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Let [Kn, f, π] be the (global) SDS map of a sequential dynamical system (SDS) defined over the complete graph Kn

using the update order π ∈ Sn in which all vertex functions are equal to the same function f : Fn
2 → Fn

2 . Let ηn
denote the maximum number of periodic orbits of period 2 that an SDS map of the form [Kn, f, π] can have. We
show that ηn is equal to the maximum number of codewords in a binary code of length n− 1 with minimum distance
at least 3. This result is significant because it represents the first interpretation of this fascinating coding-theoretic
sequence other than its original definition.
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1 Introduction
Suppose we wish to model a finite system in which objects have various states and update their states
in discrete time steps. Moreover, assume that the state to which an object updates depends only on the
current state of that object along with the states of other nearby or connected objects. We can capture
such a system’s behavior with a graph dynamical system. A graph dynamical system contains a graph
representing the connections between objects, a set of states that the objects can adopt, a collection of
functions that model how each individual object updates its state in reaction to its neighbor’s states, and a
rule determining the scheme by which the objects update their states.

In a series of papers published between 1999 and 2001, Barrett, Mortveit, and Reidys introduced the
notion of a sequential dynamical system (SDS), a graph dynamical system in which vertices update their
states sequentially [9, 6, 7]. Subsequently, several researchers have worked to develop a general theory
of SDS (see, for example, [3, 4, 5, 10, 11, 12, 13, 19]). The article [10] is interesting because it shows
how SDS, originally proposed as models of computer simulation, are now being studied in relation with
Hecke-Kiselman monoids in algebraic combinatorics. We draw most of our terminology and background
information concerning SDS from [16], a valuable reference for anyone interested in exploring this field.

In the theory of SDS, the primary focus of many research articles is to count or otherwise characterize
periodic orbits in the phase spaces of sequential dynamical systems [1, 2, 4, 8, 21, 22, 23]. For example,

∗This work was supported by National Science Foundation grant DMS-1358884.

ISSN 1365–8050 c© 2017 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:1

50
9.

03
90

7v
5 

 [
m

at
h.

C
O

] 
 3

0 
Se

p 
20

17

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/2654


2 Colin Defant

the recent paper [1] studies which periodic orbits can coexist in certain SDS and when certain SDS must
necessarily have unique fixed points. In particular, that article shows that analogues of Sharkovsky’s
theorem from continuous dynamics completely fail to hold for many families of SDS. It is common to
analyze the dynamics of sequential dynamical systems defined using classical Boolean functions such
and OR, AND, NOR, and NAND (see, for example, [4, 8]). The article [23] focuses more generally on
SDS defined using so-called “bi-threshold” functions. By contrast, we will consider SDS defined using a
completely arbitrary update function f . As we describe later, this function will be the vertex function for
every vertex in the graph (this is possible because we will only consider base graphs that are complete).
We now proceed to clarify some of these remarks by establishing some notation and definitions.

If v is a vertex of a graph Y , we let d(v) denote the degree of v. We often work in the finite field
F2 = {0, 1}. In doing so, we let x = 1 + x for any x ∈ F2. For any vector ~x = (x1, x2, . . . , xk) ∈ Fk2 ,
let inv(~x) = (x1, x2, . . . , xk). Furthermore, id will denote the identity permutation 123 · · ·n (the length
n of the permutation id will always be clear from context).

An SDS is built from the following parts:

• An undirected simple graph Y with vertices v1, v2, . . . , vn.

• A set of states A. We will typically use the set of states A = F2 = {0, 1}.

• A collection of vertex functions {fvi}ni=1. Each vertex vi of Y is endowed with its own vertex
function fvi : Ad(vi)+1 → A.

• A permutation π ∈ Sn. The permutation π is known as the update order.

