1

1-complete, Lusin Sierpinski (1923).

The set K(Q) of compact sets of [0, 1] which are included in Q ⊂ R , is Π1
1-complete, Hurewicz

[45].

The set DIFF of differentiable functions in C[0, 1] is Π1
1-complete, Mazurkievicz(1933).

The set WF of well founded trees, that is trees on ω which have no infinite branches is Π1
1-

complete.

The set NDIFF of continuous functions on [0, 1] which are nowhere differentiable functions in
C[0, 1] is Π1

1-complete, Mauldin(1979).

Finkel showed in [31] that there exists an ω-rational relation which is Σ1
1-complete.
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Wadge has proved (i) (ii) :
For any n , C ⊆ ωω is Σ0

n
-complete (resp. Π0

n
-complete) set iff C ∈ Σ0

n
\Π0

n
(resp. C ∈ Π0

n
\Σ0

n
).

Definition 6 Let L ⊂ A∗ we define Lim(L) = {α ∈ Aω | ∀n ∈ ω, ∃m ≥ n such that α[m] ∈ L}.

The following lemma is classical( see [54], [56], [90]).

Lemma 6 Let M ⊂ Aω then M is Π0
2 if and only if there exists L ⊂ A∗ so that M = Lim(L).

Example 9 Q̌ = {α ∈ 2ω | ∀m ∃n > m α(n) = 1} is Π0
2 because Q̌ = Lim(L) with L a regular

set denoted by the regular expression (0 + 1)∗1.
Q is not equal to Lim(L) because Q is not Gδ.

This lemma is equivalent to the following. The set {α ∈ 2ω | ∀m, ∃n > m, α(n) = 1} is a Π0
2

complete set [83], [93] . In fact we have more : this set is strategically complete [62]. We will see
it in the game section.

5 Baire’s classes

Definition 7 Definition of Baire’s classes for functions is recursive.
Let X, Y be metrizable spaces and f : X → Y be a function.

i) f is of Baire class 0 if f is continuous.

ii) f is of Baire class (n+ 1) if f is the pointwise limit of a sequence of Baire class n functions
for each integer n ≥ 0.

The Lebesgue, Hausdorff, Banach theorem makes the connexion with the Borel hierarchy :

Theorem 7 Let X, Y be metrizable spaces with Y separable. Then for all n ≥ 2, f : X → Y is
of Baire class n iff for all open V include in Y , f−1(V ) is in Σ0

n+1(X).

Remark 4 Note that this result holds for n = 1 if in addition X is separable and either X = Aω

or Y = R.

Remark 5 If Y = Bω, as {uBω|u ∈ B∗} is a countable basis of clopen sets, it is equivalent to
prove that f : X → Y is of Baire class n iff for all finite word u, f−1(uBω) is in ∆0

n+1(X).

Lemma 8 An ω-rational function is of Baire class 2.

Proof: We have to shows that for all finite word u, f−1(uBω) is in ∆0
3. But

f−1(uBω) = projAω (graph(f) ∩ (Aω × uBω))

We see that Aω × uBω is in Rec((A × B)ω). The family of ω-rational relation of Aω × Bω is
closed by intersection with an ω-regular set of (A × B)ω and if R ⊂ Aω × Bω is an ω-rational
relation then projAω (R) is an ω-regular set of Aω . We have seen that an ω-regular set is a boolean
combination of Π0

2 sets, hence is a ∆0
3 set. �

(i) Jean Saint Raymond has proved, that this valid for any uncountable Polish space.
(ii) See [47] page 205 for a discussion of the statement :

Let C ⊆ ωω , if C ∈ Π
1

1
\Σ1

1
then C is Π

1

1
-complete.
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Example 10 The characteristic function of Q ⊂ R, 1Q is a classical example of Baire class two
function which is not of Baire class one [5, 25]. The function 1Q is the pointwise limit of the
sequence (fm)m∈N where fm(x) = limn→∞ cos2m(n!πx). So 1Q is of Baire class two. If 1Q was a
Baire class one function, then the inverse image of an open set by 1Q will be a Σ0

2(R) set, hence
the inverse image of a closed set by 1Q will be a Π0

2(R) set. But as 1−1
Q ({1}) = Q is not Π0

2(R),
because Q is a countable dense subset, so 1Q is not of Baire class one.

Let X and Y be metrizable spaces with Y compact, and f : X → Y , it is well known that f is
continuous if and only if its graph is closed.

Proposition 9 Let f : Aω → Bω be a function of Baire class n, then its graph is Π0
n+1(A

ω×Bω).

Proof: First notice that if f(α) = β then ∀u ∈ B∗, (β ∈ uBω ⇒ f(α) ∈ uBω) and if f(α) 6= β
then ∃u ∈ B∗ such that β ∈ uBω and f(α) /∈ uBω. Thus :

(α, β) ∈ graph(f)⇔ f(α) = β ⇔ [∀u ∈ Y ∗(β ∈ uBω ⇒ f(α) ∈ uBω)]

As f is of Baire class n, for any word u in B∗, {α ∈ Aω|f(α) ∈ uBω} is in ∆0
n+1(A

ω) and

{β ∈ Bω|β ∈ uBω} is in ∆0
1(B

ω). Thus for all fixed u ∈ B∗, {(α, β) ∈ Aω × Bω | (β ∈ uBω ⇒
f(α) ∈ uBω)} is in ∆0

n+1(A
ω×Bω) and {(α, β) ∈ Aω×Bω | ∀u ∈ B∗(β ∈ uBω ⇒ f(α) ∈ uBω)}

is in Π0
n+1(A

ω ×Bω). �

When A and B are finite alphabets we have :

Proposition 10 Let f be a function f : Aω → Bω.
If graph(f) ∈∆0

2(A
ω ×Bω) then f is of Baire class 1.

Proof: If graph(f) ∈∆0
2(A

ω×Bω) then for all open U ⊂ Bω , graph(f)∩(Aω×U) ∈∆0
2(A

ω×Bω).
As Aω and Bω are compact spaces, graph(f) ∩ (Aω × U) is Kσ (countable unions of compact
sets) and then f−1(U) is Kσ as the continuous projection of graph(f) ∩ (Aω × U) on Aω. �

Let cont(f) denote the set of points of continuity of a function f .

Proposition 11 Let X and Y be separable metric spaces and f : X → Y . Then cont(f) is
Π0

2(X).

Proof: We define the oscillation of f at α by :

oscf (α) = inf{diam(f(U))|U open containing α}

where diam(E) is diameter of a set E.
It is easy to see that oscf (α) = 0 iff f is continuous at α.
Let Xε = {α ∈ X | oscf (α) < ε} we show that it is an open set.
Let α be in Xǫ.

(oscf (α) < ε)⇒ (∃U open containing α so that diam(f(U)) < ε).

Then
∀β ∈ U oscf (β) ≤ diam(f(U)) < ε.

And Xǫ is open.
So cont(f) = {α ∈ Xω | oscf (α) = 0} = ∩n>0X1/n is Π0

2(X). �
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6 An example

In this section we give an example of a function f such that graph(f) is definable in S1S hence
is of Baire class 2. One can easily see that graph(f) ∈ Π0

2 and the set of points of continuity of
f is a dense open set (hence dense Π0

2). However, f is not of Baire class 1. This example was
constructed in 1996 by Tison and the first author and was unpublished. The idea of A. Louveau
(1996), is the following : take the characteristic function of the Cantor set on the interval [0, 1].
The function is continuous on the complement of the triadic Cantor set, which is a dense open set.
Since the graph of f is ∆0

2 set, it follows from proposition 10 that f is of Baire class 1. So we have
to modify our function on the Cantor set to succeed. Now we will work on space 3ω = {0, 1, 2}ω.
The Cantor set is (0 + 2)ω

α ∈ (0 + 2)ω ↔ ∀n(α(n) = 0 ∨ α(n) = 2)

and its complement is the dense open set (0 + 2)∗1(0 + 1 + 2)ω

α ∈ (0 + 2)∗1(0 + 1 + 2)ω ↔ ∃n α(n) = 1

First define g : {0, 1}ω −→ {0, 1}ω by :

g(α) = α, if α ∈ (0∗1)ω (α has infinitely many 1’s).

If α ∈ (0 + 1)∗10ω (α has a non zero finite number of 1’s) replace each letter of α by 0 except the
last 1 which remains the same, this gives g(0k010k1 . . . 10kp10ω) = 0k0+k1+...+kp+p10ω.

Finally if α = 0ω, g(0ω) = 1ω.

Figure 5 shows a deterministic Büchi automaton which recognizes graph(g). This implies that
graph(g) ∈ Π0

2. We will see that g has no point of continuity and is not of Baire class 1.
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� ✁ �✄✂☎�

✆

�✄✂☎�

�✄✂✝✁

�✄✂✝✁

✞

�✄✂☎�✠✟✡✁☛✂☎�
✁☛✂☎�

✁☛✂☎�

☞

✁☛✂✝✁

�✄✂☎�

✌

�✄✂☎�

✁☛✂✝✁

✁☛✂✝✁

✍

✁☛✂✝✁

✁☛✂✝✁

✎

�✄✂☎�

✁☛✂✝✁

�✄✂☎�

Fig. 5: a totally discontinuous synchronous function

Let’s see that g has no point of continuity.

