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Tribes of cubic partial cubes
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Partial cubes are graphs isometrically embeddable into hypercubes. Three infinite families and a few sporadic ex-

amples of cubic partial cubes are known. The concept of a tribe is introduced as means to systematize the known

examples and establish relations among them. Efficient methods of computation of tribes are developed and several

concrete tribes, that include known, as well as new cubic partial cubes, are computed by hand and with the use of a

computer.
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1 Introduction

Graphs that admit isometric embeddings into hypercubes are known as partial cubes. They were intro-

duced by Graham and Pollak (22) as a model for interconnection networks and were extensively studied

afterwards, see, for instance, (1; 6; 13; 15; 18; 22; 30; 36; 37) and the books (12; 25). Partial cubes

also found several other applications. They are used in mathematical chemistry (27; 28), computational

biology (5; 14), media theory (17), and psychology (34). The variety of partial cubes is surprisingly rich,

a fact that can in particular be justified by the variety of median graphs. The latter graphs form a very

special subclass of partial cubes (cf. (33)), yet it has been demonstrated in (26) that there are, roughly

speaking, as many median graphs as triangle-free graphs. More precisely, it is proved that a given graph

G on n vertices and m edges is triangle-free if and only if its associated graph G̃ is a median graph, where

G̃ is a graph on n + m + 1 vertices and n + 2m edges. A related result due to Bandelt and van de Vel (2)

asserts that the simplex graph of an arbitrary graph is always median. Note however that the size of the

simplex graph can be exponential with respect to the original graph.

It is therefore surprising that it is not easy to find regular partial cubes. This has first been encountered

by Weichsel (35) who proved that among distance regular graphs only hypercubes, even cycles, and the

middle-level graphs are partial cubes. Since the Cartesian product of (regular) partial cubes is again a
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(regular) partial cube, there are of course several infinite series of regular partial cubes. For instance, as

even cycles are partial cubes, so are the toroidal graphs C2k �C2n, k, n ≥ 2.

The problem of classifying cubic partial cubes is around for about a decade. As far as we know,

the problem has been explicitly written down for the first time in (29), where it is proved among other

statements that P (10, 3) is the only partial cube among the generalized Petersen graphs. Some other

examples of cubic partial cubes were known before, cf. (11), while in (3) and in (4) several new examples

were constructed. It has been recently proved that among the cubic plane graphs whose faces are squares

and hexagons there are precisely 5 partial cubes, all of them known before, see (9).

Clearly, even prisms K2 �C2n form an infinite series of cubic partial cubes. Besides this series, only a

few sporadic examples have been known until recently(i), cf. Table 1. In the present paper we continue the

search for cubic partial cubes and for this sake we introduce tribes of partial cubes. Using this concept,

the related theory, and computational methods, we determine the tribes of all previously known cubic

partial cubes. Among the graphs in these tribes we find 21 new cubic partial cubes. The computations

were performed partly by hand and partly in the computer algebra system GAP, see (19).

We proceed as follows. In the remainder of this section basic definitions are given. Then, in Section 2,

we present the list of previously known cubic partial cubes. In the subsequent section we revisit the

well-known concepts of expansion and contraction and in particular introduce superconvex partitions.

In Section 4 our central concept—tribe—is introduced. Then we consider the tribe of the generalized

Petersen graph P (10, 3) and show that it consists only of P (10, 3) itself. The remaining known cubic

partial cubes are planar, hence in Section 6 we restrict our investigations to the planar case and prepare

the necessary theory for our computations. We also show that the even prisms K2 �C2n form a tribe.

Finally, in Section 7, we presents the results of the explicit computations of the tribes of the remaining

graphs from Table 1.

A subgraph H of G is called isometric if dH(u, v) = dG(u, v) for all u, v ∈ V (H), where dG(u, v)
denotes the usual shortest path distance. Also, H is convex, if for all u, v ∈ V (H), all shortest u, v

paths from G belong to H . A convex subgraph is isometric but the converse need not be true. We call

a subgraph H superconvex if for all u, v ∈ H , all paths between u and v of length ≤ dG(u, v) + 1 are

contained in H . In general superconvexity is a stronger property than convexity. For bipartite graphs,

however, the two properties are equivalent. A graph G is a median graph if there exists a unique vertex

x to every triple of vertices u, v, and w such that x lies simultaneously on a shortest u, v-path, shortest

u, w-path, and shortest w, v-path.

The Cartesian product G �H of graphs G and H is the graph with vertex set V (G)×V (H) where the

vertex (a, x) is adjacent to the vertex (b, y) whenever ab ∈ E(G) and x = y, or a = b and xy ∈ E(H).
The Cartesian product is commutative and associative, the product of k copies of K2 is the k-dimensional

hypercube or k-cube Qk. A graph is called prime (with respect to the Cartesian product) if it cannot be

written as the Cartesian product of two nontrivial graphs. It has been observed in (3) that a cubic partial

cube is either an even prism or it is a prime graph.

(i) In September 2005, when this paper was in preparation, David Eppstein informed us of his discovery of a connection between

cubic partial cubes and simplicial arrangements of lines. This leads to two more infinite series and a number of new sporadic

examples of cubic partial cubes, see (16). We briefly discuss this development in Section 8.
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2 Known cubic partial cubes

In Table 1 the list of known sporadic cubic partial cubes is presented, where n stands for the number of

vertices and dim for the dimension of the smallest hypercube into which the graph embeds isometrically.

n dim graph ref

20 5 P(10,3) (11; 29)

24 6 B1 (9; 11)

30 7 B′

1 (3)

32 7 chamfered cube (9; 11)

32 7 twisted chamfered cube (9; 11)

36 8 B′′

1 (3)

42 9 B′′′

1 (3)

48 8 CI(G1) (4)

48 9 CI(Q3) (10; 11)

48 10 B2 (3)

80 8 CI(G2) (4)

80 8 CI(G3) (4)

96 12 CI(G4) (4)

96 13 CI(G5) (4)

120 15 CI(Icosahedron) (10; 11)

Tab. 1: Known cubic partial cubes.