Let q(v) denote the state of a vertex v. Suppose a vertex vi has neighbors vj1 , vj2 , . . . , vjd(vi) , where
j1 < j2 < · · · < js < i < js+1 < js+2 < · · · < jd(vi). We let

X(vi) = (q(vj1), q(vj2), . . . , q(vjs), q(vi), q(vjs+1
), q(vjs+2

), . . . , q(vjd(vi))).

For example, if the vertex v3 has neighbors v1, v4, and v6, we let X(v3) = (q(v1), q(v3), q(v4), q(v6)).
The vector (q(v1), q(v2), . . . , q(vn)), which lists all of the states of the vertices of Y in the order corre-
sponding to the order of the vertex indices, is known as the system state of the SDS. Note that if Y is a
complete graph and vi is any vertex of Y , then X(vi) is equal to the system state of the SDS.

From each vertex function fvi , define the local update function Lvi : An → An by

Lvi(x1, x2, . . . , xn) = (x1, x2, . . . , xi−1, fvi(X(vi)), xi+1, . . . , xn).

Combining these local update functions with the update order π = π(1)π(2) · · ·π(n) (we have written
the permutation π as a word), we obtain the SDS map F : An → An given by

F = Lvπ(n)
◦ Lvπ(n−1)

◦ · · · ◦ Lvπ(1)
.

We will find it useful to introduce an “intermediate” SDS map Gi : An → An for each i ∈ {1, 2, . . . , n},
which we define by

Gi = Lvπ(i)
◦ Lvπ(i−1)

◦ · · · ◦ Lvπ(1)
.

Thus, F = Gn. We use the convention thatG0 denotes the identity map fromAn toAn. The vectorGi(~x)
represents the system state of the SDS obtained by starting with a system state ~x and updating only the
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Fig. 1: A system update of the SDS of Example 1.1. Block A shows the inital state of the SDS. Blocks B, C, and D show the
intermediate steps of the system update. Block E shows the system state obtained after completing the system update.

first i vertices in the update order π. Once the system updates all n vertices (known as a system update),
the new system state is F (~x).

Given any SDS on a graph Y with vertex functions {fvi}ni=1 and update order π, we denote its SDS
map F by the triple [Y, {fvi}ni=1, π]. If all of the vertex functions fvi are equal to the same function f , we
will simply write [Y, f, π] for the corresponding SDS map (this situation can only occur if the base graph
is regular).

Example 1.1. Consider the graph Y shown in block A of Figure 1. We define an SDS over Y using the
update order π = 2413 and the vertex functions fvi given by

fv1(x1, x2, x3, x4) = x1x3 + x2 + x4,

fv2(x1, x2) = x1x2 + 1,

fv3(x1, x2, x3) = x1 + x2 + x3,

and
fv4(x1, x2, x3) = x1x2 + x3.

The initial system state of this SDS is (0, 0, 0, 1), as shown by the blue labels in block A of Figure 1.
Because π(1) = 2, we first update the vertex v2 using the vertex function fv2 . We have

fv2(X(v2)) = fv2(q(v1), q(v2)) = fv2(0, 0) = 1,

so the vertex v2 updates to the new state 1. This intermediate update is shown in block B of Figure 1.
Another way to understand the transition from block A to block B in the figure is to see that we have
changed the system state of the SDS by applying the local update function Lv2 . Indeed, Lv2(0, 0, 0, 1) =
(0, 1, 0, 1). In a similar fashion, we next update vertices v4, v1, and v3. Letting F = [Y, {fvi}4i=1, π],
we find that F (0, 0, 0, 1) = (0, 1, 1, 1), as shown in block E of the figure. In other words, through a
sequence of local updates, the system update transformed the system state (0, 0, 0, 1) into the new system
state (0, 1, 1, 1).

