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The Černý Conjecture for Aperiodic Automata
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A word w is called a synchronizing (recurrent, reset, directable) word of a deterministic finite automaton
(DFA) if w brings all states of the automaton to some specific state; a DFA that has a synchronizing word
is said to be synchronizable. Černý conjectured in 1964 that every n-state synchronizable DFA possesses
a synchronizing word of length at most (n−1)2. We consider automata with aperiodic transition monoid
(such automata are called aperiodic). We show that every synchronizable n-state aperiodic DFA has a
synchronizing word of length at most n(n − 1)/2. Thus, for aperiodic automata as well as for automata
accepting only star-free languages, the Černý conjecture holds true.
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Introduction

The problem of synchronization of DFA is natural and various aspects of this problem were
touched upon the literature. We pay attention to the problem of the existence and of the length
of a synchronizing word.

An important problem with a long story is estimating the shortest length of a synchronizing
word. Best known as the Černý conjecture, it was proposed independently by several authors.
Černý found in 1964 [2] an n-state DFA whose shortest synchronizing word was of length (n−1)2.
He conjectured that this is the maximum length of the shortest synchronizing word for any DFA
with n states. The conjecture has been verified for several partial cases [1, 3, 4, 6, 10, 8] but in
general the question still remains open. By now, this simply looking conjecture is arguably one
of the most longstanding open problems in the theory of finite automata. The best upper bound
for the length of the shortest synchronizing word for DFA with n states known so far is equal to
(n3 − n)/6 [5, 7, 9]. For the rich and intriguing story of investigations in this area see [12].

The existence of some non-trivial subgroup in the transition semigroup of the automaton is
essential in many investigations of the Černý conjecture, see, e.g., [3, 8]. We use another approach
and consider transition semigroups without non-trivial subgroups. This condition distinguishes
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a wide class of so-called aperiodic automata that, as shown by Schützenberger [13], accept pre-
cisely star-free languages (also known as languages of star height 0). Star-free languages play a
significant role in formal language theory.

We prove that every n-state aperiodic DFA with a state that is accessible from every state of
the automaton has a synchronizing word of length not greater than n(n − 1)/2, and therefore,
for aperiodic automata as well as for automata accepting only star-free languages, the Černý
conjecture holds true.

In the case when the underlying graph of the aperiodic DFA is strongly connected, this upper
bound has been recently improved by Volkov who has reduced the estimation to n(n + 1)/6.

1 Preliminaries

We consider a complete DFA A with the input alphabet Σ. The transition graph of A is denoted
by Γ and the transition semigroup of A is denoted by S.

Let p and q be two (not necessarily distinct) states of the automaton A. If there exists a path
in A from the state p to the state q and the transitions of the path are consecutively labelled by
σ1, . . . , σk ∈ Σ then for s = σ1 . . . σk we write q = ps. We call a state q a sink if for every state
p of A there exists a word s such that ps = q. For a set P of states and s ∈ Σ∗, let Ps denote
the set {ps | p ∈ P}. A word s ∈ Σ+ is called a synchronizing word for P if |Ps| = 1, that is,
ps = qs for all states p,q ∈ P . A word is said to be a synchronizing word of the automaton A
(of the graph Γ) if it is synchronizing for the set of all states of A (the set of all vertices of Γ).

A binary relation β on the state set of A is called stable if, for any pair of states q,p and any
σ ∈ Σ, from qβ p it follows qσ β pσ. Recall that a stable equivalence relation on the state set of
A is called a congruence of A. If ρ is a congruence of A, we denote by [q]ρ the ρ-class containing
the state q. The quotient A/ρ is the automaton with the states [q]ρ and the transition function
defined by the rule [q]ρσ = [qσ]ρ for any σ ∈ Σ.

For a word s over the alphabet Σ, we denote its length by |s|.