Let us have a closer look at the table. There we find two short series of graphs and 6 additional

examples. The latter examples are the generalized Petersen graph P (10, 3), the truncated octahedron B1,

the chamfered cube, the twisted chamfered cube, the truncated cuboctahedron CI(Q3), and the truncated

icosidodecahedron CI(Icosahedron). The truncated octahedron is also known as the permutahedron Π3

and has appeared elsewhere, cf. (20).

The first short series B1, B
′

1, B
′′

1 , B′′′

1 , B2 with 4 new examples has been constructed in (3) by means

of expansion procedures. It follows from the investigations in the present paper that this series cannot be

extended.

In further search for new cubic partial cubes the following operation turned out to be useful. Let G be a

graph without vertices of degree one embedded into some closed surface. Then the cubic inflation CI(G)
is defined as follows, see (4). Replace each vertex v ∈ V (G) of degree d by a 2d-cycle Qv , and then

replace every edge uv of G by two edges joining Qu and Qv in such a way that an embedded cubic graph

on the same surface is obtained in which all cycles Qv are facial and all edges of G give rise to 4-faces in

that embedding. CI(G) can also be described as the dual of the barycentric subdivision of G (4; 31) or the

truncation of the medial graph of G (21) that can in turn be described as the {0, 1, 2}-Wythoffian (7; 8).

Note that the truncated octahedron B1 can also be represented as CI(K4).
The graphs G1, . . . , G5 that appear in Table 1 are shown in Fig. 1. The cubic inflations of these graphs

provided the last series of five cubic partial cubes. We conclude this section by pointing out that it has

been verified by a computer search that Table 1 is complete up to 30 vertices (3). In other words, there are

just three prime cubic partial cubes on at most 30 vertices: P (10, 3), B1, and B′

1.
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Fig. 1: Graphs from Table 1.
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3 Expansion and contraction

The concept of expansion is due to Mulder (32; 33) in the context of median graphs and Chepoi (6) in the

context of partial cubes (and partial Hamming graphs).

We say that two nonempty isometric subgraphs H0 and H1 form an isometric cover of a graph H

provided that H = H0 ∪ H1, by which we mean that V (H) = V (H0) ∪ V (H1) and E(H) = E(H0) ∪
E(H1). If H is connected then H0 ∩H1 6= ∅ for every isometric cover H0,H1, provided that H0 and H1

are themselves nonempty.

Suppose H0,H1 is an isometric cover of H . For i = 0, 1, let H ′

i be an isomorphic copy of Hi, and

for a vertex u ∈ H0 ∩ H1, let ui be the corresponding vertex in H ′

i . The expansion of H with respect to

H0,H1 is the graph G obtained from the disjoint union of H ′

0 and H ′

1, where for each u ∈ H0 ∩ H1 the

vertices u0 and u1 are joined by a new edge in G. Chepoi (6) proved that a graph is a partial cube if and

only if it can be obtained from K1 by a sequence of expansions.

We next describe the operation of contraction. We say that superconvex subgraphs G0 and G1 form

a superconvex partition of G if G0 and G1 partition G. (More precisely, V (G0) and V (G1) partition

V (G).) When G is partitioned by subgraphs G0, G1, we let M(G0, G1) denote the set of edges of G

connecting G0 with G1. If G is connected and G0, G1 are nonempty then M(G0, G1) is also nonempty.

For e ∈ M(G0, G1), we let e0 and e1 denote the end vertices of e that are in G0 and G1, respectively.

Proposition 3.1 Suppose subgraphs G0 and G1 partition G. Then G0, G1 is a superconvex partition if

and only if dG0
(e0, f0) = dG1

(e1, f1) for all e, f ∈ M(G0, G1).

Proof: Suppose G0 and G1 are superconvex. In particular, for i = 0, 1, dGi
(u, v) = dG(u, v) for all

u, v ∈ Gi. Suppose by way of contradiction that, say, dG(e0, f0) < dG(e1, f1). This means that the

length of a shortest path from e1 to f1 passing through e0 and f0 is dG(e0, f0) + 2 ≤ dG(e1, f1) + 1.

Since G1, is superconvex, we get e0, f0 ∈ G1, a contradiction. Hence, dG(e0, f0) ≥ dG(e1, f1), and we

get equality by symmetry.

Now suppose dG0
(e0, f0) = dG1

(e1, f1) for all e, f ∈ M(G0, G1). Suppose by contradiction that, say,

G0 is not superconvex. Then, for some u, v ∈ G0, there exists a path between u and v of length at most

dG(u, v) + 1, that is not fully contained in G0. Let e be the first edge on this path, that crosses from G0

to G1, and let f be the first edge on the path, crossing back in G0. The part of the path between e0 and

f0 has length at most dG(e0, f0) + 1. Furthermore, every intermediate vertex on this subpath lies in G1.

