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In a recent paper Broutin and Devroye (2005) have studied the height of a class of edge-weighted random trees. This

is a class of trees growing in continuous time which includes many well known trees as examples. In this paper we

derive a limit theorem for the internal path length for this class of trees. The application of this limit theorem to

concrete examples depends upon the possibility to obtain an expansion of the mean of the path length. For the proof

we extend a limit theorem in Neininger and Rüschendorf (2004) to recursive sequences of random variables with

continuous time parameter.
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1 Introduction

In this paper we derive a limit theorem for the internal path length of edge-weighted b-ary random trees.

For this class of trees which includes as particular cases many well known types of random trees as e.g.

random binary search trees, random recursive trees, random split trees and others in a recent paper by

Broutin and Devroye (2005), a general law of large numbers for the weighted height was established.

The weighted b-ary tree is defined as follows. Let T∞ denote an infinite complete rooted b-ary tree. To

each node u in T∞ independently a random vector ((Z1, E1), . . . , (Zb, Eb)) is assigned corresponding to

the b outgoing edges of u where Zi, Ei ≥ 0, each pair (Zi, Ei) is identically distributed as (Z,E) and

where Z, E have finite expectations. We also assume that (Zi) and (Ei) are independent. Ze assigns a

weight and Ee an age to edge e. Then for node u

Gu :=
∑

e∈π(u)

Ee is the age of u (1)

Du :=
∑

e∈π(u)

Ze is the weighted depth of u. (2)

Here π(u) is the set of edges in T∞ on the path of the root to node u. The b-ary tree of age ≤ t then is

defined in continuous time t ≥ 0 by

Tt := {u ∈ T∞;Gu ≤ t}. (3)
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Important parameters of Tt are the height of Tt

Ht := max{Du : u ∈ Tt} (4)

the path length of Tt,

Yt :=
∑

u∈Tt

Du (5)

and Vt = |Tt| the random number of nodes of Tt. Broutin and Devroye (2005) proved a strong law for

the height assuming that Zi, Ei are independent. More precisely they established

Hn

n
−→

P
c, (6)

where c = argmax{α
ρ
; (ρ, α) ∈ CZ,E}, with CZ,E = {(ρ, α); Λ∗

Z,E(α, ρ) = log b, ρ ≤ E(E), α ≥
E(Z)}. Here Λ∗

Z,E = supλ∈R2{〈t, λ〉 − log Ee〈λ,(Z,E)〉} denotes the Cramer function of (Z,E). This

result applies to rBST, random recursive trees, plane oriented trees, oriented trees, split trees and others.

Their proof was based on Chernoff’s theorem and extends earlier results of Biggins and Grey (1997) and

Biggins (1977, 1978) using branching random walks. The upper bound in (6) can be extended to depen-

dent reproduction based on the Gärtner–Ellis theorem (see Schopp (2005)). The lower bound however

needs a new Galton–Watson type result for the case of dependent reproduction which seems to be not

available in sufficient generally. The application of our limit theorem to concrete examples depends upon

an expansion of the first moment of the path length resp. in some cases of the first two moments.

2 Limit theorem for the weighted internal path length

For the internal path length of b-ary weighted trees as introduced in Section 1 we obtain the following

recursive equation in continuous time which arises when splitting the tree at the root:

Yt
d
=

b∑

i=1

Y
(i)
t−Ei

1l{Ei≤t} + bt, t > 0 (7)

where bt =
∑b

i=1 ZiV
(i)
t−Ei

, defining Y0 := 0, Vs := 0 for s ≤ 0. Here (Y
(i)
t ) are independent copies of

the internal path length process Yt, V
(i)
t−Ei

is the number of nodes in subtree i with age ≤ t − Ei, (V
(i)
t )

are independent copies of each other. To argue for (7) let u1, . . . , ub the b nodes of Tt below the root with

corresponding ages E1, . . . , Eb. If E1 > t, then Vt−E1
the number of nodes in the subtree with root u1,

is zero and we get no contribution of this subtree to the internal path length. Only the nodes in the subtree

of u1 of age less than t − E1 contribute to the internal path length. For each of them we have to add the

weight Z1 of the edge from the root to u1, i.e. Z1V
(1)
t−E1

. Similarly, the contribution of the other subtrees

is accounted in (7) yielding the recursion

Yt
d
=

b∑

i=1

Y
(i)
t−Ei

1l{Ei≤t} + bt. (8)

