
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9:2, 2007, 11–32

Words and bisimulations of dynamical systems

Thomas Brihaye†

Université de Mons-Hainaut

Institut de Mathématique

6, Avenue du Champ de Mars

7000 Mons, Belgique

received 15 Jan 2005, revised 31 May 2005, accepted 16 Jun 2005.

In this paper we study bisimulations on dynamical systems through a given partition. Our aim is to
give a new vision of the notion of bisimulation by using words. To achieve this goal, we encode the
trajectories of the transition system as words. This method was introduced in our paper “On o-minimal
hybrid systems” in order to give a new proof of the existence of a finite bisimulation for o-minimal hybrid

systems (as previously proved in a paper by Lafferriere G., Pappas G.J. and Sastry S.). Here we want to
provide a systematic study of this method in order to obtain a procedure for building finite bisimulations
based on words.

1 Introduction

More and more real-life systems are automatically controlled. It is of a capital importance to know
whether the programs governing these systems are correct. In order to be able to manipulate these
real-life systems, various mathematical models have been introduced (timed automata [AD94],
hybrid systems [Hen96],...) making the study of the abstract systems a wide and interesting
domain of research. Unfortunately even the abstract systems are not always that easy to handle,
the main problem being their infinite size. One way to solve this problem is to reduce these
infinite systems to finite systems in such a way that enough information is preserved. It is known
that bisimulations (see [Acz88, Cau95, Hen95]) are a “reduction” of particular interest since they
preserve a lot of interesting properties (reachability problem, model-checking branching logic...
[HNSY94, ACH+95, AHLP00]). That is why we focus our attention on systems admitting a
finite bisimulation.

In [BMRT04] in order to prove the existence of a finite bisimulation for an extended class of o-
minimal hybrid systems(i), we encode the continuous dynamics through words (see also [BM05]).
In the previous two papers we limit ourselves to the encoding of o-minimal dynamical systems
(i.e. dynamical systems definable in an o-minimal structure; see [vdD98] for a nice overview on
o-minimality.). In particular we only had to manipulate finite words. Let us mention that some

†This author is supported by the following research programs: FRFC 2.4.530.02., FRFC 2.4.564.02, Modnet
MRTN-CT-2004-512234 and by a grant from the National Bank of Belgium
(i) introduced in [LPS00].

1365–8050 c© 2007 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

12 Thomas Brihaye

analogue already appears in the literature (the notion of signature for example in [ASY01]). Let
us also notice that bisimulations of dynamical systems has been studied independently in [JdS04]
but in a different framework. They studied dynamical system as defined in [Wil91].

Our technique was used by Korovina and Vorobjov in order to compute a doubly exponential
bound on the size of the coarsest finite bisimulation of pfaffian hybrid systems (see [KV04]). They
recently improved their results by reducing the bound to a single exponential and prove that this
bound is tight (see [KV06]).

In this paper, we want to give a systematic study of this encoding technique. In particular
we give a Procedure (Bisiω) that aims to build a bisimulation on a dynamical system through a
partition. Our hope is that this systematic study will lead to the discovery of some new general
classes of dynamical systems (through partition) which admit finite bisimulations. Beyond the
fact that dynamical systems are of interest in their own, they are an essential component of hybrid
systems. In particular, when strong reset conditions are assumed on the hybrid system, finding
finite bisimulations of the hybrid system reduces in finding a finite bisimulation on each location
(which is endowed with a dynamical system) w.r.t. the partition induced by the guards, resets
and invariant. It is the case for o-minimal hybrid systems, see [LPS00]. Moreover a recent point
of view on the theory of hybrid systems allows to see an hybrid system as a dynamical system
(see the notion of hybrifold in [SJSL00]).

The rest of the paper is organized as follows. In section 2, we recall classical definitions and
properties of bisimulations on a transition system, we also describe the well-known bisimulation
algorithm ([BFH91, KS90, Hen96]), which is in fact a semi-algorithm. We end this section by
defining what we call a dynamical system in this paper. Section 3 is the main section of the
paper. We start by explaining how to associate a word with a trajectory; we introduce the
notion of dynamical type which allows in some sense to recover the continuous dynamics through
the partition. These tools being formalized we introduce a conceptual semi-algorithm called
Procedure Bisiω and we prove that this procedure computes a bisimulation. We also describe
several variants of our procedure. Finally we discuss in which case Bisiω provides the coarsest
bisimulation of a dynamical system through a given partition. In Section 4 we provide an extensive
list of examples.

2 Preliminaries

In this section, we recall some basic definitions and results concerning bisimulations on a tran-
sition system (see [Acz88, Cau95, Hen95] for general references). We also recall the well-known
bisimulation algorithm ([BFH91, KS90, Hen96]). Then we give definition of dynamical systems
and associate with them a natural transition system.

2.1 Transition systems and bisimulation

Definition 2.1 A transition system T = (Q, Σ,→) consists of a set of states Q (which may be
uncountable), Σ a finite alphabet of events, and → ⊆ Q × Σ × Q a transition relation.