Thus, dG(e0, f0) + 1 ≥ dG1
(e1, f1) + 2, that is, dG(e0, f0) > dG1

(e1, f1). This yields a contradiction,

since dG0
(e0, f0) ≥ dG(e0, f0). ✷

Suppose G0 and G1 form a superconvex partition of G. The contraction of G with respect to G0, G1 is

the graph H obtained from G by removing from it all edges e ∈ M(G0, G1) and by identifying e0 with

e1 for each e. Notice that it follows from Proposition 3.1 that e0 = f0 for e, f ∈ M(G0, G1) implies

e1 = f1, and vice versa. If ei is adjacent with fi then also e1−i is adjacent with f1−i. In this case, the

edge e0f0 is identified with the edge e1f1.

The subgraphs G0, G1, and the set of edges M(G0, G1) have already appeared in the literature on

partial cubes. For an edge ab of a graph G let

Wab = {u | u ∈ V (G), dG(u, a) < dG(u, b)} ,

Wba = {u | u ∈ V (G), dG(u, b) < dG(u, a)} ,

Fab = {uv ∈ E(G) | u ∈ Uab, v ∈ Uba}.
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The first characterization of partial cubes is due to Djoković (13): A graph G is a partial cube if and only

if it is bipartite and if for every edge ab of G the subgraphs Wab and Wba are (super)convex.

Proposition 3.2 If G0, G1 is a superconvex partition of a graph G then G0 = We0e1
, G1 = We1e0

, and

M(G0, G1) = Fe0e1
for every e ∈ M(G0, G1).

Proof: Set a = e0 and b = e1. It suffices to show that G0 ⊆ Wab and, symmetrically, G1 ⊆ Wba.

Suppose dG(u, b) ≤ dG(u, a) for some u ∈ G0. Then there exists a path from a to u via b, that has length

dG(u, b) + 1 ≤ dG(u, a) + 1. By superconvexity of G0, we get that b ∈ G0, a contradiction. ✷

We end this section with a remark that if a graph G is obtained from a graph H via expansion with

respect to an isometric cover H0,H1 then the images of H0 and H1 in G (that is, H ′

0 and H ′

1) form a

superconvex partition of G. Consequently, H can be recovered from G via the corresponding contraction.

Reversely, if a graph H is obtained from a graph G via contraction with respect to a superconvex partition

G0, G1 then the images of G0 and G1 in H form an isometric cover, and G can be recovered from H via

the expansion with respect to this isometric cover. In this sense, expansion and contraction are inverse to

each other.

4 Tribes

The graphs, on which we now focus our attention, are regular partial cubes, especially, cubic partial cubes.

The class of partial cubes is closed with respect to expansions and contractions. This is, in essence, the

result of (6). Let us now investigate conditions, under which expansion and contraction preserve regularity.

The following two propositions are applicable to arbitrary regular graphs (not necessarily partial cubes).

Suppose H is a regular graph of degree n. Suppose further that G is an expansion of H with respect to

an isometric cover H0,H1. For v ∈ H0 ∩H1 let av be the number of neighbors of v outside of H0, bv the

number of neighbors outside of H1, and cv the number of neighbors in H0 ∩ H1.

Proposition 4.1 Under the above assumptions, G is regular if and only if one of the following is true:

(1) H0 = H1 = H , and G = H �K2 is of degree n + 1; or

(2) G has degree n and, furthermore, av = bv = 1 and cv = n − 2 for all v ∈ H0 ∩ H1.

Proof: If H0 = H1 = H then, clearly, (1) holds. Otherwise, there is a vertex outside of H0 ∩ H1. The

corresponding vertex of G has degree n. Therefore, if G is regular, it must be of degree n.

Let v ∈ H0 ∩H1. Clearly, av + bv + cv = n. Since the degree of v0 in G is 1 + bv + cv and the degree

of v1 is av + 1 + cv , we get the claim. ✷

In the cubic case, G is again cubic if and only if av = bv = cv = 1. In particular, H0 ∩ H1 must be a

disjoint union of edges. We will call such an expansion a cubic expansion.

Suppose now that H is obtained from G by contraction with respect to a superconvex partition G0, G1.

For i = 0, 1, set Ui = {ei | e ∈ M(G0, G1)}. According to Proposition 3.1, the mapping sending e0 to

e1 for all e ∈ M(G0, G1), establishes an isomorphism between distance spaces U0 and U1. In particular,

this mapping is also an isomorphism of the graphs induced on U0 and U1.

Suppose G is regular of degree n.

Proposition 4.2 The contraction H is regular if and only if one of the following holds:
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(1) U0 = G0 and U1 = G1; in this case H has degree n − 1;

(2) the graph on U0 is regular of degree n − 2; here H has degree n.

Proof: If U0 = G0 and U1 = G1 then, clearly, (1) holds. If there is a vertex in G outside of U0 ∪U1 then

the corresponding vertex of H has degree n. So H must be of degree n. For e ∈ M(G0, G1), let a be the

number of neighbors of e0 in G0 \ U0 and b the number of neighbors in U0. Then n = a + b + 1. Since

e1 has the same number b of neighbors in U1, it follows that e1 must have exactly a neighbors in G1 \U1.

Therefore, the unified e0, e1 vertex of H has degree a + b + a. This yields a = 1 and b = n − 2. ✷

When G is cubic, the contraction H is also cubic if and only if the graph on U0 is a disjoint union of

edges. In this case we call the contraction a cubic contraction.

We can now introduce our central concept—tribes. If G is a cubic partial cube then every graph obtained

from G by cubic expansion or cubic contraction is again a cubic partial cube. A tribe of cubic partial cubes

is a minimal nonempty collection of such graphs, closed under cubic expansions and cubic contractions.

The tribe containing a particular graph G will be referred to as the G-tribe.