If α has infinitely many 1’s, α = 0k010k110k21 . . . 10kp . . ., where for each p , kp ≥ 0, sequence
αn = 0k010k110k21 . . . 10kn10ω tends to α.
But g(0k010k110k21 . . . 10kn10ω) = 0k0+k1+...+kn+n10ω and sequence g(αn) converges to 0ω.

Suppose now that α has a non zero finite number of 1’s, α = 0k010k1 . . . 10kp10ω with p ≥ 0. Se-
quence αn = 0k010k1 . . . 10kp10n10ω tends to α. We have g(α) = 0k0+k1+...+kp+p10ω,
g(0k010k1 . . . 10kp10n10ω) = 0k0+k1+...+kp+p+n+110ω and sequence g(αn) converges to 0ω.

If α = 0ω, α is limit of the sequence αn = 0n10ω. g(0ω) = 1ω, g(0n10ω) = 0n10ω and the sequence
g(αn) converges to 0ω.

One can also see that g−1(011(0+1)ω) = 011(0∗1)ω, which is Π0
2 but not Σ0

2. So g is not of Baire
class one.
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Now we can define our function f : {0, 1, 2}ω −→ {0, 1}ω by :

f(α) = 0ω if α ∈ (0 + 2)∗1(0 + 1 + 2)ω( α has at least one 1)

f(α) = α if α ∈ (0∗2)ω (α has no 1 and infinitely many 2’s)

f(α) = 0n20ω if α ∈ (0 + 2)∗20ω (α has no 1 and a non zero finite number of 2’s) and satisfies,
α ∈ (0 + 2)n20ω

f(α) = 1ω if α = 0ω.

One can see in figure 6 that graph(f) is recognized by a deterministic Büchi automaton. This
implies that graph(g) ∈ Π0

2.

� ✁ �✄✂☎�

✆

�✄✂☎��✄✂✝✁

�✄✂✝✁

✞

�✄✂☎�✠✟✡✆☛✂☎�

✆✝✂☎�
✆✝✂☎�

☞

✆✝✂✌✆

�✄✂☎�

✍

�✄✂☎�

✆✝✂✌✆ ✆✝✂✌✆

✎
✆✝✂✌✆

✆✝✂✌✆

✏

✁✌✂☎�
✁☎✂☎�

✁☎✂☎�

�✄✂☎�✠✟ ✁✌✂☎�✠✟ ✆✝✂✑�

✒
�✄✂☎�

✆✝✂✌✆

�✄✂☎�

Fig. 6: a dense open set of points of continuity

Notice that f is not of Baire class 1 because f−1(22 (0+1+2)ω) = 22(0∗2)ω which is Π0
2 but not

Σ0
2. Moreover f is continuous because it is constant on dense open set (0 + 2)∗1(0 + 1 + 2)ω. It is

easy to see that f has no point of continuity on (0 + 2)ω. The proof is similar to that concerning
g, we just have to replace 1 by 2.



272 Pierre Simonnet and Benoit Cagnard

In his thesis (1899) Baire has proved that a function is of Baire class 1 if and only if for every
non empty closed set F the restriction of this function to F has a point of continuity. Our example
is ω-rational function which is not of Baire class 1 and we have found an ω-regular closed set
F = (0 + 2)ω such that restriction of f to F has no point of continuity. We will see that our
example is generic. If f is an ω-rational function which is not Baire class 1, then there exists
a closed F , recognized by a Büchi automaton, such that restriction of f to F has no point of
continuity.

The next sections will be devoted to the classical proof of Baire’s result.

7 Differences hierarchy

In this section, we introduce the class of differences. Let ξ be an ordinal. Any ξ can be written
in a unique way ξ = λ+ n with λ a limit ordinal or 0 and n ∈ ω. Parity of ξ is by definition that
of n.

Definition 8 Let X be a set, ξ an ordinal and < Bη : η < ξ > an increasing sequence of subsets
of X :

Dξ(< Bη : η < ξ >) = {x ∈ X |∃η < ξ, x ∈ Bη and if η0 = inf({η|x ∈ Bη})

the parity of ξ and of η0 are differents }

Then :

D1(< B0 >) =B0

D2(< B0, B1 >) =B1\B0

D3(< B0, B1, B2 >) =(B2\B1) ∪B0

. . .

Dω(< Bn : n ∈ ω >) = ∪n∈ω (B2n+1\B2n)

Dω+1(< Bn : n ≤ ω >) =(Bω\ ∪n∈ω Bn) ∪ (∪n∈ω(B2n+2\B2n+1)) ∪B0

Let Γ be a family of subsets of X , Dξ(Γ) will be the family of all Dξ(< Bη : η < ξ >) where
< Bη : η < ξ > is an increasing sequence of length ξ of elements of Γ. In the sequel we will be
particularly interested in the classes Dξ(Σ

0
1) and their dual classes Ďξ(Σ

0
1) = {B | B̌ ∈ Dξ(Σ

0
1)},

where ξ is a countable ordinal.

Example 11 Let Ok = {α ∈ 2ω | ∃n1, ∃n2, . . . ∃nk, n1 < n2 < . . . < nk, α(n1) = α(n2) = . . . =
α(nk) = 1} with k > 0, Ok is an ω-regular open set. We have an increasing sequence of dense
open sets On ⊂ On−1 ⊂ On−2 . . . O2 ⊂ O1 and Dn(< On, . . . , O1 >) is a Dn(Σ0

1) which in
fact is a Dn(Σ0

1)-complete set. Figure 7 gives a deterministic Büchi automaton which recognizes
(O1\O2) ∪O3.

Example 12 Let Gn be the following sequence of decreasing dense Gδ sets :
G1 = ((0 + 1)∗1)ω = (0∗1)ω α ∈ G1 ⇔ α has an infinite numbers of 1.
G2 = ((0 + 1)∗11)ω α ∈ G2 ⇔ α has an infinite numbers of 11.
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�

�

✁✁

�

✂✁

�

✄✁

�✆☎ ✁

Fig. 7: A deterministic Büchi automaton which recognizes a D3(Σ
0
1)-complete set.

G3 = ((0 + 1)∗111)ω α ∈ G3 ⇔ α has an infinite numbers of 111.
. . .
Gn = ((0 + 1)∗1n)ω α ∈ Gn ⇔ α has an infinite numbers of 1n

Taking the complement of these sets we obtain an increasing sequence

F1 ⊂ F2 ⊂ . . . Fn−1 ⊂ Fn

of meager Fσ sets, Dn(< F1, . . . , Fn >) is a Dn(Σ0
2) which in fact is a Dn(Σ0

2)-complete set.
Figure 8 gives a deterministic Müller automaton which recognizes (F3\F2) ∪ F1, with F =
{{0}, {0, 1, 2}}.

The loops accessible from the initial state are
L = {{0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, {3}}, these are essential loops of the automaton [106].

Classify these essential loops in
L+ = {{0}, {0, 1, 2}} and L− = {{0, 1}, {0, 1, 2, 3}, {3}}. We have the inclusion
{0} ⊂ {0, 1} ⊂ {0, 1, 2} ⊂ {0, 1, 2, 3}, that is to say {+} ⊂ {−} ⊂ {+} ⊂ {−}. But we have not

some {−} ⊂ {+} ⊂ {−} ⊂ {+} inclusion. These are the + chain and -chain of Wagner.

✝

✝

✞✞

✝

✟✞

✝

✠✞

✞

✝

Fig. 8: A deterministic Müller automaton which recognizes a D3(Σ
0
2)-complete set.

It is well known that in an uncountable Polish space hierarchy of Dξ(Σ
0
η), ξ < ω1, η < ω1 is

strict (see [47] ).

Lemma 12 Inclusion Dξ(Σ
0
1) ⊂∆0

2 holds, for all countable ordinal ξ.

Proof: First note that Ďξ(Σ
0
1) ⊂ Dξ+1(Σ

0
1). So, we have only to prove that Dξ(Σ

0
1) ⊂ Σ0

2. This
is clear since differences B1\B0 of open sets are Σ0

2 and Σ0
2 is closed under countable unions. �
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8 Haussdorff’s derivation

Recall that Aω has a countable basis for the topology. Thus we can extract countable covering
from each open covering. As a consequence, if ω1 is the first non countable ordinal, and if (Fξ)ξ<ω1

is a decreasing sequence of closed sets, it is stationary from a certain rank on, i.e., ∃η < ω1 such
that Fξ = Fη, ∀ξ ≥ η. For more details we refer to [47].

We now define Hausdorff’s derivation (see [53]).

Definition 9 Let M and N be two subsets of Aω. Sequence of closed sets (Fξ)ξ<ω1
is defined by

transfinite induction.

F0 = Aω

Fξ+1 = Fξ ∩M ∩ Fξ ∩N

Fλ = ∩ξ<λFξ, if λ is a limit ordinal

The sequence (Fξ)ξ<ω1
is a decreasing sequence of closed sets, so we know that there exists a

smaller η < ω1 such that Fη = Fη ∩M ∩ Fη ∩N .

Lemma 13 Let F be a closed set. Then F = F ∩M∩F ∩N if and only if F = F ∩M = F ∩N .

