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We define a morphism based upon a Latin square that generalizes the Thue-Morse morphism. We prove that fixed

points of this morphism are overlap-free sequences, generalizing results of Allouche - Shallit and Frid.
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1 Introduction

In his 1912 paper, Axel Thue introduced the first binary sequence that does not contain an overlap [7]. It

is now called the Thue-Morse sequence:

01101001100101101001011001101001 . . . .

An overlap is a string of letters in the form cxcxc where c is a single letter and x is finite string that is

potentially empty. Overlaps begin with a square, namely ww where w = cx as given above. It is easy to

observe, as Thue did, that any binary string of four or more letters must contain a square.

There are several ways to define the Thue-Morse sequence [2]. We will derive it as a fixed point of

a morphism. Let Σ be an alphabet and let Σ∗ ∪ Σω be the set of all finite or infinite strings over Σ. A

morphism is a mapping

h : Σ∗ ∪ Σω → Σ∗ ∪ Σω

that obeys the identity h(xy) = h(x)h(y), for x a finite string and y ∈ Σ∗ ∪ Σω [1, p. 8].

By [1, p. 16], define the Thue-Morse morphism on Σ = {0, 1} as

µ(t) =

{

01, for t = 0
10, for t = 1

. (1)

The sequence found by applying 0 to the the nth iterate of µ converges to the Thue-Morse sequence,
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denoted µω(0), which of course is infinite. In particular,

µ(0) = 01
µ2(0) = µ(µ(0)) = µ(01) = µ(0)µ(1) = 0110
µ3(0) = µ(µ2(0)) = µ(0110) = 01101001

...

µω(0) = 01101001100101101001011001101001 . . . .

Notice that µω(µ(0)) = µω(0) and µ(µω(0)) = µω(0). This second observation says that the Thue-Morse

sequence is a fixed point of µ [1, p. 10].

We can identify the binary alphabet of the Thue-Morse sequence with Z/2Z the integers modulo 2. It

is natural to then generalize it to Z/nZ, by considering the alphabet Σ = {0, 1, . . . , n−1}, and for i ∈ Σ,

defining the morphism

φn(i) = i + 0 i + 1 . . . i + (n− 1),

where i is the residue modulo n. Notice that for Σ = {0, 1}, φ2(i) = µ(i). In 2000, Allouche and Shallit

proved that φω
n is overlap-free [3].

In this paper, we generalize φn, which is based on the Cayley table of Z/nZ, to Latin squares of

arbitrary finite size n. We define our morphism based the Latin square, and prove that the fixed point of

the Latin square morphism is an overlap-free sequence. Note that the Cayley table for Z/nZ is a Latin

square, but not every Latin square is a Cayley table.

2 Latin Square Morphisms produce Tilings
Allouche and Shallit’s morphism can be seen as a mapping of i to the ith row (that begins with i) of the

Cayley table for Z/nZ. For example when n = 3, we have

φ3

0 → 0 1 2
1 → 1 2 0
2 → 2 0 1

This suggests a natural generalization to any Latin square.

Begin with a generic alphabet of n letters, which we may assume to be {1, 2, . . . , n}. Recall that a Latin

square L is an n×n table with n different letters such that each letter occurs only once in each column and

only once in each row. We will concern ourself with the Latin squares in which the first column retains

the natural order of our alphabet (1, 2, . . . , n). For n = 3, there are two such Latin squares. The one that

does not come from Z/3Z directly is




1 3 2
2 1 3
3 2 1



 .

Let Lt denote the tth row of our Latin square L. For each t ∈ Σ we define the Latin square morphism

by ℓ(t) = Lt. For example we can use the above Latin square for n = 3 to define the following morphism,

ℓ(t) =







132, for t = 1
213, for t = 2
321, for t = 3
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Given any t ∈ Σ, ℓ(t), ℓ2(t), ℓ3(t), . . . converges to a sequence ℓω(t), which is a fixed point of the mor-

phism ℓ. So,

ℓ(ℓω(t)) = ℓω(t) (2)

In fact every fixed point of ℓ is of the form ℓω(t) for some t ∈ Σ [1, p. 10].

Express the sequence as ℓω(t1) = t1t2t3 . . ., so

ℓω(t1) = ℓ(ℓω(t1)) = ℓ(t1t2t3 . . .) = ℓ(t1)ℓ(t2)ℓ(t3) . . .

Thus, we have a tiling of our sequence (and of the natural numbers) by the rows of our Latin square L.