The SDS map F tells us how the states of the vertices of the graph Y change when we update the graph
in a sequential manner. A useful tool for visualizing how F acts on the system’s states is the phase space
of the SDS. The phase space, denoted Γ(F ), is the directed graph with vertex set V (Γ(F )) = An and
edge set

E(Γ(F )) = {(~x, ~y) ∈ An ×An : ~y = F (~x)}.
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Fig. 2: The phase space of the SDS described in Example 1.1. Note that we have omitted parentheses and commas from the
vectors in order to improve the aesthetics of the image. For example, the vector (1, 0, 1, 1) is written as 1011.

In other words, we draw a directed edge from ~x to F (~x) for each ~x ∈ An. As an example, the phase
space of the SDS given in Example 1.1 is shown in Figure 2. Notice that the phase space shown in Figure
2 has a single 2-cycle (formed from the vertices 0111 and 0101). In general, a phase space of an SDS can
have many cycles of various lengths. This leads us to some interesting questions. For example, when is it
possible to have a phase space composed entirely of 2-cycles? Can we find an upper bound on the number
of 2-cycles that can appear in the phase spaces of certain SDS? If we can show, for instance, that certain
SDS defined over a graph with n vertices cannot have phase spaces consisting entirely of 2-cycles, then it
will follow that the very natural function inv : Fn2 → Fn2 cannot be the SDS map of any of those SDS.

In this paper, we study the number of 2-cycles that can appear in the phase spaces of SDS defined over
a complete graph Kn in which all vertex functions are the same. More formally, we give the following
definition.

Definition 1.1. For a positive integer n, let (F2)F
n
2 be the set of all functions g : Fn2 → F2. For each

g ∈ (F2)F
n
2 and π ∈ Sn, let η(g, π) denote the number of 2-cycles in the phase space Γ([Kn, g, π]).

Define
ηn = max

g∈(F2)
Fn2
η(g, id).

Remark 1.1. Our decision to use the identity update order id in the definition of ηn in Definition 1.1
stems from a desire for convenience, but we lose no generality in making such a decision because we are
working over complete graphs. In other words,

ηn = max
g∈(F2)

Fn2
η(g, id) = max

g∈(F2)
Fn2

π∈Sn

η(g, π).

In the next section, we reformulate the problem of determining ηn in terms of finding the clique number
of a certain graph. We then show that ηn+1 = A(n, 3), where A(n, 3) denotes the maximum number of
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codewords in a binary code of length n with minimum distance at least 3. The sequence A(n, 3), which is
sequence A005864 in Sloane’s Online Encyclopedia of Integer Sequences [17], has been a fascinating and
mysterious subject of inquiry in coding theory [14, 15, 18, 20]. Our result is noteworthy because, to the
best of our knowledge, it provides the only known interpretation of this sequence other than its original
definition.

2 Searching for ηn
If X is a set and F : X → X is a function, we say an element ~x of X is a periodic point of period 2 of F
if F 2(~x) = ~x and F (~x) 6= ~x. Typically, we use the field F2 as our set of states. However, in the following
lemma, we may use any set of states A so long as |A| ≥ 2.

Lemma 2.1. Let n ≥ 2 be an integer. Let f : An → A be a function, and let π = π(1)π(2) · · ·π(n) ∈ Sn
be a permutation. Suppose ~x = (x1, x2, . . . , xn) is a periodic point of period 2 of the SDS map F =
[Kn, f, π]. Write F (~x) = ~z = (z1, z2, . . . , zn).
For each k ∈ {1, 2, . . . , n}, we have xk 6= zk. In particular, if A = F2, then F (~x) = inv(~x).

Proof: For any j ∈ {1, 2, . . . , n}, recall that Gj−1(~x) is the system state that results from starting with
the initial system state ~x and then updating the vertices vπ(1), vπ(2), . . . , vπ(j−1) (in this order). When we
update the state of the vertex vπ(j), the state to which vπ(j) updates is given by f(Gj−1(~x)). On the other
hand, the state to which vπ(j) updates must be zπ(j), the state of vπ(j) in the system state ~z. It follows that
f(Gj−1(~x)) = zπ(j). Note that

f(Gn(~x)) = f(F (~x)) = f(~z) = f(G0(~z)) = xπ(1).

