# Tight upper bound on the maximum anti-forcing numbers of graphs** 

Lingjuan Shi

Heping Zhang $\|^{\dagger}$
School of Mathematics and Statistics, Lanzhou University, P.R. China
received $14^{\text {th }}$ Apr. 2017, revised $10^{\text {th }}$ Aug. 2017, accepted $28^{\text {th }}$ Sep. 2017.


#### Abstract

Let $G$ be a simple graph with a perfect matching. Deng and Zhang showed that the maximum anti-forcing number of $G$ is no more than the cyclomatic number. In this paper, we get a novel upper bound on the maximum anti-forcing number of $G$ and investigate the extremal graphs. If $G$ has a perfect matching $M$ whose anti-forcing number attains this upper bound, then we say $G$ is an extremal graph and $M$ is a nice perfect matching. We obtain an equivalent condition for the nice perfect matchings of $G$ and establish a one-to-one correspondence between the nice perfect matchings and the edge-involutions of $G$, which are the automorphisms $\alpha$ of order two such that $v$ and $\alpha(v)$ are adjacent for every vertex $v$. We demonstrate that all extremal graphs can be constructed from $K_{2}$ by implementing two expansion operations, and $G$ is extremal if and only if one factor in a Cartesian decomposition of $G$ is extremal. As examples, we have that all perfect matchings of the complete graph $K_{2 n}$ and the complete bipartite graph $K_{n, n}$ are nice. Also we show that the hypercube $Q_{n}$, the folded hypercube $F Q_{n}(n \geq 4)$ and the enhanced hypercube $Q_{n, k}(0 \leq k \leq n-4)$ have exactly $n, n+1$ and $n+1$ nice perfect matchings respectively.


Keywords: Maximum anti-forcing number, Perfect matching, Edge-involution, Cartesian product, Hypercube, Folded hypercube

## 1 Introduction

Let $G$ be a finite and simple graph with vertex set $V(G)$ and edge set $E(G)$. We denote the number of vertices of $G$ by $v(G)$, and the number of edges by $e(G)$. For $S \subseteq E(G), G-S$ denotes the subgraph of $G$ with vertex set $V(G)$ and edge set $E(G) \backslash S$. A perfect matching of $G$ is a set $M$ of edges of $G$ such that each vertex is incident with exactly one edge of $M$. A perfect matching of a graph coincides with a Kekulé structure in organic chemistry.

The innate degree of freedom of a Kekulé structure was firstly proposed by Klein and Randić (1987) in the study of resonance structure of a given molecule in chemistry. In general, Harary et al. (1991) called the innate degree of freedom as the forcing number of a perfect matching of a graph. The forcing number of a perfect matching $M$ of a graph $G$ is the smallest cardinality of subsets of $M$ not contained in other perfect matchings of $G$. The minimum forcing number and maximum forcing number of $G$ are the minimum and maximum values of forcing numbers over all perfect matchings of $G$, respectively. Computing the minimum forcing number of a bipartite graph with the maximum degree three is an NP-complete problem, see Afshani et al. (2004). As we know, the forcing numbers of perfect matchings have been studied for many specific graphs, see Adams et al. (2004); Che and Cheng (2011); Jiang and Zhang (2011, 2016); Lam and Pachter (2003); Pachter and Kim (1998); Shi and Zhang (2016); Zhang and Deng (2015); Zhang et al. (2010, 2015); Zhao and Zhang (2016).

Vukiěević and Trinajstić (2007) defined the anti-forcing number of a graph as the smallest number of edges whose removal results in a subgraph with a unique perfect matching. Recently Lei et al. (2016) introduced the anti-forcing

[^0]number of a single perfect matching $M$ of a graph $G$ as follows. A subset $S \subseteq E(G) \backslash M$ is called an anti-forcing set of $M$ if $G-S$ has a unique perfect matching $M$. The anti-forcing number of a perfect matching $M$ is the smallest cardinality of anti-forcing sets of $M$, denoted by $a f(G, M)$. Obviously, the anti-forcing number of $G$ is the minimum value of the anti-forcing numbers over all perfect matchings of $G$. The maximum anti-forcing number of $G$ is the maximum value of the anti-forcing numbers over all perfect matchings of $G$, denoted by $A f(G)$. It is an $N P-$ complete problem to determine the anti-forcing number of a perfect matching of a bipartite graph with the maximum degree four, see Deng and Zhang (2017a). For some progress on this topic, see refs. Vukičević and Trinajstić (2008); Che and Cheng (2011); Deng (2007, 2008); Deng and Zhang (2017ablc); Lei et al. (2016); Li (1997); Shi and Zhang (2016); Yang et al. (2015b); Zhang et al. (2011).

For a bipartite graph $G$, Riddle (2002) proposed the trailing vertex method to get a lower bound on the forcing numbers of perfect matchings of $G$. Applying this lower bound, the minimum forcing number of some graphs have been obtained. In particular, Riddle (2002) showed that the minimum forcing number of $Q_{n}$ is $2^{n-2}$ if $n$ is even. However, for odd $n$, determining the minimum forcing number of $Q_{n}$ is still an open problem. For the maximum forcing number of $Q_{n}$, Alon proved that for sufficiently large $n$ this number is near to the total number of edges in a perfect matching of $Q_{n}$ (see Riddle (2002)), but its specific value is still unknown. Afterwards, Adams et al. (2004) generalized Alon's result to a $k$-regular bipartite graph and for a hexagonal system, a polyomino graph or a $(4,6)$ fullerene, Xu et al. (2013); Zhang and Zhou (2016); Shi et al. (2017) showed that its maximum forcing number equals its Clar number, respectivey. For a graph $G$ with a perfect matching, Lei et al. (2016) connected the anti-forcing number and forcing number of a perfect matching of $G$, and showed that the maximum forcing number of $G$ is no more than $A f(G)$. Particularly, for a hexagonal system $H$, Lei et al. (2016) showed that $A f(H)$ equals the Fries number (see Fries (1927)) of $H$. Recently, see Shi et al. (2017), we also showed that for a (4,6)-fullerene graph $G, A f(G)$ equals the Fries number of $G$.

The cyclomatic number of a connected graph $G$ is defined as $r(G)=e(G)-v(G)+1$. Deng and Zhang (2017c) recently obtained that the maximum anti-forcing number of a graph is no more than the cyclomatic number.
Theorem 1.1 (Deng and Zhang (2017c)). For a connected graph $G$ with a perfect matching, $A f(G) \leq r(G)$.
Deng and Zhang (2017c) further showed that the connected graphs with the maximum anti-forcing number attaining the cyclomatic number are a class of plane bipartite graphs. In this paper, we obtain a novel upper bound on the maximum anti-forcing numbers of a graph $G$ as follows.

Theorem 1.2. Let $G$ be any simple graph with a perfect matching. Then for any perfect matching $M$ of $G$,

$$
\begin{equation*}
a f(G, M) \leq A f(G) \leq \frac{2 e(G)-v(G)}{4} \tag{1}
\end{equation*}
$$

In fact, this upper bound is also tight. By a simple comparison we immediately get that the upper bound is better than the previous upper bound $r(G)$ when $3 v(G)<2 e(G)+4$. In next sections we shall see that many non-planar graphs can attain this upper bound, such as complete graphs $K_{2 n}$, complete bipartite graphs $K_{n, n}$, hypercubes $Q_{n}$, etc.

We say that a graph $G$ is extremal if the maximum anti-forcing number $A f(G)$ attains the upper bound in Theorem 1.2. that is, $G$ has a perfect matching $M$ such that both equalities in (1) hold. Such $M$ is said to be a nice perfect matching of $G$. In Section 2, we give a proof to Theorem 1.2 , obtain an equivalent condition for the nice perfect matchings of $G$, and establish a one-to-one correspondence between the nice perfect matchings of $G$ and the edgeinvolutions of $G$. In Section 3, we provide a construction of all extremal graphs, which can be obtained from $K_{2}$ by implementing two expansion operations, and show that such a graph is an elementary graph (each edge belongs to some perfect matching). In Section 4, we investigate Cartesian decompositions of an extremal graph. Let $\Phi^{*}(G)$ denote the number of nice perfect matchings of a graph $G$. For a Cartesian decomposition $G=G_{1} \square \cdots \square G_{k}$, we obtain $\Phi^{*}(G)=\sum_{i=1}^{k} \Phi^{*}\left(G_{i}\right)$. This implies that a graph $G$ is extremal if and only if in a Cartesian decomposition of $G$ one factor is an extremal graph. As applications we show that three cube-like graphs, the hypercubes $Q_{n}$, the
folded hypercubes $F Q_{n}$ and the enhanced hypercubes $Q_{n, k}$ are extremal. In particular, in the final section we prove that $Q_{n}$ has exactly $n$ nice perfect matchings and $A f\left(Q_{n}\right)=(n-1) 2^{n-2}, F Q_{n}(n \geq 4)$ has exactly $n+1$ nice perfect matchings and $A f\left(F Q_{n}\right)=n 2^{n-2}$, and for $0 \leq k \leq n-4, Q_{n, k}$ has $n+1$ nice perfect matchings and $A f\left(Q_{n, k}\right)=n 2^{n-2}$. We also show that $F Q_{n}$ is a prime graph under the Cartesian decomposition.

## 2 Upper bound and nice perfect matchings

### 2.1 The proof of Theorem 1.2

Let $G$ be a graph with a perfect matching $M$. A cycle of $G$ is called an $M$-alternating cycle if its edges appear alternately in $M$ and $E(G) \backslash M$. If $G$ has not $M$-alternating cycles, then $M$ is a unique perfect matching since the symmetric difference of two distinct perfect matchings is the union of some $M$-alternating cycles. So $M$ is a unique perfect matching of $G$ if and only if $G$ has no $M$-alternating cycles. Lei et al. obtained the following characterization for an anti-forcing set of a perfect matching.