Proof: Indeed, if F = F ∩M ∩ F ∩N then F ⊂ F ∩M . Moreover F ∩M ⊂ F and F ∩M ⊂ F
since F is closed. �

Lemma 14 Fη is the largest closed set such that F = F ∩M ∩ F ∩N .

Proof: Let F be a closed set such that F = F ∩M ∩ F ∩N . We will show that F ⊂ Fη by
transfinite induction.
We have F ⊂ F0.
If F ⊂ Fξ then F ∩M ⊂ Fξ ∩M , so F = F ∩M ⊂ Fξ ∩M .
Similarly F = F ∩N ⊂ Fξ ∩N thus F ⊂ Fξ ∩M ∩ Fξ ∩N = Fξ+1.
If λ is a limit ordinal, and if ∀ξ < λ, F ⊂ Fξ ∀ξ < λ then F ⊂ ∩ξ<λFξ = Fλ. �

We define the following sequences (Mξ)ξ<ω1
and (Nξ)ξ<ω1

:

M0 = M N0 = N
Mξ+1 = Mξ ∩Nξ Nξ+1 = Nξ ∩Mξ

Mλ = ∩ξ<λMξ Nλ = ∩ξ<λNξ if λ is a limit ordinal.

Lemma 15 ∀ξ < ω1, Mξ = M ∩Fξ and Nξ = N∩Fξ . In particular, if η is the smallest countable
ordinal such that Fη = Fη ∩M = Fη ∩N , then η is also the smallest countable ordinal such that
Mη = Nη.

Proof: We argue again by a transfinite induction.
For η = 0 we have M0 = M = M ∩Aω = M ∩ F0, and also N0 = N ∩ F0.
If Mξ = M ∩ Fξ and Nξ = N ∩ Fξ, then

Mξ+1 = Mξ ∩Nξ = M ∩ Fξ ∩N ∩ Fξ = M ∩ Fξ ∩M ∩ Fξ ∩N ∩ Fξ.
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So
Mξ+1 = M ∩ Fξ ∩ Fξ+1 = M ∩ Fξ+1.

For λ limit, if Mξ = M ∩ Fξ for ξ < λ, then :

Mλ = ∩ξ<λMξ = ∩ξ<λ(M ∩ Fξ) = M ∩ (∩ξ<λFξ) = M ∩ Fλ.

�

Lemma 16 Let M and N be two Π0
2 subsets of Aω and Fη the largest closed set such that

Fη = Fη ∩M ∩ Fη ∩N

Then Fη 6= ∅ ⇒M ∩N 6= ∅. In particular Fη = ∅ if M and N are two disjoint Π0
2.

Proof: Sets Mη = M ∩ Fη, Nη = N ∩ Fη are Π0
2 sets. So, by lemma 6, there exists U ⊂ A∗ et

V ⊂ A∗ so that : Lim(U) = Mη and Lim(V ) = Nη.
If Fη 6= ∅, as Fη = Mη = Nη, we can find α1 ∈ Mη and u1 ∈ U such that u1 is a prefix of α1.
Since every open ball containing α1 meets Nη, we can find β1 ∈ Nη so that u1 is a prefix of β1.
But Nη = Lim(V ), thus we can find v1 ∈ V such that v1 is a prefix of β1 and u1 is a strict prefix
of v1. Finally since every ball containing β1 meet Mη we can find α2 ∈Mη so that v1 is a prefix
of α2, and since Mη = Lim(U) we can find u2 ∈ U prefix of α2 so that v1 is a strict prefix of u2.
Then u1 < v1 < u2. Iterating this process, we construct two sequences (ui), (vi) such that

u1 < v1 < u2 < v2 < . . . < ui < vi < ui+1 < vi+1 < . . .

Note α = lim(ui) = lim(vi), α ∈ Lim(U) = Mη ⊂M and α ∈ Lim(V ) = Nη ⊂ N . �

Theorem 17 (Hausdorff) Let M and N be two disjoint Π0
2 subsets of Aω. Then :

(i) There exists ζ < ω1 and a set in Dζ(Σ
0
1) which separates M from N .

(ii) In particular, ∆0
2 = ∪ξ<ω1

Dξ(Σ
0
1).

Proof: Let Pξ = Fξ\M ∩ Fξ, Rξ = Fξ\N ∩ Fξ. We have :

Fξ\Fξ+1 = Fξ\(M ∩ Fξ ∩N ∩ Fξ) = (Fξ\M ∩ Fξ) ∪ (Fξ\N ∩ Fξ) = Pξ ∪Rξ.

Let η be the smallest ordinal such that Fη = Fη+1. We have :

Aω = (∪ξ<η(Fξ\Fξ+1)) ∪ Fη.

By lemma 16, as M and N are two disjoint Π0
2, Fη = ∅, thus

Aω = (∪ξ<ηPξ) ∪ ((∪ξ<ηRξ).

Moreover, ∀ξ < ω1, Pξ = Fξ\M ∩ Fξ ⊂ Fξ\(M ∩ Fξ) = Fξ\M ⊂ Aω\M .
So as ∪ξ<η Pξ ⊂ Aω\M we have M ⊂ Aω\(∪ξ<η Pξ) hence M ⊂ ∪ξ<ηRξ.
Also (∪ξ<η Rξ) ⊂ A

ω\N, i.e., (∪ξ<η Rξ) ∩N = ∅.
So ∪ξ<η Rξ separates M from N . As it is a countable union of disjoint D2(Π

0
1) sets it is easy to

see that ∪ξ<ηRξ is in Dζ(Σ
0
1) for some ζ < ω1.

If M is in ∆0
2, set N = M̌ . M and N are disjoint Π0

2 sets and there exists ζ < ω1 and a
set in Dζ(Σ

0
1) which separates M from N . Thus M is in Dζ(Σ

0
1). So we have proved that

∆0
2 ⊂ ∪ξ<ω1

Dξ(Σ
0
1) and the opposite inclusion has been proved in lemma 12. �



276 Pierre Simonnet and Benoit Cagnard

Corollary 18 Let M and N be two subsets of Aω and let Fη be the biggest closed set so that
Fη = Fη ∩M = Fη ∩N . Then M and N can be separated by a ∆0

2 set iff Fη = ∅.

Proof: In the proof of theorem 17 we showed that if Hausdorff’s derivation stops to the empty
set then M and N are separated by a ∆0

2. Conversely, if M and N are separated by a Dζ(Σ
0
1)

set C for some ζ < ω1, we can operate the Hausdorff derivation on C and Č. As C and Č are
disjoint Π0

2 sets this derivation goes on to the empty set, as the derivation on M and N . �

Our proof is directly extracted from Kuratowski [53] and documents of Louveau. The result
is true in uncountable Polish spaces. Our originality comes from lemma 16 ; this is in such a
form that the first author discovered this problem [4]. One can see how automata can be used
to analyse problems of parallelism in [11]. Instead of lemma 16, a descriptive set theorist would
use there Baire’s theorem : a countable intersection of dense open set is dense. If M and N are
two disjoints Π0

2 and if F is a non empty closed set such that F = F ∩M ∩ F ∩N , then F is
complete as a closed set in complete space Aω. Sets F ∩M and F ∩N are Gδ in F , so they cannot
be both dense since they are disjoint.

9 Baire’s theorem

Definition 10 A set E is called nowhere dense if its closure E has an empty interior. A set E
is called meager if it is included in a countable union of nowhere dense sets.

Baire’s theorem asserts that in a polish space [69] a countable intersection of dense open sets is
still dense or equivalently that a countable union of nowhere dense closed sets has empty interior.
We have seen that for any function f , the set of discontinuity points of f is in Σ0

2(X) set. In the
case of a Baire class 1 function, we have more.

Proposition 19 Let X and Y be two separable metric spaces and f : X → Y a Baire class 1
function. The set of discontinuity points of f is a meager set in Σ0

2(X).

Proof: Let (V X
n ) (resp (V Y

n )) be a countable basis of X (resp Y ). A point α ∈ X is a dis-
continuity point of f if there exists n such that f(α) ∈ V Y

n and f(V X
m ) * V Y

n for each m, i.e.
α ∈ f−1(V Y

n ) but not in its interior int(f−1(V Y
n )). Thus the set of discontinuity points of f is

∪n∈ωf
−1(V Y

n )\int(f−1(V Y
n )). As f is Baire class 1, all these sets are Σ0

2(X) and have empty
interior : they are all meager and a countable union of meager sets is still meager. �

Theorem 20 Let P be a Polish space, Y a separable metric space and f : P → Y . The following
statements are equivalent :

(i) f is Baire class 1.

(ii) For all nonempty closed set F ⊂ P , the restriction f|F of f to F has a point of continuity.

Proof: (i)⇒ (ii)
Set F is a closed set of a Polish space so F is Polish too. Since f is Baire class 1, so is f|F , thus,
by proposition 19, its discontinuity points form a meager subset of F , hence by Baire category
theorem, cannot be equal to F .
(ii)⇒ (i)
Suppose that f is not Baire class 1. There exists an open subset U of Y such that f−1(U) /∈ Σ0

2(X).
As Y is a metric space, U can be writen as a countable union of closed sets U = ∪n≥0Hn. Let
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H be the complement of U in Y . Suppose that for each n there exists An ∈∆0
2 which separates

f−1(Hn) from f−1(H). Then :

f−1(U) = ∪n≥0f
−1(Hn) = ∪n≥0An

and f−1(U) will be Σ0
2.