2 The graph Γ2

The direct square Γ2 of the transition graph Γ has as vertices all pairs (p,q), where p,q are
vertices of Γ. The edges of the graph Γ2 have the form (p,q) → (pσ,qσ) where σ ∈ Σ; such an
edge is labelled by σ.

For brevity, a strongly connected component of a directed graph is referred to as an SCC. An
SCC M of the graph Γ2 is called almost minimal if, for every pair (p,q) ∈ M , one has p 6= q

and, for every σ ∈ Σ such that pσ 6= qσ, there exists a word s ∈ Σ∗ such that (pσ,qσ)s = (p,q).
We observe that then (pσ,qσ) ∈ M by the definition of an SCC. By Γ(M) we denote the set of
states that appear as components in the pairs from the almost minimal SCC M .

If M is an almost minimal SCC, we define the relation ≻M as the transitive closure of M
(where M is treated as a relation on the state set of our automaton). So r ≻M q if there exists a
sequence of states r = p1, . . . ,pn = q such that n > 1 and (pi,pi+1) ∈ M for all i = 1, . . . , n−1.
Let �M be the reflexive closure and ρM the equivalent closure of the relation ≻M .

Lemma 1 For any almost minimal SCC M , the relation �M is stable and the relation ρM is a

congruence.
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Proof: Suppose u ρM v. Then there exists a sequence of states

u = p1, . . . ,pn = v (1)

such that for every integer i < n at least one of the pairs (pi+1,pi), (pi,pi+1) belongs to the
almost minimal SCC M . Therefore in the sequence of states rs = p1s, . . . ,pns = qs, for any
two distinct neighbors pis,pi+1s, the pair (pis,pi+1s) or its dual belongs to M . Hence rs ρM

qs.
If u �M v, then there exists a sequence (1) such that for every integer i < n the pair (pi,pi+1)

belongs to M . Then either (pis,pi+1s) ∈ M or pis = pi+1s, and therefore, pis �M pi+1s in any
case. Hence us �M vs. ✷

From the definition of the relation ≻M and Lemma 1, we obtain

Corollary 2 If r ≻M q and rs /∈ Γ(M) for some word s, then rs = qs.

We also observe the following obvious property:

Corollary 3 Each state p from Γ(M) belongs to a ρM -class of size at least two.

Let us present the following new formulation of a result from [2]:

Lemma 4 An automaton A with the transition graph Γ is synchronizing if and only if the graph

Γ2 has a sink.

Proof: Let s be a synchronizing word of A. Then the unique pair of the set Γ2s is a sink of Γ2.
Conversely, the components of a sink of Γ2 obviously are equal. Let (t, t) be a sink. For any pair
(p,q), there exists a word s such that (p,q)s = (t, t), that is, ps = qs = t. Some product of
such words s taken for all pairs of distinct states from Γ is a synchronizing word of the graph Γ.
✷

Lemma 5 The sets of synchronizing words of the graphs Γ and Γ2 coincide.

Proof: Let s be a synchronizing word of the graph Γ. Then there is a state q from Γ such that
ps = q for every state p. Therefore for every pair (p, r) one has (p, r)s = (q,q). Thus, s is a
synchronizing word of the graph Γ2.

Now let t be a synchronizing word of the graph Γ2. Then there is a pair (q,v) such that
(p, r)t = (q,v) for every pair (p, r). Therefore pt = q for an arbitrary state p from Γ and rt = v

for an arbitrary state r from Γ. Consequently, v = q and t is a synchronizing word of the graph
Γ. ✷

3 Aperiodic automata

A semigroup without non-trivial subgroups is called aperiodic. A DFA with aperiodic transition
semigroup is called aperiodic too.

Let us recall that the syntactic semigroup of a star-free language is finite and aperiodic [13]
and the semigroup satisfies the identity xn = xn+1 for some suitable n. Therefore, for any state
p ∈ Γ, any s ∈ S and for some suitable k, one has psk = psk+1.
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Lemma 6 Let A be an aperiodic DFA. Then the existence of a sink in A is equivalent to the

existence of a synchronizing word.