Again, in terms of our example where n = 3 we have three tiles 132, 213, and 321 and so

ℓω(1) = 132321213321213132 . . . = |132|321|213|321|213|132| . . . .

Now, consider the subsequence created by taking the first letter of each tile. Notice that this sequence is in

fact our original sequence. Thus our sequence contains itself as a subsequence. These two observations,

our sequence as a tiling and our sequence equaling a subsequence of itself, will be critical for the proof of

our main result.

3 Overlap-Free Latin Square Sequences

In this section we prove our main result.

Theorem 1 Let Σ = {1, 2, . . . , n}, and let L be an n× n Latin square using the letters from Σ, with the

first column in its natural order. For an arbitrary t ∈ Σ, let Lt denote the row of L corresponding to t in

the first column. If we define the Latin square morphism as

ℓ(t) = Lt,

then we have that for any t ∈ Σ, ℓω(t) is an overlap-free sequence.

Remark 1 The Latin square for n = 3 above can be seen to be the Cayley table for Z/3Z with the last

two columns transposed. Frid has shown that all morphisms based upon such Latin squares for Z/nZ

produce overlap-free sequences as their fixed points [6]. Of course not every Latin square comes from a

group Cayley table. For an example of a Latin square that is not a group Cayley table see below [4, p.

27].
















1 2 3 4 5 6
2 1 6 3 4 5
3 4 5 2 6 1
4 5 1 6 2 3
5 6 4 1 3 2
6 3 2 5 1 4

















Proof: Let ℓω(t1) = t1t2t3 . . . so the jth letter in the sequence is tj . Similarly, the mth tile in the

sequence is Tm. We will be also using the notion of length of a string of letters, meaning the number
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of letters in a string. For an arbitrary string w the length of w will be denoted |w|. Use r to denote the

location of tj on its tile Tm, so j = (m− 1)n + r with |Tm| = n and r ∈ {1, 2, . . . , n}.

Assume for a contradiction that ℓω(t1) contains an overlap; moreover that cxcxc is the shortest overlap

in ℓω(t1). Write ℓω(t1) = AcxcxcB, where c is a single letter, x is a finite string with |cx| ≥ n, A is

a finite string, and B is the infinite tail of our sequence. We have that |cx| ≥ n (bound by the length of

the tiles) because each tile is a permutation of 1, 2, . . . , n, and we cannot have two of the three copies of

c contained in one tile. Our subscripts place this overlap in our sequence. For i ∈ {1, 2, 3}, let ji denote

the subscript of the ith c. Thus,

A = t1 · · · tj1−1

c = tj1 = tj2 = tj3
x = tj1+1 · · · tj2−1 = tj2+1 · · · tj3−1

B = tj3+1tj3+2tj3+3 · · · ,

(3)

Our argument proceeds as follows: there are two cases |cx| 6≡ 0 (mod n) and |cx| ≡ 0 (mod n). In

the first case we use the fact that we have a tiling of ℓω(t1) by the rows of a Latin square, to show that the

overlap cxcxc is not possible. In the second case, when |cx| ≡ 0 (mod n), we argue based upon the fact

that ℓω(t1) contains itself as a subsequence that the existence of the overlap cxcxc leads to the existence

of a shorter overlap, and thus a contradiction.

3.1 Case 1: |cx| 6≡ 0 (mod n)

For each i ∈ {1, 2, 3}, let ri ∈ {1, 2, . . . , n} such that ri ≡ ji (mod n). In other words tji
is the r th

i

letter in its tile in ℓω(t1). Also, we will refer to the tile containing tji
as Tmi

. It is now possible to write

the length of cx as |cx| ≡ r2 − r1 ≡ r3 − r2 (mod n). So,

r3 ≡ 2r2 − r1 (mod n). (4)

3.1.1 Six Cases

Since r2 − r1 ≡ |cx| 6≡ 0 (mod n) there are two main cases that we will first consider: r1 < r2 and

r2 < r1. However, for the explicit details of our conclusions we will consider all six of the following

possibilities depending on the value of r3,

r3 = 2r2 − r1 ←→

{

r1 < r2 < r3

r3 < r2 < r1

r3 = 2r2 − r1 − n←→

{

r1 ≤ r3 < r2

r3 < r1 < r2

r3 = 2r2 − r1 + n←→

{

r2 < r1 ≤ r3

r2 < r3 < r1

The equalities on the left arise out of equation (4) and the fact that the integer 2r2 − r1 satisfies, −n ≤
2r2 − r1 ≤ 2n. This means that r3 is the element in the set {2r2 − r1 + n, 2r2 − r1, 2r2 − r1 − n} that

lies in the interval 0 < r3 ≤ n. Notice that r3 = 2r2 − r1 in both cases when r1 < r2 and r2 < r1.
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3.1.2 G and the beginning of each cx