5 The case of P (10, 3)

In this section we prove the following

Proposition 5.1 The generalized Petersen graph P (10, 3) admits no cubic expansions and no cubic con-

tractions. Consequently, the P (10, 3)-tribe consists only of P (10, 3) itself.

We will prove this proposition in a sequence of lemmas, that also introduce some of the ideas involved

in tribe computations.

Lemma 5.2 If the contraction of a cubic graph G with respect to a superconvex partition G0, G1 is a

cubic contraction then every edge from M(G0, G1) is contained in an isometric 4-cycle. In particular,

P (10, 3) admits no cubic contractions.

Proof: Suppose e ∈ M(G0, G1). By the comment after Proposition 4.2, the graph U0 = {f0|f ∈
M(G0, G1)} has degree one. If f ∈ M(G0, G1) is such that f0 is adjacent to e0 then e1, e0, f0, f1 induce

an isometric 4-cycle, as follows from Proposition 3.1.

Since the girth of P (10, 3) is six, this graph admits no cubic contractions. ✷

For a cycle C of a cubic graph H , an edge e of H is adjacent to C at vertex v ∈ C if e is incident to

v and it does not lie on C. Recall that by the remark after Proposition 4.1, if an isometric cover H0,H1

defines a cubic expansion then H0 ∩ H1 is a disjoint union of edges.

Lemma 5.3 Suppose an isometric cover H0,H1 of a cubic graph H defines a cubic expansion of H .

Suppose C is a cycle of H that is convex as a subgraph of H . Suppose further that e is an edge that is

adjacent to C at a vertex v. If e is contained in H0 ∩ H1 then the following hold:

(1) C has even length and C ∩ (H0 ∩ H1) = {v, u}, where u is the vertex opposite v on C;

(2) one of the two halves of C between v and u belongs to H0 and the other one belongs to H1;

(3) the edge adjacent to C at u lies in H0 ∩ H1.
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Fig. 2: Relation ∼ in P (10, 3).

Proof: Let a and b be the neighbors of v on the cycle C. Since e is contained in H0 ∩ H1, we have that

both a and b do not lie in H0∩H1. Without loss of generality, a ∈ H0\(H0∩H1) and b ∈ H1\(H0∩H1).
Considering the path from a to b around C (avoiding v), we see that C contains another vertex u that is

contained in H0∩H1. Since H0 is isometric there is a shortest path between u and v that is fully contained

in H0. Since C is convex, this path is contained in C. Similarly, there is a shortest path between u and v

that is contained in H1 ∩ C. Since a 6∈ H1 and b 6∈ H0, C contains two different shortest paths between

u and v. This means that C has even length and that u is opposite v on C.

This also means that such a vertex u is unique. Therefore, the two edges on u, that lie on C, are not

contained in H0 ∩ H1. It follows that the edge that is adjacent to C at u is in H0 ∩ H1. ✷

When edges e and f of a graph H are adjacent at opposite vertices to a convex cycle of even length,

we will write e ∼ f . This relation extends by reflexivity and transitivity to an equivalence relation on

E(H). This equivalence relation will be denoted by the same symbol ∼. It follows from Lemma 5.3 that

if H0,H1 defines a cubic expansion of H and e lies in H0 ∩ H1 then the entire ∼-equivalence class of e

is contained in H0 ∩ H1.

Let us now see, what this gives for P (10, 3). Every 6-cycle in P (10, 3) is convex. Every edge e is

adjacent to four 6-cycles, cf. Fig. 2, where the four 6-cycles are emphasized.

Each of the 6-cycles leads to a new edge in the equivalence class of e, on Fig. 2 these are the edges

e1, e2, e3, and e4. Continuing by transitivity, one establishes that all edges of P (10, 3) form a single

∼-equivalence class. This means that no cubic expansion is possible for P (10, 3). Combining this fact

with Lemma 5.2 completes the proof of Proposition 5.1.

6 Plane graphs

The fourteen remaining examples from Table 1 are plane graphs with convex faces. (We say that a face of

a plane graph is convex (respectively, isometric) if the boundary cycle of the face is a convex (respectively,

isometric) subgraph.) These properties lead to a very explicit description of possible isometric covers and

superconvex partitions and, as a result, to efficient algorithms for computing all cubic expansions and

cubic contractions. We realized these algorithms in GAP (19) and used them for the tribe computations

presented in the next section.

We also prove in this section that a graph, obtained by cubic expansion from a cubic plane graph

with convex faces, inherits these same properties, so that our algorithms are again applicable. Cubic

contractions preserve planarity, but not necessarily convexity of the faces. However, as we show in this
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Fig. 3: A straight-ahead walk in Q3, the corresponding isometric cover and cubic expansion.

section, non-convex faces can only arise in a very special situation that never occurs for our graphs.

Let H be a plane cubic partial cube and ab an edge of H . Let W be the edge-face walk on H that starts

from ab and continues as follows. Going along an edge uv from u to v, we enter the face at v that is not

incident with u. (The edge uv is adjacent to this face at v.) In this face we proceed to the opposite vertex

v′ and exit the face along the edge adjacent to the face at v′. We call W a straight-ahead walk; see Fig. 3

where a straight-ahead walk in Q3 is shown.

Proposition 6.1 Suppose H is a plane cubic graph with convex faces. If H0,H1 form an isometric cover

of H , defining a cubic expansion, then there exists a straight-ahead walk W such that

(1) W has no self-intersections;

(2) for i = 0, 1, Hi is induced by all vertices on one side of W and on W itself;

(3) H0 ∩ H1 is the disjoint union of the edges lying on W .