Proof: It is clear that, for any DFA, the existence of a synchronizing word implies the existence
of a sink.

Now suppose that A has at least one sink. For any state p and any sink p0, there exists an
element s from the transition semigroup S such that ps = p0. The semigroup S is aperiodic,
whence for some positive integer m we have sm = sm+1. Therefore psm = psm+1 = p0sm,
whence the element sm brings both p and p0 to the same state p0sm which is a sink again. We
repeat the process reducing the number of states on each step. Then some product of all elements
of the form sm arising on each step brings all states of the automaton to some sink. Thus, we
obtain in this way a synchronizing word. ✷

Let M be an almost minimal SCC. A t-cycle for M is a sequence of states

p1,p2, . . . ,pm−1,pm = p1 (2)

such that n > 1 and (pi,pi+1) ∈ M for all i = 1, . . . , m − 1. The next observation is the key
ingredient of the proof.

Lemma 7 Let A be an aperiodic DFA and let M be an almost minimal SCC. Then there is no

t-cycle for M and the quasi-order �M is a partial order.

Proof: Suppose that (2) is a t-cycle of minimum size m among all t-cycles for the almost
minimal SCC M . Let us first establish that m > 2. Indeed, p1 6= p2, whence m > 1. If m = 2
then the two pairs (p1,p2) and (p2,p1) belong to the SCC M . For some element u from the
transition semigroup S, we have (p1,p2)u = (p2,p1). Therefore p1u = p2, p2u = p1, whence
p1u

2 = p1 6= p1u. This implies p1u
2k = p1 6= p1u = p1u

2k+1 for any integer k. However,
semigroup S is finite and aperiodic, and therefore, for some k we have u2k = u2k+1, whence
p1u

2k = p1u
2k+1, a contradiction.

Thus, we can assume that m > 2 and suppose that the states p1,p2,p3 are distinct. For some
element s ∈ S, we have (p1,p2)s = (p2,p3). Hence

p2 = p1s, p3 = p1s
2.

For any element u ∈ S and any pair (pi,pi+1) from M , we have either piu = pi+1u or
(piu,pi+1u) ∈ M . Therefore, for any element u ∈ S, the sequence of states p1u, . . . ,pmu
either reduces to just one element repeated m times or forms a t-cycle of size m (because of the
minimality of m).

The states p1,p1s,p1s
2 are distinct. Since S is an aperiodic finite semigroup, there exists some

integer ℓ such that sℓ 6= sℓ+1 = sℓ+2. Therefore there exists an k ≤ ℓ such that p1s
k 6= p1s

k+1 =
p1s

k+2 the sequence p1s
k, p2s

k = p1s
k+1, p3s

k = p1s
k+2,. . . , pmsk has more than 1 but less

than m distinct elements. This contradicts the conclusion of the previous paragraph applied to
the element u = sk.

It is easy to see that if the quasi-order �M is not antisymmetric that there exists a t-cycle for
M . Hence �M is a partial order. ✷
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4 The Černý conjecture

Lemma 8 Let A be an aperiodic DFA with n states and strongly connected graph, M an almost

minimal SCC. Let r be the number of ρM -classes and let R be a ρM -class. Then |Rs| = 1 for

some word s ∈ Σ∗ of length ar most (n − r + 1)(n − 1)/2.

Proof: Suppose |R| > 1. Let Max be the set of all maximal and Min the set of all minimal states
from R with respect to the order ≻M . Observe that there is no ambiguity here: since the order
≻M is contained in the congruence ρM , maximal (minimal) states of the ordered set (R,≻M )
are precisely those maximal (minimal) states of the automaton A that belong to R. Further,
Max ∩ Min = ∅ because the congruence ρM is the equivalent closure of the order ≻M whence
for every state q ∈ R there must be a state p ∈ R such that either q ≻M p or p ≻M q. Without
loss of generality, we may assume that |Max| ≥ |Min|. Then |Min| ≤ |R|/2 ≤ (n − r + 1)/2.