When r1 < r2, we pick G ⊂ Σ to be the last r2 − r1 letters in Tm1 such that G has no specific order and

G 6= ∅. Of course, the remainder of the letters in Tm1 are in G, the complement of G. Notice that this

puts c = tj1 ∈ G. By equating the letters in Tm1 with the corresponding letters in tj2xtj3 , we find that

the last n− r2 +1 letters of Tm2 (starting with c = tj2) are in G. Also, we find that the first r2− r1 letters

of Tm2+1 are G.

When r2 < r1, we pick G ⊂ Σ to be the last r1 − r2 letters in Tm2
such that G has no specific order

and G 6= ∅. Obviously, the remainder of letters in Tm2 must be those that make up G again placing

c = tj2 ∈ G. By equating the letters in Tm2 with the corresponding letters in tj1xtj2 we find that the last

n − r1 + 1 letters of Tm1 (starting with c = tj1) are in G. Also, we find that the first r1 − r2 letters of

Tm1+1 are G.

We have discussed the appearance of G and its complement G in the beginning of each cx. So, we set

forth to describe G and G at the end of each cx.

3.1.3 Following G through the overlap

It is a basic observation that because each tile is a permutation of the letters in Σ, each tile can be par-

titioned into G and its complement G. It is fundamental to our argument that because of the equality

tj1xtj2 = cxc = tj2xtj3 , the letters in G form a contiguous collection of elements in each tile involved

in our overlap excluding Tmi
(each of which will need further description), either the beginning or the

ending of each tile. The idea involved in following G through the overlap is quite simple, we illustrate it

in one particular case r1 < r2 < r3.

We have explicitly described the location of G at the beginning of each cx. We will now use our

example r1 < r2 < r3 to show to the reader how the tiling of our sequence can be used to find the

location of G at the end of each cx. In doing so, we will refer to Figure 1.

In Figure 1, we have displaced the overlap from our sequence (represented by the continuous solid

horizontal line). We have also split our overlap in half leaving Tm2 intact for equality purposes. We have

placed tj1xtj2 over tj2xtj3 with tj1 directly over tj2 and tj2 directly over tj3 so that we can see equality

of terms simply by looking straight up or straight down (displayed by vertical arrows). The set of letters

G is represented by a horizontal solid line above and below our sequence line, and the set of letters G
is represented by horizontal dotted lines above and below the sequence line. Also, notice that we have

drawn in the edges of the tiles with smaller vertical black lines.

tj1 tj2
G G G

G

tj2 tj3

��

OO

��

OO

��

OO

��

OO

��

OO

��

OO

��

OO

• • •

Figure 1: The situation when r1 < r2 < r3.

Now notice that by using the tiles we can equate letters in tj1xtj2 with tj2xtj3 all the way through the

overlap. Since we know that G occurs in the first r2− r1 letters of Tm2+1, then G is the last n− (r2− r1)
letters of Tm2 + 1. This causes G to be the first n− (r2 − r1) letters of Tm1+1, and thus G appears in the

last r2− r1 letters of Tm1+1. Thus we can conclude that G occurs in the last r2− r1 letters of all the tiles

in tj1xtj2 except for Tm2 . We can also conclude that G occurs in the first r2 − r1 letters of all the tiles in

tj2xtj3 up through Tm3−1. We can approach every case by the same process.
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3.1.4 G and how each cx ends

We now will explain the conclusions for the six possible cases that we defined earlier, leaving the actual

drawing to the reader.

Case r1 < r2 < r3 (as seen in Figure 1). After we follow G through the overlap, we find that G occurs

in the first r2 − r1 letters of Tm3 . Recall r3 = 2r2 − r1. So, we have that the next r3 − (r2 − r1) = r2

letters of Tm3 are not in G. Notice that the size of G, r2 − r1, added to r2 make up all of r3. This places

the boundary between Tm2−1 and Tm2 exactly in line with the end of G in Tm3 and the beginning of G.

We then equate the first letters in Tm3 with those in Tm2 to find that G occurs nowhere in Tm2 . So now,

we have described Tm2 fully. Earlier we defined G such that G occurred from tj2 to the end of the tile,

and we have just shown that the first r2 letters of Tm2 (which includes tj2) must be in G. So G does not

appear in anywhere in Tm2 , and since G 6= ∅, we must have a contradiction.