These same arguments show that f(Gj−1(~z)) = xπ(j) for any j ∈ {1, 2, . . . , n} and that f(Gn(~z)) =
zπ(1).

If i ∈ {1, 2, . . . , n− 1}, then the preceding paragraph tells us that

f(Gi−1(~x)) = zπ(i), f(Gi−1(~z)) = xπ(i),

f(Gi(~x)) = zπ(i+1), f(Gi(~z)) = xπ(i+1). (1)

We also have
f(Gn−1(~x)) = zπ(n), f(Gn−1(~z)) = xπ(n),

f(Gn(~x)) = x1, f(Gn(~z)) = z1. (2)

Notice that if xπ(i) = zπ(i), then updating the vertex vπ(i) doesn’t “change” anything; that is, Gi−1(~x) =
Gi(~x) andGi−1(~z) = Gi(~z).With the help of the equations in (1) and (2), this shows that if xπ(i) = zπ(i)
for some i ∈ {1, 2, . . . , n}, then xπ(i+1 (mod n)) = zπ(i+1 (mod n)). As a consequence, we see that if
xπ(i) = zπ(i) for some i ∈ {1, 2, . . . , n}, then ~x = ~z = F (~x). However, we are assuming that ~x is a
periodic point of F of period 2, so F (~x) 6= ~x by definition. Thus, xπ(i) 6= zπ(i) for all i ∈ {1, 2, . . . , n},
which proves the lemma.

Let w = w1w2 . . . wk be a finite word over the alphabet F2. We say that a vector (x1, x2, . . . , xn) ∈ Fn2
contains the subsequence w if there exist i1, i2, . . . , ik ∈ {1, 2, . . . , n} such that i1 < i2 < · · · < ik
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and xij = wj for all j ∈ {1, 2, . . . , k} (this is sometimes expressed by saying that w is a “scattered
subword” of (x1, x2, . . . , xn)). For example, the vector (x1, x2, x3, x4, x5) = (1, 0, 1, 1, 0) contains the
subsequence 100 because x1 = 1, x2 = 0, and x5 = 0. However, the vector (1, 0, 1, 1, 0) does not contain
the subsequence 001. This leads us to the following definition.

Definition 2.1. Let w be a finite word over the alphabet F2. DefineDn(w) to be the set of vectors ~x ∈ Fn2
such that ~x contains the subsequence w.

Definition 2.2. Let n ≥ 2 be an integer. Let

F̂n2 = {(x1, x2, . . . , xn) ∈ Fn2 : x1 = 0}.

Define Ĥn to be the undirected simple graph with vertex set

V (Ĥn) = F̂n2

and edge set
E(Ĥn) = {{~x, ~y} ⊆ F̂n2 : ~x+ ~y ∈ Dn(101)}.

The following two lemmas link the graphs Ĥn to our study of 2-cycles in the phase spaces of SDS
defined over complete graphs.

Lemma 2.2. Let n ≥ 2 be an integer, and let C = {~x1, ~x2, . . . , ~xk} be a clique of order k of Ĥn. There
exists a map f : Fn2 → F2 such that each ~xi ∈ C is in a 2-cycle of Γ([Kn, f, id]). Moreover, no two
distinct ~xi, ~xj are contained in the same 2-cycle of Γ([Kn, f, id]).

Proof: For each i ∈ {1, 2, . . . , k}, let ~xi = (ai1, ai2, . . . , ain), where ai1 = 0 by the definition of Ĥn.
Define the map f : Fn2 → F2 as follows:

• If there are some i, ` such that

~α = (ai1, ai2, . . . , ai`, ai(`+1), ai(`+2), . . . , ain),

then let f(~α) = ai(`+1).

• If there are some i, ` such that

~α = (ai1, ai2, . . . , ai`, ai(`+1), ai(`+2), . . . , ain),

then let f(~α) = ai(`+1).