We need three properties of ordered sets of the form (Rs,≻M ) where s is a word. Let Maxs

(Mins) stand for the set of all maximal (respectively all minimal) states in (Rs,≻M ).

Claim 1. If |Rs| > 1, then Mins ∩ Maxs = ∅.

Proof: Take an arbitrary state p′ ∈ Mins and let q′ be any state in Rs \ {p′}. Consider some
preimages p,q ∈ R of p′ and respectively q′. Since R is a ρM -class, there is a sequence of states
q0,q1, . . . ,qk ∈ R such that p = q0, qk = q, and for each i = 1, . . . , k either qi−1 �M qi or
qi �M qi−1. Let q′

i = qis ∈ Rs, i = 0, . . . , k. Since the order �M is stable (Lemma 1), we
conclude that there is a sequence of states q′

0,q
′

1, . . . ,q
′

k ∈ Rs such that p′ = q′

0, q′

k = q′, and
for each i = 1, . . . , k either q′

i−1 �M q′

i or q′

i �M q′

i−1. Since p′ 6= q′, some of these inequalities
must be strict. Let j be the least index such that q′

j−1 6= q′

j . Then p′ = q′

0 = . . . = q′

j−1

whence either p′ ≻M q′

j or q′

j ≻M p′. As the first inequality would contradict the assumption
that p′ is a minimal element of (Rs,≻M ), we conclude that the second inequality holds true
whence p′ is not a maximal element of (Rs,≻M ). Thus, no state in Mins can belong to Maxs.
✷

Claim 2. If s, t ∈ Σ∗ are two arbitrary words, then Mints ⊆ Mint s.

Proof: Take an arbitrary state p′ ∈ Mints and consider its arbitrary preimage p ∈ Rt. There
exists a state q ∈ Mint such that p �M q. Since the order �M is stable (Lemma 1), we then
have p′ = p s �M q s = q′. The state q′ belongs to the set Rts, and therefore, q′ = p′ because
p′ has been chosen to be a minimal element in this set. Thus, we have found a preimage for p′

in Mint whence Mints ⊆ Mint s. ✷

Claim 3. For any word t ∈ Σ∗, there exists a word s ∈ Σ∗ of length at most n − 1 such that
either |Rst| = 1 or |Mints| < |Mint|.

Proof: Now take arbitrary state q ∈ Mint. Since the graph Γ is strongly connected, there
exists a word that maps q to an element of Max. If s is a word of minimum length with this
property then the path labelled s does not visit any state of A twice whence |s| ≤ n−1. Observe
that since qs ∈ Max, we also have qs ∈ Maxts. Therefore either |Rst| = 1 or, by Claim 1
above, qs /∈ Mints. Since qs ∈ Mint s, we conclude from Claim 2 that Mints ⊂ Mint s. Thus,
|Mints| < |Mint s| ≤ |Mint|. ✷



8 A. N. Trahtman

Using Claim 3, we can easily complete the proof of the lemma. Indeed, applying it to the
case when t is the empty word, we can find a word s1 of length at most n − 1 such that either
|Rs1| = 1 or |Mins1

| < |Min|. In the latter case, applying Claim 3 again, we can find a word s2

of length at most n− 1 such that either |Rs1s2| = 1 or |Mins1s2
| < |Mins1

|, and so on. Clearly,
the process will stop after at most |Min| steps yielding a word s = s1s2 · · · sk (with k ≤ |Min|
and |si| ≤ n − 1 for each i = 1, . . . , k) such that |Rs| = 1. Since |Min| ≤ (n − r + 1)/2, we have
|s| ≤ (n − r + 1)(n − 1)/2 as required. ✷

Theorem 9 If the transition graph Γ of an aperiodic DFA A with n states is strongly connected,

then A has a synchronizing word of length at most (n − 1)n/2.