Lemma 2.1 (Lei et al. (2016)). A set $S \subseteq E(G) \backslash M$ is an anti-forcing set of $M$ if and only if $S$ contains at least one edge of every $M$-alternating cycle of $G$.

A compatible $M$-alternating set of $G$ is a set of $M$-alternating cycles such that any two members are either disjoint or intersect only at edges in $M$. Let $c^{\prime}(M)$ denote the maximum cardinality of compatible $M$-alternating sets of $G$. By Lemma 2.1 the authors obtained the following theorem.
Theorem 2.2 (Lei et al. (2016)). For any perfect matching $M$ of $G$, we have af $(G, M) \geq c^{\prime}(M)$.


Fig. 1. A perfect matching $M$ of $Q_{3}$ (thick edges) and an anti-forcing set $S$ of $M$ (" $\times$ ").

In general, for any anti-forcing set $S$ of a perfect matching $M$ of $G$, the edge set $E(G) \backslash(M \cup S)$ may not be an anti-forcing set of $M$ (see Fig. 11. However, for any minimal anti-forcing set in a bipartite graph, we have Lemma 2.3 . Here an anti-forcing set is minimal if its any proper subset is not an anti-forcing set. Recall that for an edge subset $E$ of a graph $G, G[E]$ is an edge induced subgraph of $G$ with vertex set being the vertices incident with some edge of $E$ and edge set being $E$.
Lemma 2.3. Let $G$ be a simple bipartite graph with a perfect matching $M$, and $S$ a minimal anti-forcing set of $M$. Then $S^{*}:=E(G) \backslash(M \cup S)$ is an anti-forcing set of $M$.

Proof: Clearly, $M$ is a perfect matching of $G[M \cup S]$. It is sufficient to show that $G[M \cup S]$ has no $M$-alternating cycle by Lemma 2.1. By the contrary, we suppose that $C$ is an $M$-alternating cycle of $G[M \cup S]$. Then the edges of $C$ appear alternately in $M$ and $S$. Let $E(C) \cap S=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ (see Fig. 2 for $k=3$ ). Since $S$ is a minimal anti-forcing set of $M$ in $G$, the subgraph $G-\left(S \backslash\left\{e_{i}\right\}\right)$ has an $M$-alternating cycle $C_{i}$ such that $E\left(C_{i}\right) \cap S=\left\{e_{i}\right\}$, $i=1,2, \ldots, k$. Then $G-S$ has a closed $M$-alternating walk $W=G\left[\bigcup_{i=1}^{k}\left(E\left(C_{i}\right) \backslash\left\{e_{i}\right\}\right)\right.$ as depicted in Fig. 2. Since $G$ is a bipartite graph, $W$ contains an $M$-alternating cycle $C^{\prime}$. So $G-S$ has an $M$-alternating cycle $C^{\prime}$. This implies that $S$ is not an anti-forcing set of $M$, a contradiction. So $S^{*}$ is an anti-forcing set of $M$.

Let $X$ and $Y$ be two vertex subsets of a graph $G$. We denote by $E(X, Y)$ the set of edges of $G$ with one end in $X$ and the other end in $Y$. The subgraph induced by $E(X, Y)$, for convenience, is denoted by $G(X, Y)$. For a vertex


Fig. 2. Example of $k=3$.
subset $X$ of $G, G[X]$ is a vertex induced subgraph of $G$ with vertex set $X$ and any two vertices are adjacent if and only if they are adjacent in $G$. The edge set of $G[X]$ is denoted by $E(X)$.

Proof of Theorem 1.2. For any perfect matching $M$ of $G$, let $A$ be a vertex subset of $G$ consisting of one end vertex for each edge of $M, \bar{A}:=V(G) \backslash A$. Then $G^{\prime}:=G(A, \bar{A})$ is a bipartite graph and $M$ is a perfect matching of $G^{\prime}$. Let $S$ be a minimum anti-forcing set of $M$ in $G^{\prime}$. By Lemma 2.3. $S^{*}:=E\left(G^{\prime}\right) \backslash(M \cup S)$ is an anti-forcing set of $M$ in $G^{\prime}$. So both $S \cup E(A)$ and $S^{*} \cup E(\bar{A})$ are anti-forcing sets of $M$ in $G$. Hence

$$
2 a f(G, M) \leq|S \cup E(A)|+\left|S^{*} \cup E(\bar{A})\right|=e(G)-|M|=e(G)-\frac{v(G)}{2}
$$

Then $a f(G, M) \leq \frac{2 e(G)-v(G)}{4}$. By the arbitrariness of $M, A f(G) \leq \frac{2 e(G)-v(G)}{4}$.

For any perfect matching $M$ of a complete bipartite graph $K_{m, m}(m \geq 2)$, any two edges of $M$ belong to an $M$-alternating 4-cycle. Since any two distinct $M$-alternating 4-cycles are compatible, $c^{\prime}(M) \geq\binom{ m}{2}=\frac{m^{2}-m}{2}$. By Theorems 2.2 and 1.2 , we obtain $a f\left(K_{m, m}, M\right)=\frac{m^{2}-m}{2}=A f\left(K_{m, m}\right)$. Let $M^{\prime}$ be any perfect matching of a complete graph $K_{2 n}$. For any two edges $e_{1}$ and $e_{2}$ of $M^{\prime}$, there are two distinct $M^{\prime}$-alternating 4-cycles each of which simultaneously contains edges $e_{1}$ and $e_{2}$. So $a f\left(K_{2 n}, M^{\prime}\right) \geq c^{\prime}\left(M^{\prime}\right) \geq\binom{ n}{2} \times 2=n^{2}-n$. By Theorem 1.2 , we know that $a f\left(K_{2 n}, M^{\prime}\right)=A f\left(K_{2 n}\right)=n^{2}-n$. Hence every perfect matching of $K_{m, m}$ and $K_{2 n}$ is nice.

Recall that the $n$-dimensional hypercube $Q_{n}$ is the graph with vertex set being the set of all $0-1$ sequences of length $n$ and two vertices are adjacent if and only if they differ in exactly one position. For $x \in\{0,1\}$, set $\bar{x}:=1-x$. The edge connecting the two vertices $x_{1} \cdots x_{i-1} x_{i} x_{i+1} \cdots x_{n}$ and $x_{1} \cdots x_{i-1} \bar{x}_{i} x_{i+1} \cdots x_{n}$ of $Q_{n}$ is called an $i$-edge of $Q_{n}$. We denote by $E_{i}$ the set of all the $i$-edges of $Q_{n}, i=1,2, \ldots, n$. In fact, $E_{i}$ is a $\Theta_{Q_{n}}$-class of $Q_{n}$. We can show the following result for $Q_{n}$.
Lemma 2.4. $\Theta_{Q_{n}}$-class $E_{i}$ of $Q_{n}$ is a nice perfect matching, that is, af $\left(Q_{n}, E_{i}\right)=A f\left(Q_{n}\right)=(n-1) 2^{n-2}$.

Proof: It is sufficient to discuss $E_{1}$. Clearly, $E_{1}$ is a perfect matching of $Q_{n}$. For vertices $x=x_{1} x_{2} \cdots x_{n}$ and $y=$ $\bar{x}_{1} x_{2} \cdots x_{n}$, the edge $x y \in E_{1}$ belongs to $n-1 E_{1}$-alternating 4-cycles. Over all edges of $E_{1}$, since each $E_{1}$-alternating 4 -cycle is counted twice, there are $\frac{(n-1) 2^{n-1}}{2}=(n-1) 2^{n-2}$ distinct $E_{1}$-alternating 4-cycles in $Q_{n}$. Since any two distinct $E_{1}$-alternating 4 -cycles are compatible, $c^{\prime}\left(E_{1}\right) \geq(n-1) 2^{n-2}$. So af $\left(Q_{n}, E_{1}\right) \geq c^{\prime}\left(E_{1}\right) \geq(n-1) 2^{n-2}$ by Theorem 2.2. Since $A f\left(Q_{n}\right) \leq(n-1) 2^{n-2}$ by Theorem 1.2, af $\left(Q_{n}, E_{1}\right)=A f\left(Q_{n}\right)=(n-1) 2^{n-2}$.

The above three examples show that the upper bound in Theorem 1.2 is tight.

### 2.2 Nice perfect matchings

In the following, we will characterize the nice perfect matchings of a graph. The set of neighbors of a vertex $v$ in $G$ is denoted by $N_{G}(v)$. The degree of a vertex $v$ is the cardinality of $N_{G}(v)$, denoted by $d_{G}(v)$.

Theorem 2.5. For any perfect matching $M$ of a simple graph $G, M$ is a nice perfect matching of $G$ if and only if for any two edges $e_{1}=x y$ and $e_{2}=u v$ of $M, x u \in E(G)$ if and only if $y v \in E(G)$, and $x v \in E(G)$ if and only if $y u \in E(G)$.