• Otherwise, let f(~α) = 0.

We first need to show that f is well-defined. To do so, we show that for any i, j ∈ {1, 2, . . . , k} and
any `,m ∈ {0, 1, . . . , n− 1} with i 6= j or ` 6= m, we have

(ai1, . . . , ai`, ai(`+1), . . . , ain) 6= (aj1, . . . , ajm, aj(m+1), . . . , ajn), (3)

(ai1, . . . , ai`, ai(`+1), . . . , ain) 6= (aj1, . . . , ajm, aj(m+1), . . . , ajn), (4)
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and
(ai`, . . . , ai`, ai(`+1), . . . , ain) 6= (aj1, . . . , ajm, aj(m+1), . . . , ajn). (5)

This will show that we have not accidentally defined f(~α) = 0 and f(~α) = 1 for the same vector ~α.
It is easy to see that the lack of equality must hold in (3), (4), and (5) if i = j and ` 6= m. Thus, we may

assume i 6= j. If equality holds in (3) or (5), then xi + xj = (0, 0, . . . , 0, 1, . . . , 1, 0, . . . , 0) 6∈ Dn(101),
which is a contradiction. Similarly, if equality holds in (4), then it follows from the fact that ai1 = aj1 = 0
that xi+xj = (0, 0, . . . , 0, 1, 1, . . . , 1) 6∈ Dn(101). This is again a contradiction. Thus, f is well-defined.

Let F = [Kn, f, id]. We now show that for each i ∈ {1, 2, . . . , k}, the vector ~xi is in a 2-cycle of Γ(F ).
Choose some i ∈ {1, 2, . . . , k}. It follows from the definition of f that for each ` ∈ {1, 2, . . . , n}

G`(~xi) = (ai1, . . . , ai`, ai(`+1), . . . , ain)

and
G`(inv(~xi)) = G`(ai1, ai2, . . . , ain) = (ai1, . . . , ai`, ai(`+1), . . . , ain).

In particular, F (~xi) = inv(~xi) 6= ~xi and F 2(~xi) = F (inv(~xi)) = ~xi. In other words, ~xi is in a 2-cycle of
Γ(F ).

Finally, choose some distinct i, j ∈ {1, 2, . . . , k}. It is easy to see that the vectors ~xi and ~xj are in
distinct 2-cycles of Γ(F ). Since ~xi 6= ~xj , the only way the vectors ~xi and ~xj could be in the same 2-cycle
of Γ(F ) is if F (~xi) = ~xj . We have just shown that F (~xi) = inv(~xi), so ~xi could only be in the same 2-
cycle as ~xj if ~xj = inv(~xi). However, this is impossible because ~xi and ~xj have the same first coordinate
(namely, 0).

Lemma 2.3. Let n ≥ 2 be an integer, and let ~x and ~y be distinct nonadjacent vertices of Ĥn. Let
f : Fn2 → F2 be a function. If ~x is in a 2-cycle of the phase space Γ([Kn, f, id]), then ~y is not in a 2-cycle
of Γ([Kn, f, id]).

Proof: Suppose, by way of contradiction, that ~x and ~y are both in 2-cycles of Γ([Kn, f, id]). Let F =
[Kn, f, id]. Let ~x = (a1, a2, . . . , an) and ~y = (b1, b2, . . . , bn). Because ~x 6= ~y, we may let r be the
smallest element of {1, . . . , n} such that ar 6= br. Similarly, we may let s be the largest element of
{1, . . . , n} such that as 6= bs. Note that r ≥ 2 because a1 = b1 = 0. Because ~x and ~y are not adjacent in
Ĥn, the vector ~x+ ~y = (a1 + b1, . . . , an + bn) does not contain the subsequence 101. This implies that

ai + bi =

{
1, if r ≤ i ≤ s;
0, otherwise.

In other words, ~y = (a1, . . . , ar−1, ar, . . . , as, as+1, . . . , an). For the sake of convenience, let an+1 =
a1.