So there exists an n such that f−1(Hn) and f−1(H) can’t be separated by a ∆0
2 set. We now

apply Hausdorff’s derivation on f−1(Hn) and f−1(H). Let F be the biggest closed set such that
F = F ∩ f−1(Hn) = F ∩ f−1(H). By corollary 18, F is not empty and we will show that f has
no point of continuity in F .
Let α ∈ cont(f|F ). If f(α) /∈ H , as H is closed we can find an open set Bα in F containing α
such that f(Bα) ∩H = ∅. This contradicts density of f−1(H) in F thus f(α) ∈ H . By the same
argument f(α) ∈ Hn, but H ∩Hn = ∅. So f|F has no point of continuity. �

Example 13 We have seen that the characteristic function of Q ⊂ R, 1Q is of Baire class two.
Using the previous theorem we can see that 1Q is not Baire class one since it’s nowhere continuous.

10 Application to automata theory

Lemma 21 Let M and N be two languages in Rec(Aω). Then Hausdorff’s derivation on M and
N stops in a finite number of steps, i.e.

∃n ∈ ω such that Fn = Fn ∩M = Fn ∩N.

Proof: Let A (Resp. B) be a deterministic Müller automaton which recognizes M(Resp. N).
Construct the cartesian product A × B, this is also a deterministic automaton. Compute the
essential loops of the product and classify them in LA, LB, where LA (Resp. LB) is the set of
essential loops such that projection on states of A (Resp. B) is a positive essential loop of A
(Resp. B), see example 12. Note that LA, LB are disjoint if and only if M and N are disjoint. Let
α in M , then there exists a essential loop F which recognizes α, and one can see that α in M is in
the closure of N if and only if a loop of LB is accessible from the loop F in LA. Process as follows :
eliminate from LA (Resp. LB) loops from which every loop in LB (Resp. LA) is inaccessible, and
iterate the work. As there is a finite number of loops, the process will stop in a finite number of
steps. At the end, if LA and LB are not empty, then from every loop in LA (Resp. LB) you can
access to some loop in LB (Resp. LA). �

Example 14 Let Q0 the subset of 2ω of infinite words with finite even number of 1 and Q1 the
subset of 2ω of infinite words with finite odd number of 1. This two sets are dense, Σ0

2-complete
sets. The Hausdorff’s derivation stops after one iteration as F0 = 2ω and F1 = Q0

⋂
2ω =

Q0

⋂
2ω = 2ω = F0.

Corollary 22 One can decide if two langages in Rec(Aω) are separated by a ∆0
2 set. Moreover if

they are separated by a ∆0
2 set, they are separated by an ω-regular ∆0

2 set, i.e., a finite difference
of ω-regular open sets.

Proof: Let M and N two languages in Rec(Aω). Using corollary 18, M and N are separated by
a ∆0

2 set iff Hausdorff’s derivation stop to the empty set, and by lemma 21 it comes in a finite
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number of steps.
By closure property of ω-regular sets, the Fn which appear in Hausdorff’s derivation are ω-regular
and emptyness problem is decidable for ω-regular sets. �

Corollary 23 Let f : Aω → Bω be an ω-rational function. If f is not Baire class 1 then there
exists a nonempty closed set F which is recognizable by a Büchi automaton such that f restricted
to F has no point of continuity.

Proof: If f is not Baire class 1 then there exists u ∈ B∗ such that f−1(uBω) /∈∆0
2(X). So there

exists v ∈ B∗ with |u| = |v| such that f−1(uBω) and f−1(vBω) cannot be separated by a ∆0
2(X)

set. Thus, as in the proof of theorem 20, the Hausdorff derivation on f−1(uBω) and f−1(vBω)
produces, in finite time, a closed set F such that f|F has no point of continuity. As f−1(uBω)
and f−1(vBω) are recognizable by a Büchi automaton so is F by closure properties of the family
Rec(Aω). �

11 Games

For this section we refer the reader to Hurewicz [45], Lusin [64], Sierpinski [82], Büchi [18],
Landweber [54] , Trakhtenbrot Barzdin [100], Wadge [103, 104, 105], Saint Raymond [76], Lindner
Staiger [56], Wagner [106], Moschovakis [65], Louveau [58, 59, 60], Kechris Louveau [48], Kechris
Louveau Woodin [50], Louveau Saint Raymond [62], Staiger [90], Saint Raymond [77], Barua
[6], Weirauch [108], Staiger Weirauch [93], Simonnet [83, 84], Hertling Weirauch [44], Kechris
[47], Selivanov [79], Srivastava [87], Carton Perrin [22], Duparc [27], Duparc Finkel Ressayre [26],
Perrin Pin [69].

11.1 Büchi Landweber and Martin

Games are useful in descriptive set theory. They allow to give alternative proofs of some theo-
rems like Cantor Bendixon theorem and Wadge theorem :

For any n , C ⊆ ωω is Σ0

n
-complete (resp. Π0

n
-complete) set iff C ∈ Σ0

n
\Π0

n
(resp. C ∈ Π0

n
\Σ0

n
).

Definition 11 A game in Aω ×Bω between two players I and II can be defined as follows :

Player I plays α(0) ∈ A, then player II plays β(0) ∈ B, I plays α(1) ∈ A, and so on. The
result of the game is the couple of infinite words (α, β) of Aω ×Bω.

Let G be a subset of Aω ×Bω. Player II wins the game if (α, β) is in G.

Definition 12 We have :

– A strategy for player I is an application φ : B∗ → A. Intuitively I plays following φ :
α(0) = φ(ǫ) =, α(1) = φ(β(0)), α(2) = φ(β(0)β(1)), etc.
The application φ can be extended on infinite words in a continuous application (1-lipschitz)
ψ : Aω → Bω by

φ(β) = φ(ǫ)φ(β(0))φ(β(0)β(1)) . . . φ(β(0)β(1) . . . β(n)) . . .
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– A strategy for player II is an application ψ : A+ → B. Intuitively II plays following ψ :
β(0) = ψ(α(0)), β(1) = ψ(α(0)α(1)), β(2) = ψ(α(0)α(1)α(2)), etc.
The application ψ can be extended on infinite words in a continuous application (1-lipschitz)
ψ : Aω → Bω by :

ψ(α) = ψ(α(0))ψ(α(0)α(1)) . . . ψ(α(0)α(1) . . . α(n)) . . .

A strategy φ for player I is a winning strategy if for any β in Bω (φ(β), β) is not in G. A
strategy ψ for player II is a winning strategy if for any α in Aω (α, ψ(α)) is in G.

Definition 13 A game is called determined if one of the two players has a winning strategy.

It is well known that Borel’s games are determined : Martin theorem [47]. Sometimes the
proofs using games can be adapted to automata theory thanks to Büchi Landweber’s theorem
[7, 69, 84, 85]

Theorem 24 (Büchi Landweber 1969) If the set G is an ω− regular subset of Aω ×Bω, one of
the players have a winning automaton strategy : either player I has a winning strategy φ such that
the tree φ is a rational tree, or either player II has a winning strategy ψ which is a 1-sequential
function. There is an algorithm which, given an ω − regular set G, (1) determines which player
has a winning strategy, and (2) constructs a winning automaton strategy. In particular if one of
the players has a winning strategy, he also has a winning automaton strategy [100, 18].

11.2 Wadge Game

Let X ⊂ Aω , Y ⊂ Aω , in the Wadge game G(X,Y ) player II wins iff (α ∈ X ⇔ β ∈ Y ), that
is to say the winning set for II is G = (X × Y )

⋃
(X̌ × Y̌ ). A winning strategy for II gives a

continuous function ( a Lipschitz map) ϕ such that ϕ−1(Y ) = X . A winning strategy for I gives
a continuous function ( a Lipschitz map) ψ such that ψ−1(X̌) = Y . If X and Y are Borel, Wadge
game is determined so we have the dichotomy :
either there exists ϕ continuous such that ϕ−1(Y ) = X either there exists ψ continuous such that
ψ−1(X̌) = Y .

11.3 Wadge’s hierarchy, Wagner’s Hierarchy, Louveau’s hierarchy

Let X ⊂ Aω, Wadge has defined the class of Wadge of X by :

[X ]W = {Y ⊂ Aω | ∃ϕ : Aω −→ Aω continuous Y = ϕ−1(X)}

The notation W on the right gives in French : W A Droite. WADge has given a complete des-
cription of all Wadge classes of Borel set. We have [O]W = Σ0

1, [Q]W = Σ0
2. Let Γ be a class of

Wadge then Γ̌ = {X̌ | X ∈ Γ} is the class dual to Γ, and ∆(Γ) = Γ ∩ Γ̌, if Γ = Γ̌ then Γ is a
selfdual class and if Γ 6= Γ̌ then Γ is a nonselfdual class. The classes Σ0

ξ, Π0
ξ, Dη(Σ0

ξ), ξ < ω1,
η < ω1 are examples of nonselfdual Wadge classes of Borel sets.