A transition (q1, a, q2) ∈ → is denoted by q1
a
−→ q2. A transition system is said finite if Q is

finite. If the alphabet of events is reduced to a singleton, Σ = {a}, we will denote the transition
system (Q,→) and omit the event a.

Words and bisimulations of dynamical systems 13

a

a

q1 q′1

q2 q′2

T1

T2

∼ ∼

Fig. 1: Forward stable relation

a

a

q1 q′1

q2 q′2

T1

T2

∼ ∼

Fig. 2: Backward stable relation

Definition 2.2 Given a transition system T = (Q, Σ,→), a finite path in T is a finite sequence

of transitions q0 q1 q2 · · · qn such that for all i = 1, ..., n there exists ai ∈ Σ such that qi−1
ai−→ qi.

We denote it as follows:
ρ = q0

a1−→ q1
a2−→ q2 · · ·

an−−→ qn.

Definition 2.3 Given two transition systems on the same alphabet of events, T1 = (Q1, Σ,→1)
and T2 = (Q2, Σ,→2), a partial simulation of T1 by T2 is a binary relation ∼ ⊆ Q1 × Q2 which
satisfies the following condition:

∀q1, q
′
1 ∈ Q1, ∀q2 ∈ Q2, ∀a ∈ Σ,
(

q1 ∼ q2 and q1
a
−→1 q′1

)

⇒
(

∃q′2, q′1 ∼ q′2 and q2
a
−→2 q′2

) (1)

The condition (1) is read T2 partially simulates T1.

Definition 2.4 Given ∼ a partial simulation of T1 by T2, we say that ∼ is a simulation of T1

by T2 if, for each q1 ∈ Q1, there exists q2 ∈ Q2 such that q1 ∼ q2.

Definition 2.5 Given two transition systems on the same alphabet of events, T1 = (Q1, Σ,→1)
and T2 = (Q2, Σ,→2), a bisimulation between T1 and T2 is a relation ∼ ⊆ Q1 × Q2 such that ∼
is a simulation of T1 by T2 and the inverse relation(ii) ∼−1 is a simulation of T2 by T1. In this
case we say that T1 and T2 are bisimilar.

Remark 2.6 One could consider a different notion of bisimulation, let us call it back-bisimulation
or backward bisimulation (see [HKPV98]). This would come from the notion of partial backward-
simulation defined as partial simulation (Definition 2.3) where the condition (1) is replaced by:

∀q1, q
′
1 ∈ Q1, ∀q′2 ∈ Q2, ∀a ∈ Σ,

(

q′1 ∼ q′2 and q1
a
−→1 q′1

)

⇒
(

∃q2, q1 ∼ q2 and q2
a
−→2 q′2

)

We say that a bisimulation is a forward stable relation and that the back-bisimulation is a
backward stable relation. The difference between these two notions is illustrated on Figures 1
and 2.

Definition 2.7 Given a transition system T = (Q, Σ,→), we can look at bisimulations on Q×Q;
they are called bisimulations on T .

(ii) If ∼= {(q1, q2) ∈ Q1 × Q2 | q1 ∼ q2}, then ∼−1= {(q2, q1) ∈ Q2 × Q1 | q1 ∼ q2}.

14 Thomas Brihaye

As already mentioned in the introduction, a motivation for the study of bisimulation is the
reachability problem. Let us make this problem more precise:

Reachability Problem 2.8 Given T = (Q, Σ,→) a transition system, Init ⊆ Q and Fin ⊆ Q
two subsets of states, is there a finite path(iii) ρ from Init to Fin?

If T = (Q,→) is a reflexive(iv) transition system then there exists several trivial “partial”
bisimulations on T given by ∼q= {(q, q′) | q′ ∈ Q} for q ∈ Q. This implies that there exists a
bisimulation between T and a one-state system T0, where T0 = (Q0,→0) with Q0 = {q0} and
→0= {(q0, q0)}. The bisimulation between T and T0 is given by ∼0= {(q, q0) | q ∈ Q}.

Regarding the reachability problem 2.8, the bisimulations ∼q and ∼0 are completely irrelevant.
One can have a bisimulation between a completely disconnected reflexive transition system and
a single state system (T0). This gives a motivation for the definition of bisimulation w.r.t. a par-
tition. This notion leads to a preservation result on the Reachability Problem (see Lemma 2.15).

Moreover the study of finite bisimulation w.r.t. a partition on dynamical systems leads to the
existence of finite bisimulations on subclasses of hybrid systems, for examples see [LPS00, Dav99,
BMRT04, KV04, BM05, KV06].

Let us give the definition of bisimulation w.r.t. a partition.

Definition 2.9 Given T a transition system, P a partition of Q and ∼ ⊆ Q×Q a bisimulation,
we say that the bisimulation ∼ respects the partition P if given any p, q ∈ Q such that p ∼ q then
p and q belong to the same piece of the partition P. We will speak of bisimulations w.r.t. P.

Definition 2.10 Given T a transition system, P a partition of Q we can define the coarsest
bisimulation on T w.r.t. P, it is denoted ∼P :

∼P =
⋃

{∼ | ∼ is a bisimulation on T w.r.t. P}

Remarks 2.11 Definition 2.10 makes sense since the union of bisimulations on T w.r.t. P is
still a bisimulation on T w.r.t. P.
One can show that the coarsest bisimulation on T w.r.t. P is an equivalence relation, moreover
each piece of the partition P is an union of equivalence classes of ∼P .