Suppose H and H0,H1 are as above. For the proof of Proposition 6.1 we need the following simple fact

to be used later as well and an important lemma classifying possible intersections of faces with H0 ∩H1.

Proposition 6.2 For a graph H and subgraphs H0 and H1, suppose H = H0 ∪ H1. Then H0,H1 is an

isometric cover if and only if dH0
(u, v) = dH1

(u, v) for all u, v ∈ H0 ∩ H1.

Lemma 6.3 Suppose F is a face of H . Then one of the following holds:

(1) F fully lies in Hi for some i = 0, 1, and meets H0 ∩ H1 trivially;

(2) F fully lies in Hi for some i = 0, 1, and meets H0 ∩ H1 in an edge; or

(3) F meets H0 ∩ H1 in two opposite vertices v and u, the two edges adjacent to F at v and u are

contained in H0 ∩ H1, and the two halves of F between v and u are contained in different Hi.

Proof: If F meets H0 ∩ H1 trivially then, clearly, (1) holds. Suppose v ∈ F ∩ (H0 ∩ H1) and let e be

the unique edge on F that is contained in H0 ∩ H1. If e is adjacent to F then (3) holds by Lemma 5.3,

since F is convex. It remains to consider the case where e lies on F . We claim that in this case (2) holds.

Suppose by way of contradiction that there is a third vertex w in F ∩ (H0 ∩ H1). Let f be the edge on

w that is contained in H0 ∩ H1. If f is adjacent to F then (3) must holds, a contradiction. Hence, f lies

on F . Taking, if necessary, the other end of f as w, we can assume that w is not opposite v. Since F is

convex and v and w are not opposite, there exists a unique shortest path between v and w. However, by

Proposition 6.2, this shortest path should be contained in both H0 and H1, a contradiction, since H0 ∩H1

is a disjoint union of edges. ✷
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Fig. 4: Cubic expansion.

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1. Suppose e is an edge in H0 ∩ H1 and let W be the corresponding straight-

ahead walk. Since the faces of H are convex, Lemma 5.3 implies that all edges on W are contained

in H0 ∩ H1. This shows that H0 ∩ H1 is a disjoint union of several straight-ahead walks. Suppose W

intersects another walk W ′ contained in H0 ∩ H1. (We allow for the equality W ′ = W .) There are two

possibilities for the intersection. If the intersection is at a vertex w then each walk has an edge on w (and

this cannot be the same edge). This yields a contradiction, since the edges in H0 ∩ H1 are disjoint. If the

intersection of W and W ′ is at a face F then Lemma 6.3 (3) gives a contradiction. Therefore, H0 ∩ H1

has no self-intersections.

If H0 ∩ H1 consists of more than one walk then cutting the sphere through all these walks splits

the sphere into more than two parts. However, this means that H0 and H1 cannot be both connected.

(Notice that this topological argument also can be used to show the absence of self-intersections.) Thus,

H0 ∩ H1 = W is a single, non self-intersecting walk. This proves (1) and (3).

Considering the faces fully lying on one side of W , we see that either (1), or (2) of Lemma 6.3 must

hold for each of these faces. Now connectivity implies (2). ✷

Proposition 6.4 If G is obtained by cubic expansion from a plane cubic graph with convex faces then G

is also a plane graph with convex faces.

Proof: Topologically, in this situation the cubic expansion amounts to cutting the plane graph H along

the walk W = H0 ∩ H1 and inserting a band with the new edges drawn across it, see Fig. 4.

So G has a natural structure of a plane graph. With respect to this structure, G has three kinds of faces:

(a) the faces of H , that are not affected by the expansion; (b) the faces affected by the expansion; these are

the edges as in Lemma 6.3 (3); the gonality of these edges in G increases by two; and (c) the new 4-gonal

faces corresponding to the edges on W . Notice that the reverse operation of contraction transforms every

path γ′ on G into a path γ on H . The length of γ is the length of γ′ minus the number of times γ′ crosses

the inserted band.

Suppose F ′ is a face of G and let F be the corresponding face of H . (If F ′ is of type (c) then F

is an edge. Notice that an edge is convex as a subgraph of H .) Let v′ and u′ be vertices of F ′ and

let v and u be the corresponding vertices of F . Consider a shortest path γ′ in G from v′ to u′ and let

γ be the corresponding path in H from v to u. Suppose first that v′ and u′ are on the same side of

the band (that is, in the same H ′

i for some i = 0, 1). If γ′ crosses the band, then it crosses the band
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at least twice, so dG(v′, u′) ≥ dH(v, u) + 2. However, dH(v, u) = dHi
(v, u) = dH′

i
(v′, u′), and so

dG(v′, u′) > dH′

i
(v′, u′). This is a contradiction, since H ′

i is a subgraph of G. Thus, γ′ is fully contained

in H ′

i . Now, since H ′

i is a copy of Hi, it follows that γ is a shortest path from v to u and so it is contained

in F , since F is convex. Hence also γ′ is contained in F ′.

When v′ and u′ lie on different sides of the band, we similarly consider a shortest path γ′ in G and the

corresponding γ in H . In this case we show that the length of γ is one less than the length of γ′ and that

again γ is a shortest path from v to u. It follows that γ lies on F and, consequently, γ′ lies on F ′. ✷

Next we turn to the operation of contraction. We start with a rather general lemma.

Lemma 6.5 Suppose G0, G1 form a superconvex partition of a graph G and C is an isometric cycle in

G. Then one of the following holds:

(1) C is fully contained in Gi for some i = 0, 1; or

(2) C has even length and it meets M(G0, G1) in two opposite edges.