Let X ⊂ Rec(Aω), Wagner has defined the class of Wagner of X by :

W [X ] = {Y ⊂ Aω | ∃ϕ : Aω −→ Aω sequential Y = ϕ−1(X)}
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The notation W on the left gives in French : W A Gauche. WAGner has given a complete
description of all Wagner classes of Rec(Aω). One can also defined selfdual and non selfdual
Wagner classes. Wagner proves (in fact maybe he didn’t know Wadge at this time) that Wagde’s
hierarchy restricted to ω-regular set is Wagner’s hierarchy : ΓW ∩Auto =W Γ. The first normal
form’s theorems of this type for ω-regular sets are from Landweber [54] :

An ω-regular set X which is open is the inverse image of O by a 1-sequential function. An ω-
regular setX which is closed is the inverse image of Ǒ by a 1-sequential function or equivalentlyX
is the set of infinite branches of a rational tree of A∗. From this one can deduce that synchronous
continuous are exactly the sequential function with bounded delay, Trakhtenbrot [99, 100]. If an
ω-rational function is not of Baire class 1, one can find a rational tree (tree with a finite number
of subtrees) whose set of infinite branches is a Perfect set P (closed set without isolated points
[53]) and the restriction of f to P has no point of continuity.

An ω-regular set which is Fσ is the inverse image of Q by a 1-sequential function. An ω-
regular set X which is Gδ is the inverse image of Q̌ by a 1-sequential function, or equivalently
X is recognized by a deterministic Büchi automaton, X = Lim(L) with L a regular set. If f
is synchronous then Cont(f) is definable in S1S so one can’t constructs a deterministic Büchi
automaton which recognizes Cont(f).

In February 1987 Louveau used the following formalism to denote Landweber’s theorems. Call

Σ0
1(Auto) = {X ⊂ Aω | X = ϕ−1(O), ϕ : Aω −→ 2ω 1− sequential}

Σ0
2(Auto) = {X ⊂ Aω | X = ϕ−1(Q), ϕ : Aω −→ 2ω 1− sequential}

we have
Σ0

1 ∩Auto = Σ0
1(Auto)

Σ0
2 ∩Auto = Σ0

2(Auto)

If an ω-rational function is not of Baire class 1, one can find a a Perfect set P which is Π0
1(Auto)

such that the restriction of f to P has no point of continuity. If f is synchronous then Cont(f)
is Π0

2(Auto).

Louveau was working in effective set theory (see Moschovakis [65]). He has defined a hierarchy
of effective Borel sets of ωω , the ∆1

1 sets of ωω. Louveau proves that Wagde’s hierarchy restricted
to ∆1

1 sets is Louveau’s hierarchy. His theorem gives for example [59, 60] :

Σ0
1 ∩∆1

1 = Σ0
1(∆

1
1)

Σ0
2 ∩∆1

1 = Σ0
2(∆

1
1)

Σ0
n ∩∆1

1 = Σ0
n(∆1

1)

where one of the equivalent definitions of Σ0
1(∆

1
1), Σ0

2(∆
1
1) is

Σ0
1(∆

1
1) = {X ⊂ ωω | X = ϕ−1(O), ϕ : ωω −→ 2ω ϕ strategy ∆1

1}

Σ0
2(∆

1
1) = {X ⊂ ωω | X = ϕ−1(Q), ϕ : ωω −→ 2ω ϕ strategy ∆1

1}
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And the same definition for Σ0
n(∆1

1) with a very simple set in 2ωn

recognized by a finite automaton
which reads words of length ωn (see Büchi [15], Shelah [80], Bedon [10], Choffrut Grigoriev [24] for
finite automata reading transfinite words). From this effective results Louveau deduces classical
results in the plane : If X ⊂ ωω×ωω is a Borel set with Σ0

n+1 sections then X is a countable union

of Borel sets in ωω × ωω with Π0
n sections. The first example of this kind of results is the case of

Borel sets in the plane with countable sections studied by Lusin [64]. This result was extended
by Novikov Arsenin and Kunugui to the case of Borel sets in the plane with compact sections or
Kσ sections(see Sierpinski[82], Saint Raymond [77], Louveau Saint Raymond [62], Kechris [47],
Srivastava [87]).

11.4 O and Q

For all Wadge classes of Borel sets Γ, Wadge gives an example of a Γ-complete set in ωω. As
remarked by Professor Jean Saint Raymond “il suffit de le faire pour les ouverts.” We will do it
for open sets and Fσ sets.

Let T be a tree of A∗, we denote by [T ] the set of the infinite branches of T :

[T ] = {α ∈ Aω, ∀n ∈ ω α[n] ∈ T }.

Proposition 25 Let F be a subset of Aω. The set F is closed iff there exists a tree T of A∗ so
that F = [T ].

Proof: (⇒) If F is closed, we define T = {u ∈ A∗, ∃α ∈ F ∃n ∈ ω α[n] = u}. Then [T ] = F = F .
(⇐) It is clear that [T ] is always a closed set. �

Definition 14 A set C of Σ0
n is called Σ0

n(Aω)-strategically complete if for any set X of Σ0
n(Aω),

player II has a winning strategy in the game G(X,C) : II wins iff (α ∈ X ⇔ β ∈ C) (G =
(X × C)

⋃
(X̌ × Č)).

Proposition 26 The set O = {α ∈ 2ω | ∃m α(m) = 1} is Σ0
1(A

ω)-strategically complete.

Proof: Let U be in Σ0
1(A

ω). The complement of U is closed, so by proposition 25, there exists a
tree T so that T = Ǔ . The winning strategy φ : A+ → {0, 1} for II is the following :

φ(u) =

{

0 if u ∈ T

1 if u /∈ T

�

In fact using Martin theorem and Wadge game every open non closed set is Σ0
1(A

ω)-strategically
complete. And using Büchi Landweber theorem we have Σ0

1 ∩Auto = Σ0
1(Auto).

Proposition 27 The set Q = {α ∈ 2ω | ∃m ∀n > m α(n) = 0} is Σ0
2(A

ω)-strategically complete.

Proof: Let U be in Σ0
2(A

ω). Then there exists a family (Fn)n∈ω of closed sets so that U =
⋃

n∈ω Fn. By proposition 25, for any integer n, there exists a tree Tn so that Fn = [Tn]. The
winning strategy φ : A+ → {0, 1} for II is given by the following induction :
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n ← 0

φ(u) =

{

0 if u ∈ Tn

1 if u /∈ Tn and n← n+ 1

Let (α, φ(α)) be a result of the game.
– If α is in U , there exists n so that α is in Fn = [Tn]. Then for all m in ω, α[m] is in Tn. So

there exists m0 so that for all m ≥ m0, φ(α[m]) = 0 and φ(α) is in Q : II wins.
– If α is not in U then for all n and m in ω, there exists m̃ ≥ m so that α[m̃] is not in Tn i.e.

the sequence of finite words (α[m])m∈ω leaves any tree Tn in finite time. Then φ(α) has an
infinite number of 1, so φ(α) is not in Q and II wins.

�

In fact using Martin theorem and Wadge game every Fσ set which is not a Gδ set is Σ0
2(A

ω)-
strategically complete. And using Büchi Landweber theorem we have Σ0

2 ∩Auto = Σ0
2(Auto).

11.5 Separation games

In October 1984 Louveau was presenting joint work of his and Saint Raymond in the seminary
of theory of effective borel sets. The title of the talk was “Jeux de Mistigri (Mistigri Games)”.
This was a sort of Wadge game, a separation game. Let Y and Z be two analytic disjoint subsets
of ωω.

In a first Game Player II wins the game iff (α ∈ O⇒ β ∈ Y and α ∈ Ǒ⇒ β ∈ Z). A winning
strategy for II gives a continuous function ( a Lipschitz map) ϕ such that ϕ−1(Y ) = O. A winning
strategy for I gives a continuous function ( a Lipschitz map) ψ such that : ψ(Y ) ⊂ Ǒ, ψ(Z) ⊂ O.
That is to say ψ−1(Ǒ) separate Y from Z. It is easy to see that there is a closed set which
separates Y from Z if and only if player I has a winning strategy in the first separation game. If
Y and Z are ω-regular sets one can deduce from Büchi Landweber’s theorem that one can decide
if two ω-regular disjoint sets are separated by a closed set. Moreover if they are separated by a
closed set, they are separated by a Π0

1(Auto).

In a second game, Player II wins the game iff (α ∈ Q ⇒ β ∈ Y and α ∈ Q̌ ⇒ β ∈ Z). A
winning strategy for II gives a continuous function (a Lipschitz map) ϕ such that ϕ−1(Y ) = Q.
A winning strategy for I gives a continuous function (a Lipschitz map) ψ such that : ψ(Y ) ⊂ Q̌,
ψ(Z) ⊂ Q. That is to say ψ−1(Q̌) separate Y from Z. It is easy to see that there is a Π0

2 set which
separates Y from Z if and only if player I has a winning strategy in the first separation game. If
Y and Z are ω-regular sets, one can deduce from Büchi Landweber’s theorem that one can decide
if two ω-regular disjoint sets are separated by a Π0

2 set. Moreover if they are separated by a Π0
2

set, they are separated by a Π0
2(Auto), that is to say, they are separated by a set recognized by

deterministic Büchi automaton.

Note that these theorems hold for all classes of Wagner’s hierarchy which is of type order the
ordinal of ωω. These results where presented to Louveau in 1987 and appear in [84, 85]. R. Barua
solves the case of the Dn(Σ0

2) classes with a proof without games [6].