Proof: Here we only need to consider simple connected graphs. To show the sufficiency, we firstly estimate the value of $c^{\prime}(M)$ for such perfect matching $M$ of $G$. Let $c_{w z}^{\prime}(M)$ be the number of $M$-alternating 4-cycles that contain edge $w z$. Since for any two edges $e_{1}=x y$ and $e_{2}=u v$ of $M, x u \in E(G)$ if and only if $y v \in E(G)$, and $x v \in E(G)$ if and only if $y u \in E(G), c_{w z}^{\prime}(M)=d_{G}(w)-1=d_{G}(z)-1$ for any edge $w z$ of $M$. Obviously, any two distinct $M$-alternating 4-cycles are compatible. Then

$$
\begin{align*}
c^{\prime}(M) & \geq \frac{\sum_{w z \in M} c_{w z}^{\prime}(M)}{2} \\
& =\frac{\sum_{w z \in M} \frac{1}{2}\left[\left(d_{G}(w)-1\right)+\left(d_{G}(z)-1\right)\right]}{2}  \tag{2}\\
& =\frac{\sum_{w \in V(G)} \frac{1}{2}\left(d_{G}(w)-1\right)}{2} \\
& =\frac{e(G)-\frac{v(G)}{2}}{2} .
\end{align*}
$$

By Theorems 1.2 and $2.2 c^{\prime}(M) \leq a f(G, M) \leq A f(G) \leq \frac{2 e(G)-v(G)}{4}$. So $a f(G, M)=\frac{2 e(G)-v(G)}{4}$, that is, $M$ is a nice perfect matching of $G$.

Conversely, suppose that $M$ is a nice perfect matching of $G$. Let $A$ be a vertex subset of $G$ consisting of one end vertex for each edge of $M$ and $\bar{A}:=V(G) \backslash A$. Then $(A, \bar{A})$ is a partition of $V(G)$. Given any bijection $\omega: M \rightarrow\{1, \ldots,|M|\}$, we extend weight function $\omega$ on $M$ to the vertices of $G:$ if $v \in V(G)$ is incident with $e \in M$, then $\omega(v):=\omega(e)$. This weight function $\omega$ gives a natural ordering of the vertices in $A(\bar{A})$. Clearly, if $e=x y \in M$, then $\omega(x)=\omega(y)$, otherwise, $\omega(x) \neq \omega(y)$. Set

$$
\begin{aligned}
& E_{A}^{\omega}:=\{x y \in E(G): \omega(x)>\omega(y), x \in A \text { and } y \in \bar{A}\}, \\
& E_{\bar{A}}^{\omega}:=\{x y \in E(G): \omega(x)<\omega(y), x \in A \text { and } y \in \bar{A}\} .
\end{aligned}
$$

Since $G-E_{A}^{\omega} \cup E(A)$ has a unique perfect matching $M, E_{A}^{\omega} \cup E(A)$ is an anti-forcing set of $M$ in $G$. Similarly, $E_{\bar{A}}^{\omega} \cup E(\bar{A})$ is also an anti-forcing set of $M$ in $G$. Since $M$ is a nice perfect matching of $G, a f(G, M)=\frac{2 e(G)-v(G)}{4}$. So $\left|E_{A}^{\omega} \cup E(A)\right| \geq \frac{2 e(G)-v(G)}{4},\left|E_{\bar{A}}^{\omega} \cup E(\bar{A})\right| \geq \frac{2 e(G)-v(G)}{4}$. Since $\left|E_{A}^{\omega} \cup E(A)\right|+\left|E_{\bar{A}}^{\omega} \cup E(\bar{A})\right|=e(G)-|M|=$ $e(G)-\frac{v(G)}{2},\left|E_{A}^{\omega} \cup E(A)\right|=\left|E_{\bar{A}}^{\omega} \cup E(\bar{A})\right|=\frac{2 e(G)-v(G)}{4}$. Hence $E_{A}^{\omega} \cup E(A)$ is a minimum anti-forcing set of $M$ in $G$.

Now we show that for any two edges $e_{1}=x y$ and $e_{2}=u v$ of $M, x u \in E(G)$ if and only if $y v \in E(G)$, and $x v \in E(G)$ if and only if $y u \in E(G)$. It is sufficient to show that $x v \in E(G)$ implies $y u \in E(G)$. Given two bijections $\omega_{1}: M \rightarrow\{1, \ldots,|M|\}$ and $\omega_{2}: M \rightarrow\{1, \ldots,|M|\}$ with $\omega_{1}\left(e_{1}\right)=1, \omega_{1}\left(e_{2}\right)=2, \omega_{2}\left(e_{1}\right)=2$, $\omega_{2}\left(e_{2}\right)=1$ and $\left.\omega_{2}\right|_{M \backslash\left\{e_{1}, e_{2}\right\}}=\left.\omega_{1}\right|_{M \backslash\left\{e_{1}, e_{2}\right\}}$. As the above extension of $\omega$, we extend the weight functions $\omega_{1}$ and $\omega_{2}$ on $M$ to the vertices of $G$.

We first consider the case that $x, u \in A$. Suppose to the contrary that $x v \in E(G)$ but $y u \notin E(G)$. Set $A^{\prime}:=$ $A \backslash\{x, u\}, \bar{A}^{\prime}:=\bar{A} \backslash\{y, v\}, E_{1}^{\prime}:=\left\{w z \in E(G): \omega_{1}(w)>\omega_{1}(z), w \in A^{\prime}\right.$ and $\left.z \in \bar{A}^{\prime}\right\}$. Then

$$
\begin{equation*}
E_{A}^{\omega_{2}} \cup E(A)=\{x v\} \cup E\left(\{y, v\}, A^{\prime}\right) \cup E_{1}^{\prime} \cup E(A)=\{x v\} \cup E_{A}^{\omega_{1}} \cup E(A) \tag{3}
\end{equation*}
$$

By the above proof we know that both $E_{A}^{\omega_{1}} \cup E(A)$ and $E_{A}^{\omega_{2}} \cup E(A)$ are minimum anti-forcing sets of $M$ in $G$, it contradicts to the equation (3). Thus $y u \in E(G)$.

For the case that $x \in A$ and $u \in \bar{A}$, set $U:=(A \backslash\{v\}) \cup\{u\}, \bar{U}:=(\bar{A} \backslash\{u\}) \cup\{v\}$. Then each edge in $M$ is incident with exactly one vertex in $U$. Substituting the partition $(A, \bar{A})$ of $V(G)$ with the partition $(U, \bar{U})$, by a similar argument as the above case, we can also show that $x v \in E(G)$ implies $y u \in E(G)$.


Fig. 3. Two nice perfect matchings $M_{1}$ and $M_{2}$ of $G^{\prime}$ and a nice perfect matching of $H$.

By Theorem 2.5, we can easily check whether a perfect matching of a graph is nice. For example, in Fig. 3, the two perfect matchings $M_{1}$ and $M_{2}$ of the bipartite graph $G^{\prime}$ are nice, and the perfect matching of the non-bipartite graph $H$ is also nice.

Proposition 2.6. Let $M$ be a nice perfect matching of $G$ and $S$ a subset of $V(G)$. Then $M \cap E(S)$ is a nice perfect matching of $G[S]$ if $M \cap E(S)$ is a perfect matching of $G[S]$.

Proof: By Theorem 2.5, it holds.
In the proof of Theorem 2.5, we notice that $d_{G}(u)=d_{G}(v)$ for every edge $u v$ of a nice perfect matching of $G$. So we have the following necessary but not sufficiency condition for the upper bound in Theorem 1.2 to be attained.
Proposition 2.7. Let $G$ be a graph with a perfect matching. Then $A f(G)<\frac{2 e(G)-v(G)}{4}$ if there are an odd number of vertices of the same degree in $G$.

Proposition 2.7 is not sufficient. For example, for a hexagonal system with a perfect matching, it does not have a nice perfect matching by Theorem 2.5, that is, its maximum anti-forcing number can not be the upper bound in Theorem 1.2, but it has an even number of vertices of degree 3 and an even number of vertices of degree 2 .

Abay-Asmerom et al. (2010) introduced a reversing involution of a connected bipartite graph $G$ with partite sets $X$ and $Y$ as an automorphism $\alpha$ of $G$ of order two such that $\alpha(X)=Y$ and $\alpha(Y)=X$. Here we give the following definition of a general graph.

Definition 2.8. Suppose that $G$ is a simple connected graph. An edge-involution of $G$ is an automorphism $\alpha$ of $G$ of order two such that $v$ and $\alpha(v)$ are adjacent for any vertex $v$ in $G$.

Hence an edge-involution of a bipartite graph is also a reversing involution, but a reversing involution of a bipartite graph may not be an edge-involution. In the following, we establish a relationship between a nice perfect matching and an edge-involution of $G$.

Theorem 2.9. Let $G$ be a simple connected graph. Then there is a one-to-one correspondence between the nice perfect matchings of $G$ and the edge-involutions of $G$.

Proof: For a nice perfect matching $M$ of $G$, we define a bijection $\alpha_{M}$ of order 2 on $V(G)$ as follows: for any vertex $v$ of $G$, there is exactly one edge $e$ in $M$ such that $v$ is incident with $e$, let $\alpha_{M}(v)$ be the other end-vertex of $e$. Let $x$ and $y$ be any two distinct vertices of $G$. If $x y \in M$, then $\alpha_{M}(x)=y, \alpha_{M}(y)=x$ and $\alpha_{M}(x) \alpha_{M}(y)=y x \in E(G)$. If $x y \notin M$ ( $x$ may not be adjacent to $y$ ), then both $x \alpha_{M}(x)$ and $y \alpha_{M}(y)$ belong to $M$. Since $M$ is a nice perfect matching, $x y \in E(G)$ if and only if $\alpha_{M}(x) \alpha_{M}(y) \in E(G)$ by Theorem2.5. This implies that $\alpha_{M}$ is an automorphism of $G$. Thus $\alpha_{M}$ is an edge-involution of $G$.