Proof: All states of a DFA whose transition graph is strongly connected are sinks. Therefore
the automaton is synchronizable (Lemma 6).

There exists at least one almost minimal SCC M in Γ2 because the number of SCC’s is
finite and the set of SCC’s is partially ordered under the attainability relation. Consider the
congruence ρM (Lemma 1) and the quotient Γ/ρM .

It is clear that any synchronizing word of Γ synchronizes also Γ/ρM and that Γ/ρM is aperi-
odic and strongly connected. Therefore the graph Γ has a synchronizing word uv where u is a
synchronizing word of Γ/ρM and v is a synchronizing word of the preimage R of the singleton
set (Γ/ρM )u. By Corollary 3, ρM is not trivial, therefore r = |Γ/ρM | < n and we can use induc-
tion assuming |u| ≤ (r − 1)r/2. By Lemma 8, a word v of length at most (n − r + 1)(n − 1)/2

synchronizes R. Therefore |uv| ≤ r(r−1)
2 + (n−r+1)(n−1)

2 ≤ (r−1)(n−1)
2 + (n−r+1)(n−1)

2 ≤ n(n−1)
2 as

required. ✷

Let us go to the general case.

Theorem 10 Let A be an aperiodic DFA with n states. Then the existence of a sink in A is

equivalent to the existence of a synchronizing word of length at most n(n − 1)/2.

Proof: It is clear that the existence of a synchronizing word implies the existence of a sink.
For the converse, let us consider a DFA with at least one sink. By Lemma 6, the automaton

is synchronizable. We may assume in view of Theorem 9 that the transition graph Γ of A is not
strongly connected.

It is clear that the collection C of all sinks of Γ forms a SCC of Γ which is the least SCC with
respect to the attainability order. Let r < n stand for the cardinality of C. Let Γi (i = 1, 2, . . . , k)
be all other SCC’s of Γ. We may assume that Γi are numbered so that i ≤ j whenever there is
a path in Γ from Γi to Γj . Let ri be the cardinality of Γi. It easily follows from [11, Theorem
6.1] that there exists a word si of length at most ri(ri + 1)/2 such that Γisi ∩ Γi is empty. Then
the product s1 · · · sk of maps Γ into the SCC C. By Theorem 9, C has a synchronizing word s
of length at most r(r − 1)/2. Therefore the word s1 · · · sks synchronizes Γ and

|s1 . . . sks| ≤
k∑

i=1

ri(ri + 1)

2
+

r(r − 1)

2
. (3)

Using the equality
∑k

i=1 ri+r = n, it is easy to calculate that the right-hand side of the inequality
3 does not exceed (n − 1)n/2. ✷
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Corollary 11 The Černý conjecture holds for aperiodic automata.

Acknowledgments

I am very grateful to M. V. Volkov for helpful and detailed comments that proved to be highly
useful in improving the presentation and style of the paper.



10 A. N. Trahtman

References

[1] D. S. Ananichev, M. V. Volkov, Some results on Černý type problems for transformation
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62(1978), 345–352.

[9] J.-E. Pin, On two combinatorial problems arising from automata theory, Ann. Discrete Math.

17(1983), 535–548.

[10] I. K. Rystsov, Almost optimal bound on recurrent word length for regular automata, Cyber-

netics and System Analysis 31(1995), 669–674.

[11] I. K. Rystsov, Reset words for commutative and solvable automata, Theoret. Comput. Sci.

172(1997), 273–279.

[12] A. Salomaa, Generation of constants and synchronization of finite automata, J. Univers.

Comput. Sci. 8(2002), 332–347.

[13] M. P. Schützenberger, On finite monoids having only trivial subgroups, Inf. Control 8(1965)
190–194.