Separation games appear in Van Wesep [101]. The game where Player II wins if (α ∈ Q⇒ β ∈ Y
and α ∈ Q̌⇒ β ∈ Z) is used in Kechris Louveau Woodin [50, 48, 47] to give new proof of the old
Hurewicz’s theorem [45] :
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Any Π1
1 set X in a compact metrizable space E which is not Π0

2 contains a closed subset
homeomorphic to Q. In fact, one can also construct a homeomorphic copy F of 2ω inside E such
that F ∩X is (through the homemorphism) identified with Q. The set Q is a Hurewicz-witness
for non Π0

2-ness, Q is a Hurewicz-test. And we have in the ω-regular case. If an ω-regular set
X is not Π0

2 then every deterministic Muller automaton which recognizes X contains a chain
{+} ⊂ {−}. This was generalized to all Wagner classes by Wagner [106].

Effective results of Louveau were first proved in [59]. Let Σ1
1 (resp. Π1

1) be the class of effective
analytic sets (resp. coanalytic sets) and ∆1

1 = Π1
1 ∩ Σ1

1 be the class effective Borel sets (bold-
face=classical, ligthface=effective see Moschovakis [65]). Let Y and Z be two disjoint Σ1

1 subsets
of ωω. Louveau has shown that if there is a Σ0

n which separates Y from Z then there is a Σ0
n(∆1

1)
which separates Y from Z. From this he deduced Σ0

n ∩∆1
1 = Σ0

n(∆1
1) and by relativisation the

theorem on Borel sets of the plane with Σ0
n sections. He used the good properties of the Gandy

Harrington’s topology of ωω, the topology generated by the Σ1
1 subsets of ωω. Then in [60] Lou-

veau has extended this separation theorem to all effective Wadge classes. In [62] Louveau and
Saint Raymond use separation games to give another proof of these results [62]. They use the
basic strategic theorem : if G ⊂ ωω × ωω, the winning set for II, is a Σ0

1 set then if player II
has a strategy then he have a ∆1

1 strategy. They also give an Hurewicz’s theorems for all Wadge
classes.

11.6 Steel’s game and separation by ∆
0
2 sets

Let Q0, the subset of 2ω of infinite words with finite even number of 1 and Q1 the subset of 2ω

of infinite words with finite odd number of 1. We have seen that Q0 and Q1 are not separate by
a ∆0

2 set.
LetX and Y be disjoint sets. In the Steel’s game, player II wins the game iff ((α ∈ Y ⇒ β ∈ Q0)

and (α ∈ Z ⇒ β ∈ Q1) and (β ∈ Q0

⋃
Q1)).

Proposition 28 If the sets Y and Z are borel sets, then player II has a winning strategy iff there
is a ∆0

2 set which separates Y from Z.

Proof: A winning strategy for II gives a continuous function (a Lipschitz map) ϕ : Aω → Q0

⋃
Q1

such that ϕ(Y ) ⊂ Q0 and ϕ(Z) ⊂ Q1. This implies that ϕ(Q0) = ϕ(Q̌1) is a ∆0
2 set which

separates Y from Z.
A winning strategy for I gives a continuous function (a Lipschitz map) ψ : 2ω → Aω such that :

ψ(Q0) ⊂ Z, ψ(Q1) ⊂ Y . If C is a ∆0
2 set which separates Y from Z then ψ−1(C) is a ∆0

2 set
which separates Q0 from Q1 and this is not possible.
So if C is a ∆0

2 set which separates Y from Z, by Borel determinacy II has a winning strategy. �

Corollary 29 One can decide if two languages in Rec(Aω) are separated by a ∆0
2 set. Moreover

if they are separated by a ∆0
2 set, they are separated by an ω-regular ∆0

2 set, i.e., a finite difference
of ω-regular open sets.

Proof: If Y and Z are ω-regular sets then the Steel’s game is ω-regular. So by the Büchi Land-
weber’s theorem, we can decide if player II has a winning strategy. Moreover if player II has a
winning strategy he has a sequential letter to letter strategy ϕ. This implies that ϕ(Q0) = ϕ(Q̌1)
is an ω-regular ∆0

2 set which separates Y from Z. �
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11.7 Mistigri Couleur

Van Wesep and Steel Games [101, 94] were used to study structural properties of Wadge classes
of Borel sets like separation property. A Wadge class Γ has the separation property if for any
pair X , Y of disjoints sets in Γ there exists Z in ∆(Γ) which separate X from Y . In fact for
each pair of nonselfdual Γ, Γ̌ Wadgeclass of Borel sets then exactly one of the classes has the
separation property. And if Γ doesn’t have the separation property then one can find a simple
pair X , Y of disjoints sets in Γ such that X can’t be separated from Y by a set in ∆(Γ). Another
very interesting property is the norm property, in [63] Louveau and Saint Raymond study norm
property of Borel Wadge classes. The classes Σ0

ξ, Dη(Σ0
ξ) , ξ < ω1, η < ω1, and Π1

1 have the
norm property, and the Dn(Σ0

1(Auto)), Dn(Σ0
2(Auto)) have the norm property [83]. If a class

Γ has a norm property then Γ has the reduction property [63] that is to say for all X , Y in
Γ one can find X ′, Y ′ in Γ such that X ∪ Y = X ′ ∪ Y ′ and X ′ ∩ Y ′ = ∅. Moreover if Γ has
the reduction property then Γ̌ has the separation property. For example we have seen that the
classes Π0

2, Π0
2(Auto) have the separation property ; in fact this is true because the classes Σ0

2,
Σ0

2(Auto) have the reduction property. The reduction property of classes Σ0
ξ is used to prove the

Lebesgue, Hausdorff, Banach’s theorem :

Theorem 30 Let X, Y be metrizable spaces with Y separable. Then for all ξ ≥ 2, f : X → Y is
of Baire class ξ iff for all open V include in Y , f−1(V ) is in Σ0

1+ξ(X).

Remark 6 Note another time that this result holds for n = 1 if in addition X is separable and
either X = Aω or Y = R.

The proof use finite valued Borel functions, finite Borel partition. We know four descriptions of
Borel Wadge classes :
The one of Wadge(Descriptive Set Theorist) [104] is useful for a Computer Scientist (DST :
Hello this set is Γ-complete and we give you a proof of that. Do you know countable choice
and fundamental sequences ? CS : Thank you, I will try to find some device to recognize this
Γ-complete set. Is this the simplest one ? What is countable choice ? Do I use it ? Do you think
I can recognize this Γ-complete set with a Muller tree automaton? DST : what is a Muller tree
automaton ?).
The one of Louveau [60] is useful to study structural properties of classes, Selivanov [79] uses this
description and describes the topological invariants of Wagner classes by finite trees.
The one of Saint Raymond [77] uses Borel functions of class ξ (ξ < ω1). This description has the
advantage to extend immediately to the case of finite Borel coloring of Aω (Wadge case is Black
and White, X ⊂ Aω , X0 = X̌, X1 = X , Aω = X0 ∪X1).
The one of Duparc [27] follows the Cantor normal form of ordinals. This description has been
used by Finkel [33, 35] to study the order type of the Wadge hierarchy restricted to ω-context-free
languages.

In [77] it is quoted that games used by Van Wesep, Steel, Louveau Saint Raymond are par-
ticular case of elementary games with winning set G = ∪n

i=0Xi × Yi, where the Xi, Yi are
Borel subsets of Aω. Let (X0, . . . , Xn) and (Y0, . . . , Yn) be two Borel partitions of Aω. Define
the game G(X0, . . . , Xn;Y0, . . . , Yn) where I plays α, II plays β and where II wins the game if
∀iα ∈ Xi ⇒ Yi. This game enable us to compare finite Borel partitions. This gives for all n the
Wadge n+ 1 colors hierarchy. If the Xi, Yi are Auto this gives for all n the Wagner n+ 1 colors
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hierarchy. Then you can use Büchi Landweber and this certainly has to do with the algebra of
finite monöıds (see Carton Michel [21], Carton Perrin [22], Perrin Pin [69], Wilk [109]).

In [44] Hertling and Weihrauch study discontinuity of finite valued Borel functions, for un-
derstanding degeneracy in computational geometry. Here is their abstract : “We introduce levels
of discontinuity and prove that they correspond to the number of tests in ”continuous compu-
tation trees”. We illustrate the concept of level by various simple examples from computational
geometry. For a finer comparison of kinds of discontinuity we introduce a continuous reducibility
relation for finite valued functions. We show that each of the resulting degrees (of finite level)
can be characterized by a finite set of finite trees which describes the type of discontinuity of its
functions. The ordering of the degrees is decidable in the tree sets and each level consists only of
finitely many degrees”. The description of Saint Raymond may have very interesting applications
in computational geometry.