Conversely, let $\alpha$ be an edge-involution of $G$. Then for any vertex $y$ of $G, y \alpha(y) \in E(G)$. Since $\alpha$ is a bijection of order 2 on $V(G), M^{\prime}:=\{y \alpha(y): y \in V(G)\}$ is a perfect matching of $G$. For any two distinct edges $y_{1} \alpha\left(y_{1}\right)$ and $y_{2} \alpha\left(y_{2}\right)$ of $M^{\prime}, y_{1} y_{2} \in E(G)$ if and only if $\alpha\left(y_{1}\right) \alpha\left(y_{2}\right) \in E(G)$, and $y_{1} \alpha\left(y_{2}\right) \in E(G)$ if and only if $\alpha\left(y_{1}\right) y_{2} \in E(G)$ since $\alpha$ is an automorphism of order 2 of $G$. So $M^{\prime}$ is a nice perfect matching of $G$ by Theorem 2.5. We can also see that $\alpha_{M^{\prime}}=\alpha$. This establishes a one-to-one correspondence between the nice perfect matchings of $G$ and the edge-involutions of $G$.

## 3 Construction of the extremal graphs

In the following, we will show that every extremal graph can be constructed from a complete graph $K_{2}$ by implementing two expansion operations.

Definition 3.1. Let $G_{i}$ be a simple graph with a nice perfect matching $M_{i}, i=1,2$ (note that $\left.V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset\right)$. We define two expansion operations as follows:
(i) $G:=G_{i}+e+e^{\prime}$, where e, $e^{\prime} \notin E\left(G_{i}\right)$ and there are edges $e_{1}, e_{2} \in M_{i}$ such that the four edges $e, e^{\prime}, e_{1}, e_{2}$ form a 4-cycle.
(ii) For $M_{1}^{\prime} \subseteq M_{1}$ and $M_{2}^{\prime} \subseteq M_{2}$ with $\left|M_{1}^{\prime}\right|=\left|M_{2}^{\prime}\right|$, given a bijection $\phi$ from $V\left(M_{1}^{\prime}\right)$ to $V\left(M_{2}^{\prime}\right)$ with $u v \in M_{1}^{\prime}$ if and only if $\phi(u) \phi(v) \in M_{2}^{\prime}$. $G_{1}$ joins $G_{2}$ over matchings $M_{1}^{\prime}$ and $M_{2}^{\prime}$ about bijection $\phi$, denoted by $G_{1} \circledast G_{2}$, is a graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E^{\prime}$, where $E^{\prime}:=\left\{u \phi(u): u \in V\left(M_{1}^{\prime}\right)\right\}$.


Fig. 4. $H=H_{1} \circledast H_{2}$ over matchings $M_{1}^{\prime}$ and $M_{2}^{\prime}$ about bijection $\phi^{\prime}$.

For example, in Fig. 4 graph $H$ is $H_{1} \circledast H_{2}$ over matchings $M_{1}^{\prime}$ of $H_{1}$ and $M_{2}^{\prime}$ of $H_{2}$ about bijection $\phi^{\prime}$, where $M_{1}^{\prime}=\left\{e_{1}, e_{2}, e_{3}\right\}, M_{2}^{\prime}=\left\{f_{1}, f_{2}, f_{3}\right\}, \phi^{\prime}\left(a_{i}\right)=v_{i}, \phi^{\prime}\left(b_{i}\right)=u_{i}, i=1,2,3 . H$ has a nice perfect matching which is marked by thick edges in Fig. 4. Recall that $n K_{2}$ is the disjoint union of $n$ copies of $K_{2}$.

Theorem 3.2. A simple graph $G$ is an extremal graph if and only if it can be constructed from $K_{2}$ by implementing operations (i) or (ii) in Definition 3.1 (regardless of the orders).

Proof: Let $\mathcal{P}^{\prime}$ be the set of all the graphs that can be constructed from $K_{2}$ by implementing operations $(i)$ or (ii). For any graph $G \in \mathcal{P}^{\prime}, G$ is a simple graph with a nice perfect matching by the definition of the two operations.

Conversely, we suppose that $G$ is an extremal graph, that is, $G$ has a nice perfect matching $M=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. If $n=1$, or 2 , then $G$ must be isomorphic to $K_{2}, 2 K_{2}, C_{4}$ or $K_{4}$. So $G \in \mathcal{P}^{\prime}$. Next, we suppose that $n \geq 3$ and it holds for $n-1$. Let $G^{\prime}:=G\left[\bigcup_{i=1}^{n-1} V\left(e_{i}\right)\right]$. Then $\left\{e_{1}, \ldots, e_{n-1}\right\}$ is a nice perfect matching of $G^{\prime}$ by Proposition 2.6. So $G^{\prime} \in \mathcal{P}^{\prime}$ by the induction. If $e_{n}$ is an isolated edge in $G$, then $G=G^{\prime} \cup\left\{e_{n}\right\} \in \mathcal{P}^{\prime}$. Otherwise, $e_{n}=u_{n} v_{n}$ has adjacent edges $u_{n} v_{i}$ and $v_{n} u_{i}$, or $u_{n} u_{i}$ and $v_{n} v_{i}$ for some $i \in\{1, \ldots, n-1\}$, where $u_{i} v_{i}=e_{i} \in M$. Let $G^{\prime \prime}=G^{\prime} \circledast K_{2}$ over
matchings $\left\{e_{i}\right\}$ and $\left\{e_{n}\right\}$ about bijection $\phi:\left\{u_{i}, v_{i}\right\} \rightarrow\left\{u_{n}, v_{n}\right\}$. So $G^{\prime \prime} \in \mathcal{P}^{\prime}$. Then $G$ can be constructed from $G^{\prime \prime}$ by implementing several times operations $(i)$. So $G \in \mathcal{P}^{\prime}$.


Fig. 5. The nice perfect matchings $E_{1}$ of $Q_{3}$ and $Q_{4}$ are depicted by thick edges; the dashed edges are the complementary edges.

As a variant of the $n$-dimensional hypercube $Q_{n}$, the $n$-dimensional folded hypercube $F Q_{n}$, proposed first by El-Amawy and Latifi (1991), is a graph with $V\left(F Q_{n}\right)=V\left(Q_{n}\right)$ and $E\left(F Q_{n}\right)=E\left(Q_{n}\right) \cup \bar{E}$, where $\bar{E}:=\{x \bar{x}: x=$ $\left.x_{1} x_{2} \cdots x_{n}, \bar{x}=\bar{x}_{1} \bar{x}_{2} \cdots \bar{x}_{n}\right\}, \bar{x}_{i}:=1-x_{i}$. Each edge in $\bar{E}$ is called a complementary edge. The graphs shown in Fig. 5 are $F Q_{3}$ and $F Q_{4}$, respectively.

Corollary 3.3. $F Q_{n}$ is an extremal graph and $A f\left(F Q_{n}\right)=n 2^{n-2}$.

Proof: By Lemma 2.4. $E_{1}$ is a nice perfect matching of $Q_{n} . F Q_{n}$ is constructed from $Q_{n}$ by applying the operation (i) over the nice perfect matching $E_{1}$ of $Q_{n}$ (see Fig. 5 for $n=3,4$ ). So $E_{1}$ is also a nice perfect matching of the folded hypercube $F Q_{n}$.

For any positive integer $n$, a connected graph $G$ with at least $2 n+2$ vertices is said to be $n$-extendable if every matching of size $n$ is contained in a perfect matching of $G$.

Proposition 3.4. Any connected extremal graph $G$ other than $K_{2}$ is 1-extendable.

Proof: Since $G$ is an extremal graph, it has a nice perfect matching $M$. For any edge $u v$ of $E(G) \backslash M$, there are edges $u x$ and $v y$ of $M$. By Theorem 2.5, $x y \in E(G)$. So $u v$ belongs to an $M$-alternating 4-cycle $C:=u x y v u$. Then $M \triangle E(C):=(M \cup E(C)) \backslash(M \cap E(C))$ is a perfect matching of $G$ that contains edge $u v$. So $G$ is 1-extendable.

By Proposition 3.4, any connected extremal graph except for $K_{2}$ is 2-connected.

## 4 Cartesian decomposition

The Cartesian product $G \square H$ of two graphs $G$ and $H$ is a graph with vertex set $V(G) \times V(H)=\{(x, u): x \in$ $V(G), u \in V(H)\}$ and two vertices $(x, u)$ and $(y, v)$ are adjacent if and only if $x y \in E(G)$ and $u=v$ or $x=y$ and $u v \in E(H)$. For a vertex $\left(x_{i}, v_{j}\right)$ of $G \square H$, the subgraphs of $G \square H$ induced by the vertex set $\left\{\left(x, v_{j}\right): x \in V(G)\right\}$ and the vertex set $\left\{\left(x_{i}, v\right): v \in V(H)\right\}$ are called a $G$-layer and an $H$-layer of $G \square H$, and denoted by $G^{v_{j}}$ and $H^{x_{i}}$, respectively.

For any graph $H$, let $E^{\prime}$ be the set of edges of all $K_{2}$-layers of $H \square K_{2}$. Clearly, $E^{\prime}$ is a perfect matching of $H \square K_{2}$. Define a bijection $\alpha$ on $V\left(H \square K_{2}\right)$ as follows: for every edge $u v \in E^{\prime}, \alpha(u):=v$ and $\alpha(v):=u$. Then $\alpha$ is an edgeinvolution of $H \square K_{2}$. So $H \square K_{2}$ is an extremal graph by Theorem 2.9. This fact inspires us to consider the Cartesian product decomposition of an extremal graph. Let $\Phi^{*}(G)$ be the number of all the nice perfect matchings of a graph $G$. We have Theorem4.1 Recall that for an edge $e=u v$ of $G$ and an isomorphism $\varphi$ from $G$ to $H, \varphi(e):=\varphi(u) \varphi(v)$.

Theorem 4.1. Let $G_{1}$ and $G_{2}$ be two simple connected graphs. Then

$$
\Phi^{*}\left(G_{1} \square G_{2}\right)=\Phi^{*}\left(G_{1}\right)+\Phi^{*}\left(G_{2}\right)
$$

Proof: Let $V\left(G_{1}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$. Since $\Phi^{*}\left(K_{1}\right)=0$, we suppose $n_{1} \geq 2$ and $n_{2} \geq 2$.