Because we are assuming that each of the vectors ~x and ~y is in a 2-cycle of Γ(F ), we know from
Lemma 2.1 that F (~x) = inv(~x) and F (~y) = inv(~y). Hence, for each ` ∈ {1, . . . , n},

G`(~x) = (a1, . . . , a`, a`+1, . . . , an)

and
G`(~y) = (b1, . . . , b`, b`+1, . . . , bn).
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It follows that
f(a1, . . . , as, as+1 . . . , an) = f(Gs(~x)) = as+1,

but also

f(a1, . . . , as, as+1 . . . , an) = f(b1, . . . , br−1, br, . . . , bn) = f(Gr−1(~y)) = br = ar.

Therefore, ar = as+1. Similarly, we have

f(a1, . . . , ar−1, ar . . . , an) = f(Gr−1(~x)) = ar

and

f(a1, . . . , ar−1, ar . . . , an) = f(b1, . . . , bs, bs+1, . . . , bn) = f(Gs(~y)) = bs+1 = as+1.

This implies that ar = as+1 = ar, which is a contradiction.

We are now in a position to prove one of our crucial theorems. Let ω(G) denote the clique number of
a graph G. That is, G contains a clique of order ω(G) but does not contains a clique of order ω(G) + 1.

Theorem 2.1. For any integer n ≥ 2, we have

ηn = ω(Ĥn).

Proof: Choose an integer n ≥ 2, and let k = ω(Ĥn). Let C = {~x1, ~x2, . . . , ~xk} be a clique of order k
of Ĥn. By Lemma 2.2, there exists a map f : Fn2 → F2 such that any distinct vectors ~xi, ~xj ∈ C are in
distinct 2-cycles of Γ([Kn, f, id]). In particular, Γ([Kn, f, id]) contains at least k 2-cycles. In the notation
of Definition 1.1, f ∈ (F2)F

n
2 , and η(f, id) ≥ k. Thus,

ηn = max
g∈(F2)

Fn2
η(g, id) ≥ η(f, id) ≥ k.

We now show that ηn ≤ k. By Definition 1.1, there exists a function g ∈ (F2)F
n
2 such that η(g, id) =

ηn. In other words, there are ηn 2-cycles in the phase space Γ([Kn, g, id]). It follows from Lemma 2.1
that each 2-cycle of Γ([Kn, g, id]) contains exactly one vector whose first coordinate is 0. In the notation
of Definition 2.2, each of the ηn 2-cycles of Γ([Kn, g, id]) contains exactly one vector that is a vertex of
Ĥn. Let ~x1, ~x2, . . . , ~xηn be these vertices of Ĥn. Choose some distinct i, j ∈ {1, 2, . . . , ηn}. Because
each of the vectors ~xi, ~xj is in a 2-cycle of Γ([Kn, g, id]), it follows from Lemma 2.3 that ~xi and ~xj must
be adjacent in Ĥn. Because i and j were arbitrary, this shows that {~x1, ~x2, . . . , ~xηn} is a clique of Ĥn.
Consequently, ηn ≤ k.

Given an integer n ≥ 2, we may define a map θn : F̂n2 → Fn−12 by

θn(x1, x2, . . . , xn) = (x2, x3, . . . , xn).

Because the first coordinate of each vector in F̂n2 is 0, it should be clear that θn is a vector space isomor-
phism. Furthermore, if ~x, ~y ∈ F̂n2 , then ~x + ~y ∈ Dn(101) if and only if θn(~x) + θn(~y) ∈ Dn−1(101).
This motivates the following definition.
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Definition 2.3. Given an integer m ≥ 2, define Hm to be the undirected simple graph with vertex set

V (Hm) = Fm2

and edge set
E(Hm) = {{~x, ~y} ⊆ Fm2 : ~x+ ~y ∈ Dm(101)}.