Cases r1 ≤ r3 < r2 and r3 < r1 < r2. After we follow G through the overlap, we find that G occurs

in the first r2 − r1 letters of Tm3−1. So, G occurs in the final n− (r2 − r1) letters of Tm3−1 causing the

first n− (r2− r1) letters of Tm2 to be G. Notice that r2 = [n− (r2− r1)]+ r3. So the boundary between

G and G in Tm2 coincides with the boundary between Tm3−1 and Tm3 . This means that tj2 ∈ G, but we

assumed that c /∈ G earlier which is a contradiction.

Case r3 < r2 < r1. After we follow G through the overlap, we find that G occurs in the last r1 − r2

letters of Tm3−1. This causes G to occur in the first r1 − r2 letters of Tm2 by equality of tj1xtj2 and

tj2xtj3 . To describe the remaining letters of Tm2 up to and including tj2 consider r2 − (r1 − r2) = r3.

So G occurs in the next r3 letters after G. Thus we have that G is repeated twice in Tm2 so we have our

contradiction.

Cases r2 < r1 ≤ r3 and r2 < r3 < r1. After we follow G through the overlap we find that G occurs in

the first r1 − r2 letters of Tm2−1. This causes G to occur in the final n− (r1 − r2) letters of Tm2−1 and

thus the first n− (r1−r2) letters of Tm3 . Since r2 = r3− [n− (r1−r2)], we see that the left boundary of

Tm2 coincides with the right boundary of these first n− (r1− r2) letters of Tm3 . In particular, this means

that the last r1 − r2 letters of Tm3 , which include c, are in G. But, this contradicts the fact that c /∈ G.

3.2 Case 2: |cx| ≡ 0 (mod n)

We begin by considering some π ∈ Sn the symmetric group on n letters. Note that we may apply π to

any string by requiring π to act on each individual letter, so π(t1t2 . . . ts) = π(t1)π(t2) . . . π(ts). Thus

π can be treated as a morphism. Moreover, π : Σ∗ → Σ∗ is an invertible map because π ∈ Sn. Thus

w ∈ Σ∗ contains an overlap if and only if π(w) ∈ Σ∗ contains an overlap.

Define the function d(a,n) : N → N by d(a,n)(m) = (m − 1)n + a. Now if we let M = (ts) be a

sequence, then define the sequence given by the function D(a,n)(M) to be the subsequence (td(a,n)(s)) of

M . So for i ∈ {1, 2, . . . , n} arbitrary we have that

D(i,n)(ℓ
ω(t1)) = titi+nti+2n . . . .

Define πi : Σ → Σ with πi ∈ Sn, such that if Lt1 = {t1, t2, . . . , ti, . . . , tn}, πi(t1) = ti. Recall that

Lt refers to the tth row of our Latin square L. So we have that πi maps each letter in the first column

of our Latin square, to the ith letter of its corresponding row. Now, we want to show that πi(ℓ
ω(t)) =
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D(i,n)(ℓ
ω(t)) for all t ∈ Σ. So take

D(i,n)(ℓ
ω(t1)) = D(i,n)(ℓ(ℓ

ω(t1))
= D(i,n)(ℓ(t1)ℓ(t2)ℓ(t3) · · · )
= πi(t1)πi(t2)πi(t3) · · ·
= πi(ℓ

ω(t1)).

Since πi ∈ Sn is invertible we can conclude that D(i,n)(ℓ
ω(t1)) contains an overlap if and only if ℓω(t1)

contains an overlap.

Since |cx| ≡ 0 (mod n) pick i ≡ j1 ≡ j2 ≡ j3 (mod n). By applying D(i,n) to (4) we obtain

D(i,n)(ℓ
ω(t1)) = Ai tj1 xi tj2 xi tj3 Bi

where
Ai = D(i,n)(A) = titi+nti+2n . . . ,
xi = D(i,n)(x) = tj1+ntj1+2n . . . tj1+(m−1)n

= tj2+ntj2+2n . . . tj2+(m−1)n,
Bi = D(i,n)(B) = tj3+ntj3+2ntj3+3n . . . ,

and m = |cx|/n. Observe that D(i,n)(ℓ
ω(t1)) contains a shorter overlap which implies that ℓω(t1) also

contains a shorter overlap, a contradiction of our assumption. ✷
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