We define an isomorphism $\rho_{v_{i}}$ from $G_{1}$ to $G_{1}^{v_{i}}$ and an isomorphism $\sigma_{x_{j}}$ from $G_{2}$ to $G_{2}^{x_{j}}: \rho_{v_{i}}(x):=\left(x, v_{i}\right)$ for any vertex $x$ of $G_{1}$ and $\sigma_{x_{j}}(v):=\left(x_{j}, v\right)$ for any vertex $v$ of $G_{2}$. For any nice perfect matching $M_{i}$ of $G_{i}, i=1,2$, let

$$
\begin{equation*}
\rho\left(M_{1}\right):=\bigcup_{v_{i} \in V\left(G_{2}\right)} \rho_{v_{i}}\left(M_{1}\right), \quad \sigma\left(M_{2}\right):=\bigcup_{x_{j} \in V\left(G_{1}\right)} \sigma_{x_{j}}\left(M_{2}\right) \tag{4}
\end{equation*}
$$

By Theorem 2.5, $\rho_{v_{i}}\left(M_{1}\right)$ is a nice perfect matching of $G_{1}^{v_{i}}$ and $\rho\left(M_{1}\right)$ is a nice perfect matching of $G_{1} \square G_{2}$. Similarly, $\sigma\left(M_{2}\right)$ is also a nice perfect matching of $G_{1} \square G_{2}$.

Conversely, since $E\left(G_{1}^{v_{1}}\right), \ldots, E\left(G_{1}^{v_{n_{2}}}\right), E\left(G_{2}^{x_{1}}\right), \ldots, E\left(G_{2}^{x_{n_{1}}}\right)$ is a partition of $E\left(G_{1} \square G_{2}\right)$, for any nice perfect matching $M$ of $G_{1} \square G_{2}$ there is some $x_{i}$ or $v_{j}$ such that $M \cap E\left(G_{2}^{x_{i}}\right) \neq \emptyset$ or $M \cap E\left(G_{1}^{v_{j}}\right) \neq \emptyset$. If $M \cap E\left(G_{2}^{x_{i}}\right) \neq \emptyset$ for some $x_{i}$, then we have the following Claim.

Claim: $M \cap E\left(G_{2}^{x_{j}}\right)$ is a nice perfect matching of $G_{2}^{x_{j}}$ for each $x_{j} \in V\left(G_{1}\right)$, and $\sigma_{x_{j}}^{-1}\left(M \cap E\left(G_{2}^{x_{j}}\right)\right)=\sigma_{x_{i}}^{-1}(M \cap$ $E\left(G_{2}^{x_{i}}\right)$ ). So $M \cap E\left(G_{1}^{v}\right)=\emptyset$ for each $v \in V\left(G_{2}\right)$.


Fig. 6. Illustration for the proof of the Claim in Theorem 4.1
Take an edge $f=\left(x_{i}, v_{1}\right)\left(x_{i}, v_{2}\right) \in M \cap E\left(G_{2}^{x_{i}}\right)$. Then $v_{1} v_{2} \in E\left(G_{2}\right)$. If $n_{2}=2$, then $M \cap E\left(G_{2}^{x_{i}}\right)=\{f\}$ is a nice perfect matching of $G_{2}^{x_{i}}$. For $n_{2} \geq 3$, since $G_{2}$ is connected, without loss of generality we may assume that $d_{G_{2}}\left(v_{2}\right) \geq 2$. Let $v_{3}$ be a neighbor of $v_{2}$ that is different from $v_{1}$. So $\left(x_{i}, v_{2}\right)\left(x_{i}, v_{3}\right) \in E\left(G_{2}^{x_{i}}\right)$. Let $g$ be an edge of $M$ with an end-vertex $\left(x_{i}, v_{3}\right)$. Since $M$ is a nice perfect matching of $G$, the other end-vertex of $g$ must be adjacent to $\left(x_{i}, v_{1}\right)$ by Theorem 2.5. So the other end-vertex of $g$ belongs to $V\left(G_{2}^{x_{i}}\right)$ (see Fig. 6, that is, $g \in E\left(G_{2}^{x_{i}}\right)$. Since $G_{2}^{x_{i}} \cong G_{2}$ is a connected graph, we can obtain that $M \cap E\left(G_{2}^{x_{i}}\right)$ is a perfect matching of $G_{2}^{x_{i}}$ in the above way. So $M \cap E\left(G_{2}^{x_{i}}\right)$ is a nice perfect matching of $G_{2}^{x_{i}}$ by Proposition 2.6

Since $G_{1}$ is connected and $n_{1} \geq 2$, there is some vertex $x_{i^{\prime}}$ of $G_{1}$ such that $x_{i}$ and $x_{i^{\prime}}$ are adjacent in $G_{1}$. So vertex $\left(x_{i^{\prime}}, v_{1}\right) \notin G_{2}^{x_{i}}$ is adjacent to $\left(x_{i}, v_{1}\right)$ in $G_{1} \square G_{2}$ (see Fig. 6. Let $f^{\prime}$ be an edge of $M$ that is incident with $\left(x_{i^{\prime}}, v_{1}\right)$. Since $M$ is a nice perfect matching of $G_{1} \square G_{2}$, the other end-vertex of $f^{\prime}$ must be adjacent to $\left(x_{i}, v_{2}\right)$ by Theorem 2.5 . So $f^{\prime}=\left(x_{i^{\prime}}, v_{1}\right)\left(x_{i^{\prime}}, v_{2}\right) \in M \cap E\left(G_{2}^{x_{i^{\prime}}}\right)$. As the above proof, we can similarly show that $M \cap E\left(G_{2}^{x_{i^{\prime}}}\right)$ is a nice perfect matching of $G_{2}^{x_{i^{\prime}}}$. Since $G_{1}$ is connected, in an inductive way we can show that $M \cap E\left(G_{2}^{x_{j}}\right)$ is a nice perfect matching of $G_{2}^{x_{j}}$ for any $x_{j} \in V\left(G_{1}\right)$.

Notice that $\sigma_{x_{i}}^{-1}(f)=v_{1} v_{2}=\sigma_{x_{i}^{\prime}}^{-1}\left(f^{\prime}\right)$. Let $g^{\prime}$ be the edge of $M$ that is incident with $\left(x_{i^{\prime}}, v_{3}\right)$. Since $\left(x_{i^{\prime}}, v_{3}\right)$ is adjacent to $\left(x_{i}, v_{3}\right)$, the other end vertex of $g^{\prime}$ must be adjacent to the other end vertex $\left(x_{i}, v_{4}\right)$ of $g$ by Theorem 2.5 So
$g^{\prime}=\left(x_{i^{\prime}}, v_{3}\right)\left(x_{i^{\prime}}, v_{4}\right)$ since $g^{\prime} \in E\left(G_{2}^{x_{i^{\prime}}}\right)$. This implies that $\sigma_{x_{i^{\prime}}}^{-1}\left(g^{\prime}\right)=v_{3} v_{4}=\sigma_{x_{i}}^{-1}(g)$. In an inductive way, we can show that $\sigma_{x_{i^{\prime}}}^{-1}\left(M \cap E\left(G_{2}^{x_{i^{\prime}}}\right)\right)=\sigma_{x_{i}}^{-1}\left(M \cap E\left(G_{2}^{x_{i}}\right)\right)$. Similarly, we also have $\sigma_{x_{j}}^{-1}\left(M \cap E\left(G_{2}^{x_{j}}\right)\right)=\sigma_{x_{i}}^{-1}\left(M \cap E\left(G_{2}^{x_{i}}\right)\right)$ for any $x_{j} \in V\left(G_{1}\right)$.

By this Claim, $M_{2}:=\sigma_{x_{i}}^{-1}\left(M \cap E\left(G_{2}^{x_{i}}\right)\right)$ is a nice perfect matching of $G_{2}$ with $M=\sigma\left(M_{2}\right)$. If $M \cap E\left(G_{1}^{v_{j}}\right) \neq \emptyset$, then we can similarly show that $G_{1}$ has a nice perfect matching $M_{1}$ with $M=\rho\left(M_{1}\right)$. So $\Phi^{*}\left(G_{1} \square G_{2}\right)=\Phi^{*}\left(G_{1}\right)+$ $\Phi^{*}\left(G_{2}\right)$.

In fact, we can get the following corollary.
Corollary 4.2. Let $G$ be a simple connected graph. Then we have $\Phi^{*}(G)=\sum_{i=1}^{k} \Phi^{*}\left(G_{i}\right)$ for any decomposition $G_{1} \square \cdots \square G_{k}$ of $G$.

Now, it is easy to get the following proposition.
Proposition 4.3. A simple connected graph $G$ is an extremal graph if and only if one of its Cartesian product factors is an extremal graph.

The $n$-dimensional enhanced hypercube $Q_{n, k}$, see Tzeng and Wei $(1991)$, is the graph with vertex set $V\left(Q_{n, k}\right)=$ $V\left(Q_{n}\right)$ and edge set $E\left(Q_{n, k}\right)=E\left(Q_{n}\right) \cup\left\{\left(x_{1} x_{2} \cdots x_{n-1} x_{n}, \bar{x}_{1} \bar{x}_{2} \cdots \bar{x}_{n-k-1} \bar{x}_{n-k} x_{n-k+1} x_{n-k+2} \cdots x_{n}: x_{1} x_{2} \cdots x_{n} \in\right.\right.$ $\left.V\left(Q_{n, k}\right)\right\}$, where $0 \leq k \leq n-1$. Clearly, $Q_{n} \cong Q_{n, n-1}$ and $F Q_{n} \cong Q_{n, 0}$, i.e., the hypercube and the folded hypercube are regarded as two special cases of the enhanced hypercube. By Yang et al. (2015a), we have $Q_{n, k} \cong$ $F Q_{n-k} \square Q_{k}$, for $0 \leq k \leq n-1$. Hence we obtain the following result by the Proposition 4.3
Corollary 4.4. $Q_{n, k}$ is an extremal graph and $A f\left(Q_{n, k}\right)=n 2^{n-2}$.
According to the above discussion, for any graph $G$, we know that $K_{m, m} \square G, K_{2 n} \square G, Q_{n} \square G, F Q_{n} \square G$ and $Q_{n, k} \square G$ are extremal graphs. Moreover, we can produce an infinite number of extremal graphs from an extremal graph by the Cartesian product operation.