It follows from the preceding paragraph that θn+1 is a graph isomorphism from the graph Ĥn+1 to the
graph Hn. Therefore, ηn+1 = ω(Ĥn+1) = ω(Hn). In the following section, we relate the graphs Hn to
error-correcting binary codes.

3 Binary Codes
In coding theory, a binary code of length n is a subset of Fn2 . The elements of a code are known as code-
words. The Hamming distance between two codewords ~x = (x1, x2, . . . , xn) and ~y = (y1, y2, . . . , yn),
which we shall denote by δ(~x, ~y), is simply the number of positions in which the vectors ~x and ~y have
different coordinates. That is,

δ(~x, ~y) = |{i ∈ {1, 2, . . . , n} : xi 6= yi}|.

If C is a nonempty binary code of length n, then the minimum distance of C, denoted ∆(C), is the
quantity

∆(C) = min
~x,~y∈C
~x6=~y

δ(~x, ~y).

We make the convention that ∆(C) =∞ if the code C consists of a single codeword.
Of particular interest in coding theory are binary codes with minimum distance at least 3. Such codes

are known as one-bit error-correcting codes because any error formed by flipping a single bit (that is,
changing a single coordinate) in a codeword can be detected and corrected (this is not the case for binary
codes with minimum distance less than 3). Let A(n, 3) denote the maximum number of codewords that
can appear in a binary code of length n that has minimum distance at least 3. An important problem in
coding theory is the determination of the values of A(n, 3). It is known that A(n, 3) = 2n−log2(n+1) if
n+ 1 is a power of 2, but most values of A(n, 3) are not known.

Given an integer m ≥ 2, define Jm to be the undirected simple graph with vertex set

V (Jm) = Fm2

and edge set
E(Jm) = {{~x, ~y} ⊆ Fm2 : ~x+ ~y ∈ Dm(111)}.

Observe that two vectors ~x, ~y ∈ Fm2 are adjacent in Jm if and only if the Hamming distance δ(~x, ~y)
between ~x and ~y is at least 3. Therefore, A(n, 3) is equal to the clique number ω(Jn) of the graph Jn.
From this, we obtain the following theorem.

Theorem 3.1. For any positive integer n,

ηn+1 = A(n, 3).
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Proof: We saw at the end of the preceding section that ηn+1 = ω(Hn). Therefore, in light of the preceding
paragraph, we see that it suffices to show that ω(Hn) = ω(Jn). Consider the linear transformation
T : Fn2 → Fn2 given by

T (x1, x2, . . . , xn) = (x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + · · ·+ xn).

The linear tranformation T is an endomorphism with a trivial kernel, so it is an isomorphism. Furthermore,
a vector ~z ∈ Fn2 contains the subsequence 111 if and only if T (~z) contains the subsequence 101. This
shows that T is in fact a graph isomorphism from Jn to Hn, so ω(Hn) = ω(Jn).

As mentioned in the introduction, Theorem 3.1 provides the first known interpretation of the numbers
A(n, 3) outside of coding theory.

4 Concluding Remarks
We have defined ηn to be the maximum number of 2-cycles that can appear in a phase space of the form
Γ([Kn, f, id]). One could easily generalize these numbers by defining ηn(m) to be the maximum number
of m-cycles that can appear in such a phase space. One may show that ηn(1) = 2 for all positive integers
n (the only possible fixed points of an SDS map [Kn, f, id] are the all-0’s and all-1’s vectors of length
n). Is it possible to obtain general bounds for the numbers ηn(m)? Could we perhaps relate the numbers
ηn(m) to codes as we have done for the numbers ηn(2)?

There are, of course, many other natural ways to generalize the problems considered here. One might
wish to replace complete graphs with graphs that are, in some sense, “almost” complete (such as com-
plements of cycle graphs). We could also choose to ask similar questions about SDS maps of the form
[Kn, f, id] defined using a set of states A with |A| ≥ 3.
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