To deal with the recursive random variables (Yt) with continuous time parameter t as in (8) we derive in

the following an extension to continuous time of the contraction method as developed in Neininger and
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Rüschendorf (2004) (see also Rösler and Rüschendorf (2001)). Let 0 < s ≤ 3, let Yt be s-integrable for

all t, and consider the normalized version Xt of Yt defined by

Xt :=
Yt − Mt√

Ct

, (9)

where for 1 < s ≤ 3, Mt := EYt and for 2 < s ≤ 3, Ct := Var(Yt), Ct > 0 else (for the motivation

of this normalization see Neininger and Rüschendorf (2004)). Convergence will be formulated w.r.t. the

Zolotarev metric

ζs(X, Y ) = sup
f∈Fs

|E(f(X) − f(Y ))|, (10)

where s = m + α, 0 < α ≤ 1, m = ⌈s⌉ − 1 ≥ 0 is an integer and Fs = {f ∈ Cm(R, R); ‖f (m)(x) −
f (m)(y)‖ ≤ |x − y|α} denotes the space of m-fold continuously differentiable real functions on R

1 with

a Hölder condition for the m-th derivative. ζs(X, Y ) is finite if X , Y have finite absolute moments of

order s and the moments of order 1, . . . ,m of X and Y coincide. ζs is an ideal metric of order s, i.e. for

Z independent of X , Y and any c ∈ R holds

ζs(X + Z, Y + Z) ≤ ζs(X, Y ), ζs(cX, cY ) = |c|sζs(X, Y ). (11)

The normalized version Xt of Yt satisfies a recursive equation of a form similar to (8):

Xt
d
=

b∑

r=1

A(t)
r X

(r)
t−Er

+ b(t), (12)

where A
(t)
r := 1l{Er≤t}

√
Ct−Er

Ct

and

b(t) :=
1√
Ct

(
bt − Mt +

b∑

r=1

1l{Er≤t}Mt−Er

)
. (13)

Theorem 1 Let 0 < s ≤ 3 und Xt ∈ Ls satisfy the recursive equation (12) and assume that ‖A(t)
r ‖s <

∞, ‖b(t)‖s < ∞ and sup0≤u≤t ‖Xu‖s < ∞ for all t > 0. Assume further that

1) A(t)
r

Ls

→ A∗
r , b(t) Ls

→ b∗ as t → ∞ (14)

2) E

b∑

r=1

|A∗
r |s < 1 (15)

3) For all τ > 0 holds E

b∑

r=1

1l{t−Er<τ}|A(t)
r |s → 0. (16)

Then Xt converges in distribution to a limit X ,

ζs(Xt, X) → 0 as t → ∞ (17)
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and X is in law the unique solution of the fixpoint equation

X
d
=

b∑

r=1

A∗
rX

(r) + b∗ (18)

in Ls with EX = 0 for 1 < s ≤ 3 and VarX = 1 for 2 < s ≤ 3.

Proof: Note that by the normalization for 1 < s ≤ 2 Xt is centered, thus Eb(t) = 0. For 2 < s ≤ 3

EXt = 0, Var(Xt) = 1 and thus Eb(t) = 0 and E(b(t))2 + E
∑b

r=1(A
(t)
r )2 = 1. Thus from assumption

(14) we obtain Eb∗ = 0, 1 < s ≤ 2 and

Eb∗ = 0, E(b∗)2 + E

b∑

r=1

(A∗
r)

2 = 1, for 2 < s ≤ 3. (19)

This implies by Corollary 3.4 of Neininger and Rüschendorf (2004) existence and uniqueness of a solution

of (17) in Ms(0, 1), the class of distributions of all X ∈ Ls with moments as specified above. We

introduce as in the discrete time case an accompanying sequence Qt of Xt by

Qt :=

b∑

r=1

A(t)
r

(
1l{0≤t−Er<τ}X

(r)
t−Er

+ 1l{t−Er≥τ}X
(r)

)
+ b(t), t > 0, (20)

where (X(r)), (X
(r)
t ) are independent copies of X , Xt and τ is some suitable positive number specified

later in the proof. Then for 2 < s ≤ 3 Var(Qt) = Var(Xt) and thus Qt ∈ Ms(0, 1) and the distance

between Xt, Qt, X w.r.t. the Zolotarev metric is finite for all t > 0.