Proof: If none of the edges on C is in M(G0, G1) then case (1) holds. Suppose an edge e from C belongs

to M(G0, G1). Clearly, after crossing from one part of the partition to the other via e, C must return back,

so C contains a second edge, say f , from M(G0, G1). Since both parts Gi are convex, e1 and f1 cannot

lie on a shortest path between e0 and f0 and, vice versa, e0 and f0 cannot lie on a shortest path between

e1 and f1. Since C is isometric, this means that the part of C between e0 and f0 is a shortest path between

these two vertices and, similarly, the part of C between e1 and f1 is a shortest path between them. Finally,

Proposition 3.1 forces C to have even length and e and f to be opposite. ✷

We now return to the plane graphs. Suppose G is such a graph and suppose that all faces of G are

isometric. Let G0, G1 form a superconvex partition of G. Since the faces are isometric, the above lemma

implies that all faces, containing edges from M(G0, G1), have even gonality and meet M(G0, G1) in a

pair of opposite edges. Let us make the edges from M(G0, G1) the vertices of a new graph, in which two

edges are adjacent whenever they are opposite each other on a face. Clearly, this is a graph of degree two

and hence it is a union of cycles. Each of these cycles is called a zone (or, sometimes, a railroad). With

each zone one can associate a cyclic zone walk on the sphere, in which G is imbedded. Namely, starting

from the middle of an edge we go across the face on one side of the edge to the middle of the opposite

edge (which is again in the zone), cross into the next face, and so on until we return to the middle of the

initial edge from the other side.

Proposition 6.6 Suppose G is a plane graph with isometric faces and G0, G1 form a superconvex par-

tition of G. Then M(G0, G1) is a single zone. Furthermore, the corresponding zone walk has no self-

intersections and each of G0 and G1 consists of all vertices on one side of the walk.

Proof: If a zone in M(G0, G1) had a self-intersection or if there were two zones or more, then removing

from G all edges from M(G0, G1) would result in more than two connected components, which is not

the case. So M(G0, G1) is a single zone and the corresponding walk has no self-intersections. The last

claim also follows, since G0, G1 are the connected components of G when all edges from M(G0, G1) are

removed. ✷

Following the zone walk corresponding to the zone M(G0, G1), let us write down the gonalities (the

number of edges) of the faces that we cross. This gives a cyclic sequence g1, g2, . . . , gm, where m is the

number of edges/faces in the zone. We will call this sequence the zone sequence.
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Proposition 6.7 Suppose a plane graph G is cubic with convex faces. Then the contraction defined by

G0, G1 is a cubic contraction if and only if 4 appears in the zone sequence in every other place.

Proof: First of all, we argue that every 4-cycle in G is a face. Indeed, suppose C is a 4-cycle. Let F be a

face that contains two consecutive edges from C. Since F is convex, we must have F = C.

Now for e, f ∈ M(G0, G1), we have that e0 and f0 are adjacent if and only if e0, f0, f1, e1 is a 4-cycle

(hence a 4-gonal face). So the claim follows from the remark after Proposition 4.2. ✷

Finally, we show that contractions preserve planarity and discuss under which conditions it preserves

convexity of faces.

Proposition 6.8 If G is a plane graph with isometric faces then the graph H resulting from the contrac-

tion with respect to G0, G1 is again a plane graph with isometric faces.

Proof: By Proposition 6.6, M(G0, G1) is a single zone and the corresponding walk has no self-intersections.

This implies that the contraction amounts to cutting out a band from the sphere (cf. Fig. 4 with the re-

versed arrow) and gluing the two disks back together. So H has a natural plane structure. Furthermore,

the faces of G that contain no edges from M(G0, G1) retain their gonality in H , while the gonality of the

faces containing edges from M(G0, G1) goes down by two. The 4-gonal faces of this latter type disappear

altogether.

Suppose F ′ is a face of H and F is the face of G from which F ′ is produced. Suppose v′ and u′ are

vertices of F ′, and suppose γ′ is a shortest path between them. Let G′

0 and G′

1 be the images in H of G0

and G1, respectively. Recall that each G′

i is isomorphic to Gi, and that G′

0, G
′

1 form an isometric cover.

Suppose first that v′ and u′ are contained together in some G′

i. Since G′

i is isometric in H , there is a

shortest path between v′ and u′ that is fully contained in G′

i. Let v and u be the preimages of v′ and u′ in

Gi. Clearly, v, u ∈ F . We have dH(v′, u′) = dG′

i
(v′, u′) = dGi

(v, u) = dG(v, u). Since F is isometric,

dG(v, u) = dF (v, u). Also, dF ′(v′, u′) ≤ dF (v, u). This implies dF ′(v′, u′) ≤ dH(v′, u′), and since F ′

is a subgraph of H , the equality must hold.

Suppose now that v′ and u′ are in different G′

i’s. In particular, neither of the two vertices is in G′

0 ∩G′

1.