## 5 Further applications

From examples we already know that $K_{m, m}, K_{2 n}, Q_{n}, F Q_{n}$ and $Q_{n, k}$ are extremal graphs. Two perfect matchings $M_{1}$ and $M_{2}$ of a graph $G$ are called equivalent if there is an automorphism $\varphi$ of $G$ such that $\varphi\left(M_{1}\right)=M_{2}$. So we know that all the perfect matchings of $K_{m, m}$ (or $K_{2 n}$ ) are nice and equivalent. Further in this section we will count nice perfect matchings of the three cube-like graphs.

Theorem 5.1. $Q_{n}$ has exactly $n$ nice perfect matchings $E_{1}, E_{2}, \ldots, E_{n}$, all of which are equivalent.
Proof: By Lemma 2.4, $E_{1}, E_{2}, \ldots, E_{n}$ are $n$ distinct nice perfect matchings of $Q_{n}$. Since $Q_{n}$ is the Cartesian product of $n K_{2}$ 's, $Q_{n}$ has exactly $n$ nice perfect matchings by Corollary 4.2. So the first part is done. Now, it remains to show that $E_{i}$ and $E_{j}$ are equivalent for any $1 \leq i<j \leq n$. Let the automorphism $f_{i j}$ of $Q_{n}$ be defined as $f_{i j}\left(x_{1} \cdots x_{i-1} x_{i} x_{i+1} \ldots x_{j-1} x_{j} x_{j+1} \cdots x_{n}\right)=x_{1} \cdots x_{i-1} x_{j} x_{i+1} \ldots x_{j-1} x_{i} x_{j+1} \cdots x_{n}$ for each vertex $x_{1} x_{2} \cdots x_{n}$ of $Q_{n}$. Then $f_{i j}\left(E_{i}\right)=E_{j}$.

The theorem can be obtained by applying the reversing-involutions of bipartite graphs, see Abay-Asmerom et al. (2010), but the computation is tedious.

Since $F Q_{2} \cong K_{4}$ and $F Q_{3} \cong K_{4,4}$, we have $\Phi^{*}\left(F Q_{2}\right)=3$ and $\Phi^{*}\left(F Q_{3}\right)=24$. For $n \geq 4$, we have a general result as follows.

Theorem 5.2. $F Q_{n}$ has exactly $n+1$ nice perfect matchings for $n \geq 4$.
Proof: By Lemma 2.4, $E_{i}$ is a perfect matching of $Q_{n}$. Then $E_{i}$ is also a perfect matching of $F Q_{n}$. We can easily check that $E_{i}$ is a nice perfect matching of $F Q_{n}$ by Theorem 2.5 .

Let $E_{n+1}$ be the set of all the complementary edges of $F Q_{n}$. Then $E_{n+1}$ is a perfect matching of $F Q_{n}$. Let $u \bar{u}$ and $v \bar{v}$ be two distinct edges in $E_{n+1}$. Since any two distinct complementary edges are independent, the edge linked $u$ to $v$ or $\bar{v}$ (if exist) does not belong to $E_{n+1}$. We can easily show that $u v \in E_{j}$ if and only if $\bar{u} \bar{v} \in E_{j}$ for some $j=1,2, \ldots, n$, and $u \bar{v} \in E_{s}$ if and only if $\bar{u} v \in E_{s}$ for some $s=1,2, \ldots, n$. So $E_{n+1}$ is also a nice perfect matching of $F Q_{n}$.

Now, we have found $n+1$ nice perfect matchings of $F Q_{n}$. Next, we will show that $F Q_{n}$ has no other nice perfect matchings. By the contrary, we suppose that $M$ is a nice perfect matching of $F Q_{n}$ that is different from any $E_{i}, i=1,2, \ldots, n+1$. Since $E_{1}, \ldots, E_{n+1}$ is a partition of the edge set $E\left(F Q_{n}\right)$, there is $E_{k}$ with $k \neq n+1$ such that $M \cap E_{k} \neq \emptyset$ and $E_{k} \neq M$. Clearly, $F Q_{n}-\left(E_{n+1} \cup E_{k}\right)$ has exactly two components both of which are isomorphic to $Q_{n-1}$. We notice that the $k$-th coordinate of each vertex in one component is 0 , and 1 in the other component. We denote the two components by $Q_{n}^{0}$ and $Q_{n}^{1}$, respectively. In fact, $V\left(Q_{n}^{i}\right)=\left\{x_{1} \cdots x_{k-1} i x_{k+1} \cdots x_{n}\right.$ : $x_{j}=0$ or $\left.1, j=1, \ldots, k-1, k+1, \ldots, n\right\}, i=0,1$. Since $M \cap E_{k} \neq \emptyset$, there is some edge $v v^{\prime} \in M \cap E_{k}$ with $v \in V\left(Q_{n}^{0}\right)$ and $v^{\prime} \in V\left(Q_{n}^{1}\right)$. For any vertex $w$ of $Q_{n}^{0}$ with $w$ and $v$ being adjacent, we consider the edge $g$ of $M$ that is incident with $w$. By Theorem 2.5, the other end-vertex of $g$ is adjacent to $v^{\prime}$. If $g=w \bar{w}$ is a complementary edge of $F Q_{n}$, then there are exactly two same bits in the strings of $\bar{w}$ and $v^{\prime}$. So the edge $\bar{w} v^{\prime} \in E\left(F Q_{n}\right)$ is not a complementary edge of $F Q_{n}$. Since $\bar{w}$ and $v^{\prime}$ are adjacent, there is exactly one different bit in the strings of $\bar{w}$ and $v^{\prime}$. So $n=3$, a contradiction. If $g=w z \in E\left(Q_{n}^{0}\right)$, then there are exactly three different bits in the strings of $z$ and $v^{\prime}$. Since $z$ and $v^{\prime}$ are adjacent in $F Q_{n}$, the edge $z v^{\prime}$ is a complementary edge of $F Q_{n}$. So $n=3$, a contradiction. Hence $g \in E_{k}$. Since $Q_{n}^{0}$ is connected, using the above method repeatedly, we can show that $M=E_{k}$, a contradiction. So $F Q_{n}$ has exactly $n+1$ nice perfect matchings.

Proposition 5.3. All the nice perfect matchings of $F Q_{n}(n \geq 2)$ are equivalent.
Proof: We notice that $F Q_{2} \cong K_{4}$ and $F Q_{3} \cong K_{4,4}$. So all the nice perfect matchings of $F Q_{n}$ are equivalent for $2 \leq n \leq 3$. Suppose that $n \geq 4$. From the proof of Theorem 5.2 we know that $E_{1}, E_{2}, \ldots, E_{n+1}$ are all the nice perfect matchings of $F Q_{n} . f_{i j}$ defined in the proof of Theorem 5.1 is also an automorphism of $F Q_{n}$ such that $\varphi\left(E_{i}\right)=E_{j}$ for $1 \leq i<j \leq n$. We will show that $E_{1}$ and $E_{n+1}$ are equivalent. Clearly, $F Q_{n}-\left(E_{1} \cup E_{n+1}\right)$ has exactly two components each isomorphic to $Q_{n-1}$, denoted by $Q_{n}^{0}$ and $Q_{n}^{1}$. Set $V\left(Q_{n}^{i}\right)=\left\{i x_{2} x_{3} \cdots x_{n}: x_{j}=\right.$ 0 or $1, j=2, \ldots, n\}, i=0,1$. We define a bijection $f$ on $V\left(F Q_{n}\right)$ as follows:

$$
f\left(x_{1} x_{2} \cdots x_{n}\right)= \begin{cases}\bar{x}_{1} x_{2} \cdots x_{n}, & \text { if } x_{1} x_{2} \cdots x_{n} \in V\left(Q_{n}^{0}\right) \\ \bar{x}_{1} \bar{x}_{2} \cdots \bar{x}_{n}, & \text { if } x_{1} x_{2} \cdots x_{n} \in V\left(Q_{n}^{1}\right)\end{cases}
$$

It is easy to check that $f$ is an automorphism of $F Q_{n}$. In addition, $f\left(E_{1}\right)=E_{n+1}$. Hence all the nice perfect matchings of $F Q_{n}$ are equivalent.

By Corollary 4.2 and Theorems 5.1 and 5.2 , we can obtain the following conclusion.
Corollary 5.4. $\Phi^{*}\left(Q_{n, n-1}\right)=n, \Phi^{*}\left(Q_{n, n-2}\right)=n+1, \Phi^{*}\left(Q_{n, n-3}\right)=n+21$ and $\Phi^{*}\left(Q_{n, k}\right)=n+1$ for any $0 \leq k \leq n-4$.

Proposition 5.5. For $0<k<n-1, Q_{n, k}$ has exactly two nice perfect matchings up to the equivalent.
Proof: Since $Q_{n, k}=F Q_{n-k} \square Q_{k}$, by adapting the notations in Eq. 4) and by the proof of Theorem 4.1 we know that all the nice perfect matchings of $Q_{n, k}$ are divided into two classes $\mathcal{M}^{\prime}$ and $\mathcal{M}^{\prime \prime}$, where $\mathcal{M}^{\prime}=\{\rho(M): M$ is a nice perfect matching of $\left.F Q_{n-k}\right\}$ and $\mathcal{M}^{\prime \prime}=\left\{\sigma(M): M\right.$ is a nice perfect matching of $\left.Q_{k}\right\}$.