Here is an example of Hertling Weirauch [44]. Let f : {0, 1}ω −→ {2, 3, 7} defined by

f(α) =







7 if α = 0ω

3 if α ∈ 0∗1ω

2 else

This is a Baire class 1 function. We conclude this section by another example coming from the
representation of reals in base of the golden mean. Let g : {0, 1}ω −→ {2, 3, 7} defined by

g(α) =







7 if α ∈ (0 + 1)∗11(0 + 1)ω

3 if α ∈ (0 + 10)ω and α ∈ (0 + 1)∗0ω

2 if α ∈ (0 + 10)ω and α ∈ ((0 + 1)∗1)ω

This is not a Baire class 1 function

12 Conclusion

12.1 Π
1
1 sets and ω1, the boundedness theorem of Lusin

There is a lot of to say about the story of transfinite. For example Borel did not believe in ω1

(“cette totalité illégitime”), Lusin seems to refuse the Third Middle excluded for projective sets.
It is well known that Baire, Borel, Lebesgue, did not believe in the axiom of choice. Zermelo has
proven with the axiom of choice that you can put a well order on every set. Sierpinski believed
in the axiom choice, but has shown which theorems need the axiom of choice. In general, there
is no need of axiom of choice when you dispose of a well order. Do you believe in ω1 ? Do we
need countable ordinals in computer science ? It is an old result of Lusin and Sierpinski that
WO (as Well Order), the code of countable ordinals, is The Example of a coanalytic set. It is
a coanalytic complete set. The first examples of coanalytic-complete sets in analysis are due to
Hurewicz [45, 47, 83]. These are the set K(Q) of compacts subsets of the rationals of the interval
[0, 1] and the set Kω of countable compacts subsets of the interval [0, 1]. Consider the stupid game
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in 2ω × 2ω where Player I wins the game if α ∈ Q and β ∈ 2ω. Player I has a simple automaton
strategy : always play 0. Call, by analogy with K(Q), KQ the set of winning strategies of player
I, this set is Π1

1 and extending ϕ : ω∗ −→ 2∗ of remark 3 in ϕ : 2ω∗

−→ 22∗

one has that
ϕ−1(KQ) = WF, hence KQ is a Π1

1-complete set. This was first observed by Niwinski in 1986
[67]. This set is recognized by a deterministic Muller infinite tree automaton. In fact a set is
recognized by deterministic Muller infinite tree automaton if and only if it is the set of winning
strategies of player I in an ω-regular game, and a set is recognized by a nondeterministic Muller
infinite tree automaton if it is the projection of a set recognized by a deterministic Muller infinite
tree automaton. Infinite tree automaton where used by Rabin [72] to show the decidability of
the monadic second order theory of the tree 2∗, S2S. Rabin shows that a set is recognized by a
nondeterministic Muller infinite tree automaton if and only if it is definable in S2S. Note that
it is quite clear when you read the first pages of Rabin that the set K(Q) of compacts subsets
of Q = {α ∈ 2ω| ∃m ∀n ≥ m α(n) = 0} is definable in S2S and we know since Hurewicz that
this set is Π1

1-complete (see [45, 48, 50, 47]). Rabin shows by transfinite induction on countable
ordinals that if a set is recognized by a nondeterministic Muller infinite tree automaton then
its complements is also recognized by a nondeterministic Muller infinite tree automaton. The
complement of KQ is recognized by a nondeterministic Büchi infinite tree automaton but KQ is
not recognized by a nondeterministic Büchi infinite tree automaton ( otherwise KQ will be Borel,
see also Rabin [73] for a combinatorial proof of that, the paper of Rabin [73] is a kind of Suslin
Kleene Automata theorem [83]). Finkel codes the complement of KQ to obtain an ω-context free
set which is analytic complete. This led to undecidability results :

The problem of knowing whether an ω-context free languages is Borel is undecidable, the
problem of knowing whether an ω-context free languages is Σ0

ξ is undecidable. ω-context free
languages are Σ1

1. And one can play separation games where Player II wins the game iff (α ∈
O ⇒ β ∈ Y and α ∈ Ǒ ⇒ β ∈ Z) (Resp. Player II wins the game iff (α ∈ Q ⇒ β ∈ Y and
α ∈ Q̌⇒ β ∈ Z)) with Y and Z ω-context free languages. Probably these games are undecidable,
probably one can’t decide if two ω-context free languages are separated by a Σ0

ξ set. But Louveau’s

theorem is true if they are separated by a Σ0
ξ set ( ξ < ω1), then they are separated by a Σ0

ξ(∆
1
1)

set.

Later on, Finkel, with the same kind of coding, obtained an ω-rational relation which is analytic
complete. This gave other undecidability results : The problem of knowing whether an ω-rational
relation is Borel is undecidable, the problem of knowing whether an ω-rational relation is Σ0

ξ is
undecidable. Finally we can remark that simple models of asynchronous parallelism on infinite
words gives analytic complete sets [36]. Note that Kuratowski shows how to eliminate transfinite
numbers in mathematical proofs [52]. He takes as examples the Cantor Bendixon theorem and
the derivation of Felix Hausdorff. For example, in games, ordinals are hidden in the construction
of strategies. One can say : don’t hide countable ordinals and you will see some true coanalytic
sets. This has to do with the boundedness theorem of Lusin [64, 65, 47]. If a set X is a coanalytic
set then for all α ∈ X one can associate a countable ordinal ϕ(α). And X is borel if and only if
there exists ξ < ω1 such that for all α ∈ X , ϕ(α) < ξ. Note that Lusin don’t think that such a
procedure can be effective to decide if a Π1

1 set is a true (not Borel) Π1
1 set, and the undecidability

results of Finkel shows that he was right. We think that countable ordinals are inherently hidden
in models of parallelism, verification and XML.
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12.2 Hausdorff and automata

We have seen Hausdorff’s theorem

∆0
2 = ∪ξ<ω1

Dξ(Σ
0
1)

and we have seen that in the ω-regular case we have [106]

∆0
2 ∩Auto = ∪n<ωDn(Σ0

1(Auto))

in the case of effective Borel sets we have [60]

∆0
2 ∩∆1

1 = ∪ξ<ωCK
1
Dξ(Σ

0
1(∆

1
1))

where ωCK
1 is the Church Kleene ordinal, the least nonrecursive ordinal. Let us give another

example of the utility of Hausdorff’s derivation. In [57] Lecomte studies from a descriptive set
theory point of view Lω, the ω-power of L ⊂ A∗. Lecomte answers to questions ask by Staiger
in [92]. Among the very interesting results of Lecomte, there is a surprising fact which links
combinatorics on words and the Hausdorff derivation. Let G2 := {L ⊂ A∗ | ∃u ∈ A∗, ∃v ∈
A∗, Lω = {u, v}ω}. Set G2 is the set of languages such that their ω-powers are generated by two
words. The set of languages 2A∗

is a compact metric space, and one can ask the question of the
topological complexity of G2. Lecomte’s result is the following

Theorem 31 G2 is a Ďω(Σ0
1) which is not Dω(Σ0

1).

This is an example of a concrete Ďω(Σ0
1) coming from the real world. In his proof Lecomte

uses Hausdorff’s derivation and the default theorem (see Bruyère [19]). In the same context,
another result of Duparc [28] is relevant. The order type of the difference hierarchy of open set
restricted to deterministic ω-context free languages is ωω. The order type of difference hierarchy
of open set restricted to one counter language is at least ωω [33]. It seems that Finkel shows in
[35] that the order type of difference hierarchy of open set restricted to ω-context free languages
is at least ωCK

1 and that the Wadge hierarchy of Borel sets restricted to ω-context free languages
has the same order type that Louveau’s hierarchy. In a paper of the sixties [86], Skurczynski
finds examples of sets of trees in 22∗

which are Σ0
n complete and he remarks that they are

recognized by Muller tree automata. An examination of these examples and a careful reading
of the construction of Dξ(Σ

0
1)-strategically complete in [62] shows that you can define with tree

automata a set which is Dωn(Σ0
1) complete for all n ∈ ω [83]. The same construction gives sets

recognized by nondeterministic Muller infinite tree automaton which are Dωn(Σ0
n) complete and

sets recognized by nondeterministic Muller tree automaton which are Dωn(Π1
1) complete [83].

In particular the family of sets recognized by nondeterministic Muller infinite tree automaton is
not the boolean algebra generated by the family of sets recognized by nondeterministic Büchi
tree automaton. This last statement was first proved by Hafer [43]. Finite automata read also
transfinite words (see Büchi [15], Shelah [80], Bedon [10], Choffrut Grigoriev [24]), what are the
degrees of the difference hierarchy of open set restricted to sets of words of length ωn recognized
by finite automata ? What are the degrees of the difference hierarchy of open set restricted to
sets definable in S2S ?
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12.3 Game quantifier and tree automata

Descriptive set theory is the study of definable sets in Polish spaces and will we be very happy
to know the exact topological complexity of sets definable in S2S. Does the good hierarchies of
sets definable in S2S are the restrictions of the good old hierarchies of descriptive set theory ?
Let Y ∈ ωω × ωω × ωω, Yα = {(β, γ) | (α, β, γ) ∈ Y }, and let Γ be a class of Wadge Borel sets in
ωω × ωω × ωω, define the class aΓ as follows : In the game Yα player I constructs β and player

II constructs γ. I wins the game if (α, β, γ) ∈ Y .