Without loss of generality we may assume that v′ ∈ G′

0 and u′ ∈ G′

1. Let v and u be the preimages of v′

and u′, respectively. We have that v, u ∈ F . Since every path from v to u necessarily contains an edge

from M(G0, G1), we must have dH(v′, u′) ≤ dG(v, u) − 1. To prove the reverse inequality, consider

a shortest path γ′ from v′ to u′. Let x′

1, x
′

2, . . . , x
′

k be all the vertices from this path that are contained

in G′

0 ∩ G′

1. The vertices on γ′ that precede x′

1 are in G′

0. The vertices that follow x′

k are contained in

G′

1. Also, in view of Proposition 6.2, for every i = 1, . . . , k − 1, we can substitute the subpath from x′

i

to x′

i+1 by a subpath of equal length, that is fully contained in G′

0. Thus, without loss of generality, we

may assume that all vertices preceding x′

k are in G′

0. Now we can lift γ′ to a path γ in G as follows: We

lift the part of γ′ from v′ to x′

k into G0, we lift the tail of γ′, from x′

k to u′, into G1, and we connect

the two parts of γ by the edge from M(G0, G1) between the two preimages of x′

k. Clearly, γ is a path

from v to u and its length is one plus the length of γ′. This shows that dG(v, u) ≤ dH(v′, u′) + 1. Thus,

dG(v, u) = dH(v′, u′) + 1.

Finally, since dF (v, u) = dF ′(v′, u′) + 1 and since dF (v, u) = dG(v, u), we get dF ′(v′, u′) =
dH(v′, u′). ✷

Unfortunately, it is not true that F ′ is convex whenever F is. However, the conditions under which F ′

is not convex are rather restrictive and they do not occur in practice very often.
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Suppose H is obtained from G via a cubic contraction with respect to G0, G1. For i = 0, 1, let G′

i

denote the image of Gi in H .

Proposition 6.9 Under the above assumptions, let F ′ be a face of H and F be the corresponding face of

G. Suppose further that F is convex. Then F ′ is not convex if and only if it contains two or more edges

from G′

0 ∩ G′

1.

Proof: Suppose the edges e′ and f ′ from G′

0 ∩G′

1 lie on F ′. Pick v′ incident to e′ and u′ incident to f ′ so

that m = dH(v′, u′) is minimal. Since G′

0 is an isometric subgraph of H , there is a shortest path α′ from

v′ to u′ that is fully contained in G′

0. Similarly, there is a shortest path β′ between v′ and u′ that is fully

contained in G′

1. Let a′ (respectively, b′) denote the vertex that follows v′ on α′ (respectively, β′). By the

minimality of m, neither a′, nor b′ is incident with e′. Since e′ lies on F ′, we conclude that either a′, or b′

does not lie on F ′. Hence F ′ is not convex.

Now suppose F ′ is not convex, namely, there is a shortest path γ′ between v′, u′ ∈ F ′, that is not

contained in F ′. We will assume that the length m = dH(v′, u′) of γ′ is minimal among all such choices

of v′, u′, and γ′. In particular, none of the intermediate vertices from γ′ lies on F ′. Note that this property

holds for every path between v′ and u′ that has length m and is not fully contained in F ′. Let v, u ∈ F be

preimages of v′ and u′. Let i, j ∈ {0, 1} be defined by v ∈ Gi and u ∈ Gj .

Suppose some intermediate vertex t′ from γ′ is contained in G′

0 ∩ G′

1. Since G′

0 and G′

1 are isometric

in H , we can assume without loss of generality that the part of γ′ from v′ to t′ is fully contained in G′

i

and the part from t′ to u′ is fully contained in G′

j . Such a path can be lifted to a shortest path γ from v to

u. (The length of γ is m if i = j, and it is m + 1 if i 6= j.) Since F is convex, we must have that γ lies

on F , and therefore, γ′ lies on F ′, a contradiction. Thus, no intermediate vertex of γ′ is in G′

0 ∩G′

1. This

means that all intermediate vertices are contained in G′

k \ (G′

0 ∩ G′

1) for some k = 0, 1.

If i = k or j = k then γ′ can be lifted to a shortest path γ from v to u, again yielding a contradiction

with convexity of F . Hence i = j = 1 − k. In particular, this implies that v′, u′ ∈ G′

0 ∩ G′

1.

If v′ and u′ belong in the same connected component of G′

0 ∩ G′

1 (which is an edge!), then m = 1,

clearly giving a contradiction. Thus, v′ and u′ are incident to two different edges, say e′ and f ′, from

G′

0 ∩ G′

1. It remains to show that both e′ and f ′ lie on F ′. However, this is clear. Indeed, by the

minimality of m, the first edge along γ′ does not lie on F ′. Hence the other two edges on v′ must lie on

F ′; one of them is e′. By symmetry, also f ′ lies on F ′. ✷

The condition for the non-convexity of F ′ can also be stated in terms of G, F and the zone Z =
M(G0, G1). Namely, F ′ is non-convex if and only if the zone walk corresponding to Z crosses two

different quadrangular faces adjacent to F (but not F itself).

We conclude this section with the following illustration of our theory.

Proposition 6.10 The even prisms K2 �C2n form a tribe.

Proof: It suffices to show that every cubic expansion of K2 �C2n coincides with K2 �C2n+2 and that

every cubic contraction of K2 �C2n coincides with K2 �C2n−2.

We start with contractions. First of all, the cube Q3 = K2 �C4 has no cubic contractions, since it has

no non-quadrangular faces. Let n ≥ 3. In this case the prism has, up to symmetries, two types of edges:

(1) the edges of the two 2n-gonal faces (top and bottom of the prism); and (2) the side edges, each of

which is incident with two quadrangular faces (sides of the prism). The edges of the second kind form a

zone. This zone does not lead to a cubic contraction because the zone sequence is the constant 4. Each of
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the remaining zones looks the same: the zone walk goes across the top, then down the side, then across

the bottom in the opposite direction, and then back up the opposite side. Manifestly, each of these zones

defines a superconvex partition and the resulting graph is K2 �C2n−2.

We now turn to expansions. When n = 2, we have the cube Q3, which has only one class of edges.