By the triangle inequality holds

dt := ζs(Xt, X) ≤ ζs(Xt, Qt) + ζs(Qt, X). (21)

As in the discrete case we obtain that the remainder term rt := ζs(Qt, X) → 0 as t → ∞ using (16) and

the condition sup0<t≤τ ‖Xt‖s < ∞. Further, using the ideality properties of the ζs-metric we obtain

ζs(Xt, Qt) ≤ E

b∑

r=1

1l{0≤t−Er>τ}|A(t)
r |sdt−Er

and thus by (21) for t ≥ τ

dt ≤ E

b∑

r=1

1l{0≤t−Er≥τ}|A(t)
r |sdt−Er

+ rt (22)

≤ E

b∑

r=1

1l{0≤t−Er≥τ}|A(t)
r |s sup

τ≤u≤t

du + r∗,

where r∗ = supτ≤t rt < ∞. By an inequality due to Zolotarev

d∗t := sup
τ≤u≤t

du ≤ C
(
‖X‖s

s + sup
τ≤u≤t

‖Xu‖s
s

)
< ∞
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with some constant C > 0. Thus we obtain by assumption (15) from (22)

dt ≤ η · d∗t + r∗, t > τ (23)

for some η < 1 if τ is chosen large enough. This implies d∗t ≤ ηd∗t + r∗ by monotonicity of d∗t , i.e.

d∗t ≤ r∗

1−η
for all t > τ . Thus we get that dt is bounded.

Now we refine the estimate as in the discrete case to obtain that dt → 0. Let d := lim supt→∞ dt.

Then for any ǫ > 0 holds dt ≤ d + ǫ for all t ≥ τ1 and thus by (20), (21) with d∗∞ = sup
t

d∗t

dt ≤ E

b∑

r=1

1l{τ≤t−Er≤τ1}|A(t)
r |sd∗∞ + E

b∑

r=1

1l{t−Er>τ1}|A(t)
r |s(d + ǫ) + rt. (24)

Using assumptions (15), (16), this implies d ≤ ξ(d + ǫ) where ξ = E
∑b

r=1 |A∗
r |s < 1 a contradiction

for ǫ ≤ ǫ0.

Since ζs-convergence implies weak convergence we obtain the conclusion of the theorem. ✷

Remark.

a) In order to apply the limit theorem to concrete b-ary weighted trees we have to control the first moment

of Yt for 1 < s ≤ 2 and the first and second moment for 2 < s ≤ 3 (as typically in the case of normal

limits). In the case of discrete time recursive sequences several examples of this type have been

given in Neininger and Rüschendorf (2004). Broutin and Devroye (2005) applied their results on the

height of b-ary weighted trees to several trees. In the case where the age variables are exponential the

corresponding b-ary tree has a Markov structure, the number of nodes Vt can be determined by a law

of large numbers and so a transference to e.g. rBST’s is possible (see Broutin and Devroye (2005)).

b) Assumption 3) of Theorem 1 can be weakened a bit for the limit theorem (see Schopp (2005)). Also

the random subtree sizes t − Er in the recursive equation (12) can be replaced in the formulation of

Theorem 1 by general subtree size Ir(t) ≤ t as in the discrete time case in Neininger and Rüschendorf

(2004). In a recent paper of Janson and Neininger (2006) a similar extension of the limit theorem

of Neininger and Rüschendorf (2004) to the continuous time case has been independently established

(even in the multivariate case) and has been applied to a fragmentation process.

c) In Theorem 1 we assume finiteness of the s-th absolute moments of the random modified coefficients

(A
(t)
r ) and the modified toll terms (b(t)). Thus integrability properties of Z, E may have an impact on

the applicability of the theorem.

In many applications (see Broutin and Devroye (2005)) Z is a bounded random variable. Thus for the

finiteness of the s-th moment of b(t) it suffices in that case to estimate the sth absolute moment of the

number of nodes up to time t, since

‖b(t)‖s ≤ 1√
Ct

b‖ZVt‖s + c(t),

where c(t) is a constant depending on t.
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If for example E is Exponential(1)-distributed, then {Ṽt ≤ n} = {tn ≥ t}, where tn is the time of the

n-th birth and Ṽt denote the number of external nodes in the b-ary tree.

As tk
d
=

∑k
i=1

Ei

1+(i−1)(b−1) we obtain

P (Ṽt ≥ k) = P
( k∑

i=1

Ei

1 + (i − 1)(b − 1)
≤ t

)

= P
( 1

b − 1

k∑

i=1

Ei

1
b−1 + (i − 1)

≤ t
)

≤ P
( k∑

i=1

Ei

i
≤ t(b − 1)

)

= P
(
max{E1, . . . , Ek} ≤ t(b − 1)

)

= (1 − e−t(b−1))k.

Therefore the s-th moment of Ṽt is bounded by the s-th moment of a geometric G(e−t(b−1)) random

variable, and since P (Vt ≥ k) = P (Ṽt ≥ (b − 1)k + 1) we have also a bound for Vt.
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