For $M_{1}^{\prime}, M_{2}^{\prime} \in \mathcal{M}^{\prime}$, there are two nice perfect matchings $M_{1}$ and $M_{2}$ of $F Q_{n-k}$ such that $M_{i}^{\prime}=\rho\left(M_{i}\right), i=1,2$. By Proposition5.3, there exists an automorphism $\varphi$ of $F Q_{n-k}$ such that $\varphi\left(M_{1}\right)=M_{2}$. Let $\varphi^{\prime}(x, u):=(\varphi(x), u)$ for each vertex $(x, u)$ of $F Q_{n-k} \square Q_{k}$. It is easy to check that $\varphi^{\prime}$ is an automorphism of $Q_{n, k}$ and $\varphi^{\prime}\left(M_{1}^{\prime}\right)=M_{2}^{\prime}$. By the
arbitrariness of $M_{1}^{\prime}$ and $M_{2}^{\prime}$, we know that all the nice perfect matchings in $\mathcal{M}^{\prime}$ are equivalent. Similarly, we can show that all the nice perfect matchings in $\mathcal{M}^{\prime \prime}$ are equivalent.


Fig. 7. The graph $H$.

Let $F_{1}$ and $E_{1}$ be the sets of all the 1-edges of $F Q_{n-k}$ and $Q_{k}$ respectively. Then $F_{1}$ is a nice perfect matching of $F Q_{n-k}$ and $E_{1}$ is a nice perfect matching of $Q_{k}$. So $\rho\left(F_{1}\right) \in \mathcal{M}^{\prime}$ and $\sigma\left(E_{1}\right) \in \mathcal{M}^{\prime \prime}$. See Fig. 7, we choose a subset $S:=\left\{e_{1}, \ldots, e_{n-k}\right\}$ of $\rho\left(F_{1}\right)$. Then all the vertices incident with $S$ induce a subgraph $H$ as depicted in Fig. 7 For any subset $R \subseteq \sigma\left(E_{1}\right)$ of size $n-k$, let $G$ be the subgraph of $Q_{n, k}$ induced by all the vertices incident with $R$. We note that $Q_{n, k}-\sigma\left(E_{1}\right)$ has exactly two components $A$ and $B$ each of which is isomorphic to $F Q_{n-k} \square Q_{k-1}$, and $\sigma\left(E_{1}\right)=E(A, B)$. So $G-R$ has at least two components. Clearly $H-S$ is connected. So for any automorphism $\psi$ of $Q_{n, k}, \psi(S) \neq R$. By the arbitrariness of $R$ we know that $\rho\left(F_{1}\right)$ and $\sigma\left(E_{1}\right)$ are not equivalent. Then we are done.

From Corollary 4.2 it is helpful to give a Cartesian decomposition of an extremal graph. It is known that $Q_{n} \cong$ $K_{2} \square \cdots \square K_{2}$ and $Q_{n, k} \cong F Q_{n-k} \square Q_{k}$. However we shall see surprisedly that $F Q_{n}$ is undecomposable.

A nontrivial graph $G$ is said to be prime with respect to the Cartesian product if whenever $G \cong H \square R$, one factor is isomorphic to the complete graph $K_{1}$ and the other is isomorphic to $G$. Clearly, for $m \geq 3$ and $n \geq 2, K_{m, m}$ and $K_{2 n}$ are prime extremal graphs. In the sequel, we show that $F Q_{n}$ is a prime extremal graph, too.

Recall that the length of a shortest path between two vertices $x$ and $y$ of $G$ is called the distance between $x$ and $y$, denoted by $d_{G}(x, y)$. Let $G$ be a connected graph. Two edges $e=x y$ and $f=u v$ are in the relation $\Theta_{G}$ if $d_{G}(x, u)+d_{G}(y, v) \neq d_{G}(x, v)+d_{G}(y, u)$. Notice that $\Theta_{G}$ is reflexive and symmetric, but need not to be transitive. We denote its transitive closure by $\Theta_{G}^{*}$. For an even cycle $C_{2 n}, \Theta_{C_{2 n}}$ consists of all pairs of antipodal edges. Hence, $\Theta_{C_{2 n}}^{*}$ has $n$ equivalence classes and $\Theta_{C_{2 n}}=\Theta_{C_{2 n}}^{*}$. For an odd cycle $C$, any edge of $C$ is in relation $\Theta$ with its two antipodal edges. So all edges of $C$ belong to an equivalence class with respect to $\Theta_{C}^{*}$. By the Cartesian product decomposition Algorithm depicted in Imrich and Klavzar (2000), we have the following lemma.

Lemma 5.6. If all the edges of a graph $G$ belong to an equivalence class with respect to $\Theta_{G}^{*}$, then $G$ is a prime graph under the Cartesian product.

The Hamming distance between two vertices $x$ and $y$ in $Q_{n}$ is the number of different bits in the strings of both vertices, denoted by $H_{Q_{n}}(x, y)$.

Theorem 5.7 (Xu and Ma (2006)). For a folded hypercube $F Q_{n}$, we have
(1) $F Q_{n}$ is a bipartite graph if and only if $n$ is odd.
(2) The length of any cycle in $F Q_{n}$ that contains exactly one complementary edge is at least $n+1$. If $n$ is even, then the length of a shortest odd cycle in $F Q_{n}$ is $n+1$.
(3) Let $u$ and $v$ be two vertices in $F Q_{n}$. If $H_{Q_{n}}(u, v) \leq\left\lfloor\frac{n}{2}\right\rfloor$, then any shortest uv-path in $F Q_{n}$ contains no complementary edges. If $H_{Q_{n}}(u, v)>\left\lceil\frac{n}{2}\right\rceil$, then any shortest uv-path in $F Q_{n}$ contains exactly one complementary edge.

Here we list some known properties of $Q_{n}$ that will be used in the sequel. For any two vertices $x$ and $y$ in $Q_{n}$, $d_{Q_{n}}(x, y)=H_{Q_{n}}(x, y)$. For any shortest path $P$ from $x_{1} x_{2} \cdots x_{n}$ to $\bar{x}_{1} \bar{x}_{2} \cdots \bar{x}_{n}$ in $Q_{n},\left|E(P) \cap E_{i}\right|=1$ for each
$i=1,2, \ldots, n$. For any integer $j(1 \leq j \leq n)$, there is a shortest path $P$ from $x_{1} x_{2} \cdots x_{n}$ to $\bar{x}_{1} \bar{x}_{2} \cdots \bar{x}_{n}$ in $Q_{n}$ such that the edge in $E(P) \cap E_{i}$ is the $j$ th edge when traverse $P$ from $x_{1} x_{2} \cdots x_{n}$ to $\bar{x}_{1} \bar{x}_{2} \cdots \bar{x}_{n}$.

For every subgraph $F$ of a graph $G$, the inequality $d_{F}(u, v) \geq d_{G}(u, v)$ obviously holds. If $d_{F}(u, v)=d_{G}(u, v)$ for all $u, v \in V(F)$, we say $F$ is an isometric subgraph of $G$.

Proposition 5.8 Hammack et al. (2011)). Let $C$ be a shortest cycle of $G$. Then $C$ is isometric in $G$.
Theorem 5.9. $F Q_{n}$ is a prime graph under the Cartesian product.

Proof: Clearly, $F Q_{2}$ and $F Q_{3}$ are prime. So we suppose that $n \geq 4$. We recall that $E_{i}$ is the set of all the $i$-edges of $Q_{n}, i=1,2, \ldots, n$. Let $E_{n+1}$ be the set of all the complementary edges of $F Q_{n}$. Then $E_{1}, E_{2}, \ldots, E_{n+1}$ is a partition of $E\left(F Q_{n}\right)$. Since the girth of $F Q_{n}$ is 4 for $n \geq 4$, any two opposite edges of a 4-cycle are in relation $\Theta_{F Q_{n}}$. So $E_{i}$ is contained in an equivalence class with respect to $\Theta_{F Q_{n}}^{*}, i=1,2, \ldots, n+1$. For any vertex $x_{1} x_{2} \cdots x_{n}$, it is linked to $\bar{x}_{1} \bar{x}_{2} \cdots \bar{x}_{n}$ by a complementary edge $e$ in $F Q_{n}$. Let $P$ be any shortest path from $x_{1} x_{2} \cdots x_{n}$ to $\bar{x}_{1} \bar{x}_{2} \cdots \bar{x}_{n}$ in $Q_{n}$. Then the length of $P$ is $n$ and $\left|P \cap E_{i}\right|=1$ for any $i=1,2, \ldots, n$. Set $C:=P \cup\{e\}$. Then $C$ is a cycle of length $n+1$.