Hence all straight-ahead walks are as in Fig. 3. Each of them defines an isometric cover and the resulting

graph is the hexagonal prism. Now suppose n ≥ 3. As above, we distinguish two kinds of edges. If a

straight-ahead walk contains a side edge, then this walk goes up this edge, continues across the top, goes

down the opposite side edge, and then crosses the bottom face back to the origin. Such straight-ahead

walks do define isometric covers; indeed, the corresponding cubic expansions are the reverse operations

to the cubic contractions from the preceding paragraph.

It remains to consider the straight-ahead walks containing the edges of the 2n-gonal top and bottom

faces. Suppose, say, e1 is an edge of the top face. The straight-ahead walk starting from e1 goes diagonally

down the next side face, then along an edge f1 of the bottom face, climbs diagonally up the next side face,

goes along the top edge e2, and so on. If n is odd, then the walk goes around the prism and eventually

self-intersects. Suppose n is even (and hence n ≥ 4). In this case the straight-ahead walk has no self-

intersections. However, it still does not define an isometric cover. Indeed, let a be the second vertex on e1

and let b be the first vertex on e2. (We count in the direction of the walk.) Let H0, H1 be the cover defined

by the walk, where H0 contains the top face and H1 contains the bottom. Manifestly, dH0
(a, b) = 3,

while dH1
(a, b) = 5. Thus, H0,H1 is not an isometric cover. ✷

7 Explicit tribes of partial cubes

The theory that we have developed in the previous section leads to efficient algorithms listing all cubic

expansions and contractions of a given plane cubic partial cube with convex faces. Suppose H and G are

such graphs. To construct all cubic expansions of H , do the following:

(1) Construct all straight-ahead walks in H . Notice that each edge lies on a unique straight-ahead

walk, so the straight-ahead walks partition the edge set of H .

(2) Select those straight-ahead walks W that have no self-intersections.

(3) For each such W , construct H0 and H1 as subgraphs induces by the vertices on one side of W

and on W .

(4) Select isometric covers H0,H1 by verifying the distance condition as in Proposition 6.2. Notice

that H0 ∩ H1 = W .

To determine all cubic contractions of G, do the following:

(1) Construct all zones in G. Again, the zones partition the edge set of G, and so each edge needs

to be dealt with only once.

(2) Select all zones Z, whose zone walks have no self-intersections and such that 4 appears in the

zone sequence in every other place.

(3) For each such Z, construct G0 and G1 as the connected components of G with all edges from

Z removed.

(4) Select superconvex partitions G0, G1 by verifying the distance condition as in Proposition 3.1.

In the case of cubic expansions, planarity of the resulting graph and convexity of its faces is assured by

Proposition 6.4. Thus, the above algorithms can immediately be applied to construct further graphs from

the same tribe. In the case of cubic contractions, planarity of the resulting graph is assured by Proposition
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6.8, while convexity of faces must be verified using Proposition 6.9 before the computation of the tribe

can proceed.
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Fig. 5: The B24-tribe.

We now present computational results based on the above approach. The first graph from Table 1 to

consider is B1. Set B24 = B1 to denote the size of this graph. Then the B24-tribe consists of 17 graphs

and is schematically presented in Fig. 5.

After the complete B24-tribe has been determined, 9 new cubic partial cubes have been found. They are

squared in the figure. The chain B24, B30, B36, B42, B
′

48 is the chain B1, B
′

1, B
′′

1 , B′′′

1 , B2 from Table 1.

The graph B32 is the chamfered cube, B48 is the truncated cuboctahedron CI(Q3), while B′

96 is CI(G4).
The four new graphs with up to 60 vertices are depicted in Fig. 6.

The next graph from Table 1 to consider is the twisted chamfered cube. Its tribe consists of just two

graphs, the second graph from the tribe is the top graph from Fig. 7. It is not isomorphic to B40, hence we

have one more cubic partial cube. Similarly, the CI(G1)-tribe consists of two graphs, the second graph

has 60 vertices and is the middle graph from Fig. 7. Next, the CI(G2)-tribe consists of three graphs,

CI(G2) on 80 vertices and graphs on 70 and 60 vertices. So in this case both new graphs are obtained by

a cubic contraction. The one with 60 vertices is the bottom graph from Fig. 7.

Both the CI(G3)-tribe and the CI(G5)-tribe consist of a single graph. Finally, the CI(Icosahedron)-

tribe is shown in Fig. 8, where we have set I120 = CI(Icosahedron) to denote the size of this graph. The

I120-tribe thus brings us 8 new cubic partial cubes, the largest being on 240 vertices. It is the largest
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Fig. 6: Graphs from the B24-tribe.
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Fig. 7: The second graph from the twisted chamfered cube tribe, the second graph from the CI(G1)-tribe, and the

graph on 60 vertices from the CI(G2)-tribe.

known cubic partial cube (that is not an even prism).

8 Concluding remarks

Among the known cubic partial cubes only the generalized Petersen graph P (10, 3) is not planar. Hence

it would be interesting to find more nonplanar examples. It seems that for this sake new techniques need

to be developed.

David Eppstein observed ((16)) that every simplicial line arrangement in the projective plane over the

real numbers leads to a (plane) cubic partial cube. Three infinite series and 91 sporadic examples of

simplicial arrangements are known (23). One of the three infinite series consists of the familiar prisms. It

I I

I'

I

I

I'

I I I120 140

140

160

180

180

200 220 240

Fig. 8: The I120-tribe.
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would be interesting to systematically consider all other examples to see to which known or new partial

cubes they lead, and what their corresponding tribes are.
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