A set X ⊂ ωω is in aΓ if there exists Y ∈ Γ such that α ∈ X ↔ I has winning strategy in the
game Yα.

a(Γ) = {(X ⊂ ωω | ∃Y ∈ Γ, Y ∈ ωω×ωω×ωω, α ∈ X ↔ ∃ϕ : ω∗ −→ ω, ∀γ (α, ϕ(γ), γ) ∈ Y }

These classes are very interesting because if Γ has the norm property then a(Γ) has the norm
property (see Moschovakis [65]). Determination of the games in Γ implies that ˇ(a(Γ)) = a(Γ̌).
For example :

The projection of an open set is open, so if Z ⊂ ωω × ωω is Π0
1 (Resp. Π0

1), then ∀βZ is Π0
1

(Resp. Π0
1). By the Tarski Kuratowski algorithm we have a(Π0

1) = Σ1
1 so, by determination of

closed games in ωω × ωω, a(Σ0
1) = Π1

1. Another way to see this is to use the basis strategic
theorem (see Kechris [47], Moschovakis [65]) : If the winning set for I, is a Σ0

1 set then if player
I has a strategy then he have a ∆1

1 strategy, if Y is open then if player I has a strategy in the
game Yα then he have a ∆1

1(α) strategy, that is I can choose ϕ in a borel way from α ∈ X , ϕ
is borel in α and the class Π1

1 is closed by substitution by Borel function. The class a(Σ0
2) is

a quite complicate object linked to inductive definitions (see Moschovakis [65] ). It easy to see
that sets definable in S2S are in the classes a(Dn(Σ0

2)) ( see Gurevitch Harrington [42]). But
we are working in compacts spaces and the continuous image of a compact space is compact.
The projection of a Kσ is a Kσ set so if Z ⊂ 2ω × 2ω is Π0

2 (Resp. Π0
2), then ∀βZ is Π0

2 (Resp.
Π0

2). Let a(Γ)(2ω) = {(X ⊂ 2ω × 2ω | ∃Y ∈ Γ, Y ∈ 2ω × 2ω × 2ω, α ∈ X ↔ ∃ϕ : 2∗ −→
2, ∀γ (α, ϕ(γ), γ) ∈ Y }, by the Tarski Kuratowski algorithm we have a(Π0

2)(2
ω) = Σ1

1(2
ω) so,

by determination of closed games in 2ω × 2ω, a(Σ0
2)(2

ω) = Π1
1(2

ω). From the existence of Π0
1 set

of ωω which do not contain a ∆1
1 point, one can deduce that there exists Π0

1 game in ωω such
that the closed Player wins the game but have no ∆1

1 strategy (see Moschovakis [65]). And from
the existence of Π0

2 set of 2ω which do not contain a ∆1
1 point, one can deduce that there exists

Π0
2 game in 2ω such that the Π0

2 Player wins the game but have no ∆1
1 strategy (see [97]). A

direct computation of the complexity of a(Σ0
2)(2

ω) by the Tarski Kuratowski algorithm gives a
Σ1

2 set, that is to say a projection of a coanalytic set. In a Σ0
2(2

ω × 2ω) game, if the Σ0
2 player

has a winning strategy does he has a ∆1
1 strategy ? If Y ⊂ 2ω × 2ω × 2ω is Σ0

2 and if α ∈ X ↔
I has winning strategy in the game Yα, does I can choose ϕ in a borel way from α ∈ X ? There
exists another old hierarchy in ∆1

2 the hierarchy of C of Selivanowski starting from Σ1
1 sets we

alternate complement and Suslin scheme (see Kuratowski [52]), it turns out that the hierarchy of
Selivanowski is the hierarchy of the a(Dξ(Σ

0
1)) for ξ < ω1 (see Moschovakis [65], Louveau [61])

Does there is a a difference between the classes a(D2(Σ
0
2))(ω

ω) and a(D2(Σ
0
2))(2

ω) ? Does the
hierarchies of game quantifier has to do with set definable in S2S. One can see presentation of
Niwinski [68] to have an account of recent work and problems in S2S.



Baire and automata 289

12.4 Baire class 1 functions

In conclusion, let us say that other properties of ω-rational function which are Baire class 1 can
be derived from work by Kechris and Louveau [49]. One can find concrete examples of ω-rational
Baire class 1 functions in [38, 39, 51, 66] and one can even define Baire class 1 functions on real
numbers by using representation of real numbers in Pisot Basis [20].

Finally we remark that Baire has introduced semi continuity, oscillation and the space ωω.
The bibliography is big but still incomplete. We have certainly forgotten some work, especially

work of Schupp on alternating automata and work on fixed point theory of Arnold, Niwinski,
Kozen, Bradfield, Walukiewicz, Wilke.
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2(2
ω × 2ω) game, the Σ0

2 player has a
∆1

1 winning strategy whenever he has a winning strategy. Let f : ωω −→ ωω be an effective borel
function, that is to say its graph is a ∆1

1 set. If f is not Baire class one, does there exists a closed
nonempty set F which is ∆1

1 (and so by Louveau theorem F is Π0
1(∆

1
1) ) such that the restriction

of f to F has no point of continuity ?
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tielles en tant que Relations Rationnelles. Theoretical Computer Science, Volume 5 (1977),
325-338. 1999. 171-182.

[24] C. Choffrut, S. Grigorieff. Uniformization of Rational Relations. Jewels are Forever 1999,
Springer Verlag. 59-71.

[25] P. Dugac. Histoire de l’analyse. Vuibert. 2003. 253-271.

[26] J. Duparc, O. Finkel, J.P. Ressayre. Computer Science and the Fine Structure of Borel Sets.
Theoretical Computer Science, Volume 257 (1-2), April 2001 2001. 85-105.

[27] J. Duparc. Wadge Hierarchy and Veblen Hierarchy : Part1 : Borels Sets of Finite Rank.
Journal of Symbolic Logic, 66 no. 1. 56-86. 2001.

[28] J. Duparc. A Hierarchy of Deterministic Context-Free ω-languages. Theoretical Computer
Science, Volume 290, no. 3. 1253-1300. 2003.

[29] S. Eilenberg. Automata, Languages and Machines Vol A. Academic Press, New York London.
1974.

[30] C.C. Elgot, J.E. Mezei. on relations defined by generalised automata.. IBM J. Res. Develop.
9. 1965. 47-68.

[31] O. Finkel. On the topological complexity of infinitary rational relations. Theoretic. informa-
tics and applications. 2003. 105-113.

[32] O. Finkel. Undecidability of topological and arithmetical properties of infinitary rational
relations. Theoretic. informatics and applications. 2003. 115-126.

[33] O. Finkel. Wadge Hierarchy of Omega Context Free Languages. Theoretical Computer
Science, Volume 269 (1-2). 2001. 283-315.

[34] O. Finkel. Borel Hierarchy and Omega Context Free Languages. Theoretical Computer
Science, Volume 290 (3). 2003. 1385-1405.

[35] O. Finkel. Borel Ranks and Wadge Degrees of Context Free omega-Languages. CIE 2005.
2005. 129-138.

[36] O. Finkel, J.P. Ressayre, P. Simonnet On Infinite Real Trace Rational Languages of Maxi-
mum Topological Complexity. Zapiski Nauchnyh Seminarov POMI, Volume 316, December
2004 2004. 205-223.

[37] C. Frougny, J. Sakarovitch. Synchronized relations of finite and infinite words. Theoretic.
comput. sci. 1993. 45-82.

[38] C. Frougny. On-the-Fly algorithms and sequential machines. IEEE Transactions on Compu-
ters 49. 2000. 859-863.

[39] C. Frougny. Numeration Systems. Chapter 8 of M. Lothaire, Algebraic Combinatorics on
Words. Cambridge University Press. 2002.



292 Pierre Simonnet and Benoit Cagnard

[40] F. Gire, M Nivat. Relation rationnelles infinitaires . Calcolo XXI. 1984. 91-125.

[41] F. Gire. Two decidability Problems for infinite words. Information Processing letters 22.
1986. 135-140.

[42] Y. Gurevitch, L. Harrington. Trees Automata and Games. Proc. ACM Symp. on Theory of
Computing. 1982. 60-65.

[43] T. Hafer. On the Boolean Closure of Buchi Tree Automaton Definable Set of ω-trees. Aa-
chener Inform. Ber., Nr. 87-16, R.W.T.H., Aachen. 1987.

[44] P. Hertling, K Weihrauch. On the Topological Classification of Degeneracies. Informatik-
Berichte, Nr. 154, FernUniversität. 1994.

[45] W. Hurewicz. Relativ perfekte Teile von Punktmengen und Mengen. Fund. Math. 12. 1928.
78-109.

[46] M. Kaminski. A classification of ω -regular languages. Theoret. Comput. Sci, 36, 2-3. 1985.
217-229.

[47] A. S. Kechris. Classical Descriptive Set Theory. Springer-Verlag. 1995.

[48] A. S. Kechris, A. Louveau. Descriptive Set Theory and the Structure of Sets of Uniqueness.
Cambridge University Press. 1987.

[49] A. S. Kechris, A. Louveau. A Classification of Baire class 1 functions. Trans. AMS. Volume
318, Number 1, March 1990. 209-236.

[50] A. S. Kechris, A. Louveau, W. H. Woodin. The Structure of σ-ideals of Compact Sets. Trans.
AMS. Soc. 301 (1). 263-288. 1987.

[51] P. Kornerup. Digit-set convertions : Generalizations and applications. I.E.E.E. Trans. on
Computers 43. 1994. 622-629.
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