If $n$ is even, then the length of any shortest odd cycle in $F Q_{n}$ is $n+1$ by Theorem5.7.(2). So $C$ is a shortest odd cycle in $F Q_{n}$. By Proposition 5.8. $C$ is an isometric odd cycle in $F Q_{n}$. So all edges of $C$ belong to an equivalence class with respect to $\Theta_{F Q_{n}}^{*}$. Since $E(C) \cap E_{i} \neq \emptyset$ for any $i=1,2, \ldots, n+1$, all edges of $E\left(F Q_{n}\right)=\bigcup_{i=1}^{n+1} E_{i}$ belong to an equivalence class with respect to $\Theta_{F Q_{n}}^{*}$, that is, $F Q_{n}$ is a prime graph under the Cartesian product by Lemma 5.6

For $n$ being odd, we first show that $C$ is an isometric cycle in $F Q_{n}$. It is sufficient to show that $d_{C}(u, v)=$ $d_{F Q_{n}}(u, v)$ for any two distinct vertices $u$ and $v$ of $C$. By Theorem 5.7 (3), there are two cases for the shortest $u v$-path in $F Q_{n}$. If $H_{Q_{n}}(u, v) \leq\left\lfloor\frac{n}{2}\right\rfloor$, then any shortest $u v$-path in $F Q_{n}$ contains no complementary edges. So $d_{F Q_{n}}(u, v)=d_{Q_{n}}(u, v)=H_{Q_{n}}(u, v)=d_{C}(u, v)$. If $H_{Q_{n}}(u, v)>\left\lceil\frac{n}{2}\right\rceil$, then any shortest $u v$-path in $F Q_{n}$ contains exactly one complementary edge. Let $P_{1}$ be the $u v$-path on $C$ that contains the unique complementary edge $e$. Since $H_{Q_{n}}(u, v)>\left\lceil\frac{n}{2}\right\rceil$ and the length of $C$ is $n+1, d_{C}(u, v)=\left|P_{1}\right|=n+1-H_{Q_{n}}(u, v)<\left\lceil\frac{n}{2}\right\rceil$. Clearly $d_{F Q_{n}}(u, v) \leq$ $d_{C}(u, v)$. We suppose that $d_{F Q_{n}}(u, v)<d_{C}(u, v)$, that is, $P_{1}$ is not a shortest $u v$-path in $F Q_{n}$. Let $P_{2}$ be a shortest $u v$ path in $F Q_{n}$. Then $P_{2}$ contains exactly one complementary edge by Theorem5.7(3). Set $P^{\prime}:=C-\left(V\left(P_{1}\right) \backslash\{u, v\}\right)$. Then $P^{\prime} \cup P_{2}$ is a walk in $F Q_{n}$ that has exactly one complementary edge. So there is a cycle $C^{\prime} \subseteq P^{\prime} \cup P_{2}$ that contains exactly one complementary edge. We can deduce a contradiction by Theorem5.7(2) as follows:

$$
n+1 \leq\left|C^{\prime}\right| \leq\left|P^{\prime}\right|+\left|P_{2}\right|<\left|P^{\prime}\right|+\left|P_{1}\right|=|C|=n+1
$$

So $d_{F Q_{n}}(u, v)=d_{C}(u, v)$.
For any $i \in\{1,2, \ldots, n\}$, let $P^{i}$ be a shortest path from $x_{1} x_{2} \cdots x_{n}$ to $\bar{x}_{1} \bar{x}_{2} \cdots \bar{x}_{n}$ in $Q_{n}$ such that the unique edge in $P^{i} \cap E_{i}$ is the antipodal edge of $e$ on $C^{i}:=P^{i} \cup\{e\}$. Since $C^{i}$ is an isometric even cycle by the above proof, the unique complementary edge $e$ on $C^{i}$ and its antipodal edge $P^{i} \cap E_{i}$ are in relation $\Theta_{F Q_{n}}$. So $E_{i}$ and $E_{n+1}$ are contained in an equivalence class with respect to $\Theta_{F Q_{n}}^{*}, i=1,2, \ldots, n$. Hence $F Q_{n}$ is a prime graph under the Cartesian product by Lemma 5.6

Now we know that for $m \geq 3$ and $n \geq 2, K_{m, m}, K_{2 n}$ and $F Q_{n}$ are prime extremal graphs. From Proposition 4.3. it is interesting to characterize all the prime extremal graphs.

## Acknowledgements

We thank two anonymous reviewers for giving helpful suggestions and comments to improve the manuscript.

## References

G. Abay-Asmerom, R. H. Hammack, C. E. Larson, and D. T. Taylor. Direct product factorization of bipartite graphs with bipartition-reversing involutions. SIAM J. Discrete Math., 23:2042-2052, 2010.
P. Adams, M. Mahdian, and E. S. Mahmoodian. On the forced matching numbers of bipartite graphs. Discrete Math., 281:1-12, 2004.
P. Afshani, H. Hatami, and E. S. Mahmoodian. On the spectrum of the forced matching number of graphs. Australas. J. Combin., 30:147-160, 2004.
Z. Che and Z. Cheng. Forcing on perfect matchings-a survey. MATCH Commun. Math. Comput. Chem., 66:93-136, 2011.
H. Deng. The anti-forcing number of hexagonal chains. MATCH Commun. Math. Comput. Chem, 58:675-682, 2007.
H. Deng. The anti-forcing number of double hexagonal chains. MATCH Commun. Math. Comput. Chem, 60:183-192, 2008.
K. Deng and H. Zhang. Anti-forcing spectra of perfect matchings of graphs. J. Comb. Optim., 33:660-680, 2017a.
K. Deng and H. Zhang. Anti-forcing spectrum of any cata-condensed hexagonal system is continuous. Front. Math. China, 12:325-337, 2017b.
K. Deng and H. Zhang. Extremal anti-forcing numbers of perfect matchings of graphs. Discrete Appl. Math., 224: 69-79, 2017c.
A. El-Amawy and S. Latifi. Properties and performance of folded hypercubes. IEEE Trans. Parallel Distrib. Syst., 2: 31-42, 1991.
K. Fries. Über byclische verbindungen und ihren vergleich mit dem naphtalin. Ann. Chem., 454:121-324, 1927.
R. Hammack, W. Imrich, and S. Klavžar. Handbook of Product Graphs. CRC press, Boca Raton, FL, 2011.
F. Harary, D. J. Klein, and T. P. Živkovič. Graphical properties of polyhexes: perfect matching vector and forcing. J. Math. Chem., 6:295-306, 1991.
W. Imrich and S. Klavzar. Product Graphs: Structure and Recognition. Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, Hoboken, NJ, 2000.
X. Jiang and H. Zhang. On forcing matching number of boron-nitrogen fullerene graphs. Discrete Appl. Math., 159: 1581-1593, 2011.
X. Jiang and H. Zhang. The maximum forcing number of cylindrical grid, toroidal 4-8 lattice and klein bottle 4-8 lattice. J. Math. Chem., 54:18-32, 2016.
D. Klein and M. Randić. Innate degree of freedom of a graph. J. Comput. Chem., 8:516-521, 1987.
F. Lam and L. Pachter. Forcing numbers of stop signs. Theor. Comput. Sci., 303:409-416, 2003.
H. Lei, Y.-N. Yeh, and H. Zhang. Anti-forcing numbers of perfect matchings of graphs. Discrete Appl. Math., 202: 95-105, 2016.
X. Li. Hexagonal systems with forcing single edges. Discrete Appl. Math., 72:295-301, 1997.
L. Pachter and P. Kim. Forcing matchings on square grids. Discrete Math., 190:287-294, 1998.
M. E. Riddle. The minimum forcing number for the torus and hypercube. Discrete Math., 245:283-292, 2002.
L. Shi and H. Zhang. Forcing and anti-forcing numbers of (3, 6)-fullerenes. MATCH Commun. Math. Comput. Chem., 76:597-614, 2016.
L. Shi, H. Wang, and H. Zhang. On the maximum forcing and anti-forcing numbers of (4, 6)-fullerenes. Discrete Appl. Math., 2017. doi: http://dx.doi.org/10.1016/j.dam.2017.07.009.
N.-F. Tzeng and S. Wei. Enhanced hypercubes. IEEE Trans. Comput., 40:284-294, 1991.
D. Vukičević and N. Trinajstić. On the anti-kekulé number and anti-forcing number of cata-condensed benzenoids. $J$. Math. Chem., 43:719-726, 2008.
D. Vukiěević and N. Trinajstić. On the anti-forcing number of benzenoids. J. Math. Chem., 42:575-583, 2007.
J.-M. Xu and M. Ma. Cycles in folded hypercubes. Appl. Math. Lett., 19:140-145, 2006.
L. Xu, H. Bian, and F. Zhang. Maximum forcing number of hexagonal systems. MATCH Commun. Math. Comput. Chem., 70:493-500, 2013.
J.-S. Yang, J.-M. Chang, K.-J. Pai, and H.-C. Chan. Parallel construction of independent spanning trees on enhanced hypercubes. IEEE Trans. Parallel Distrib. Syst., 26:3090-3098, 2015a.
Q. Yang, H. Zhang, and Y. Lin. On the anti-forcing number of fullerene graphs. MATCH Commun. Math. Comput. Chem., 74:681-700, 2015 b.
H. Zhang and K. Deng. Spectrum of matching forcing numbers of a hexagonal system with a forcing edge. MATCH Commun. Math. Comput. Chem, 73:457-471, 2015.
H. Zhang and X. Zhou. A maximum resonant set of polyomino graphs. Discuss. Math. Graph Theory, 36:323-337, 2016.
H. Zhang, D. Ye, and W. C. Shiu. Forcing matching numbers of fullerene graphs. Discrete Appl. Math., 158:573-582, 2010.
H. Zhang, S. Zhao, and R. Lin. The forcing polynomial of catacondensed hexagonal systems. MATCH Commun. Math. Comput. Chem, 73:473-490, 2015.
Q. Zhang, H. Bian, and E. Vumar. On the anti-kekulé and anti-forcing number of cata-condensed phenylenes. MATCH Commun. Math. Comput. Chem, 65:799-806, 2011.
S. Zhao and H. Zhang. Forcing polynomials of benzenoid parallelogram and its related benzenoids. Appl. Math. Comput., 284:209-218, 2016.


[^0]:    *This work is fully supported by National Natural Science Foundation of China (grant no. 11371180) and the Fundamental Research Funds for the Central Universities (grant nos. lzujbky-2017-ct01, lzujbky-2016-ct12).
    ${ }^{\dagger}$ Corresponding author.