In the case of bisimulations which are equivalence relations, we can define the notion of quotient
of a transition system by such a bisimulation.

Definition 2.12 Given a transition system T = (Q, Σ,→) and ∼ a bisimulation on T which is
an equivalence relation. We can consider the quotient of T by ∼, denoted by T/∼ = (Q/∼, Σ,→∼)
and defined as follows:

• Q/∼ = {[q]∼ | q ∈ Q} where [q]∼ = {q′ | q ∼ q′}

• [q1]∼
a
−→∼ [q2]∼ if and only if there exists q′1 ∈ [q1]∼ and q′2 ∈ [q2]∼ such that q′1

a
−→ q′2.

Remark 2.13 Definition 2.12 makes sense even when we consider an equivalence relation ∼
which is not a bisimulation.

(iii) i.e. ρ = q0
a1−−→ q1

a2−−→ q2 · · ·
an−−→ qn with q0 ∈ Init and qn ∈ F in.

(iv) i.e. for all q ∈ Q we have that q → q.

Words and bisimulations of dynamical systems 15

Lemma 2.14 Given T a transition system, ∼ a bisimulation on T which is an equivalence re-
lation, then the graph of the natural map [·]∼ : Q → Q/∼ is a functional bisimulation from T to
its quotient transition system T/∼ (see [Cau95, Lemma A.1 p. i]).

We end this subsection by making precise the folk result that states that bisimulations preserve
the Reachability Problem.

Lemma 2.15 Given T , Init, Fin as in the Reachability Problem 2.8, P a partition of Q given
by

{

Init ∩ Fin, F in \ Init, Init \ Fin, Q \ (Init ∪ Fin)
}

and ∼P a bisimulation on T which is
an equivalence relation w.r.t. P. There exists a finite path in T from Init to Fin if and only if
there exists a finite path in T/∼P

from Init/∼P
to Fin/∼P

.

Let us notice that the same result holds for back-bisimulation.

2.2 Bisimulation Algorithm

As already mentioned previously, it is an important question to know whether a given infinite
system admits a finite bisimulation. Since, for example, the reachability problem is decidable for
a finite system effectively described. Moreover it would be nice to have an automatic procedure to
build this finite bisimulation. These facts lead to the introduction of the bisimulation algorithm
which appeared in [BFH91, KS90, Hen96]. Given a transition system T = (Q, Σ,→) and P0 a
finite partition of Q, the bisimulation algorithm iterates the computation of predecessors(v) of
the pieces of the partition, let us recall it:

Algorithm 2.16

Initialization: P := P0

While ∃P, P ′ ∈ P ∃a ∈ Σ such that ∅ 6= P ∩ Prea(P ′) 6= P
Set P1 = P ∩ Prea(P ′) and P2 = P \ Prea(P ′)
Refine P := (P \ {P}) ∪ {P1, P2}

End while

Return P

The following are well-known results on the bisimulation algorithm.

Lemma 2.17 Given T a transition system and P0 a finite partition of Q, the bisimulation algo-
rithm terminates if and only if there exists a finite bisimulation on T w.r.t. P0.

Lemma 2.18 If the bisimulation algorithm terminates it provides the coarsest bisimulation on
T w.r.t. P0.

2.3 Dynamics

Definition 2.19 A dynamical system(vi) is a pair (M, γ) where:

(v) Given T a transition system and q ∈ Q, the set of a-predecessors of q, denoted Prea(q), is defined by Prea(q) =

{q′ ∈ Q | q′
a
−→ q}, and if P ⊆ Q, Prea(P) =

S

q∈P Prea(q).
(vi) Our definition of dynamical system is an attempt to generalize the continuous dynamics of hybrid systems

([Hen96]) with no explicit reference to differential equations. This definition, even if rather close, is different
from the one given in [Wil91]. Deeper investigation on the links between the two definitions would be relevant
work.

16 Thomas Brihaye

0 1

Fig. 3: A finite automaton

• M = 〈M, <〉 is a totally ordered structure,

• γ : Mk1 × M → Mk2 is a function.

The function γ is called the dynamics of the dynamical system. More generally, we can consider
the case where γ is defined on subsets of M that is γ : V1 × V → V2 with V1 ⊆ Mk1 , V ⊆ M and
V2 ⊆ Mk2 .

In the sequel we assume the range of γ is equal to M k2 . Classically, when M is the field of the
reals, we see M as the time, Mk1 ×M as the space-time, Mk2 as the (output) space and Mk1 as
the input space. We keep this terminology in the more general context of a structure M.

In this presentation time and space have the same underlying structure (i.e. M) this comes
from our presentation in [BMRT04] where we needed the whole dynamical system to be definable
in the o-minimal structure M. However we can imagine dynamical system with dynamics γ :
V1 × V → V2 where V is a totally ordered set and V1, V3 are defined in completely different
structure. This should not affect the results presented in the sequel.

The definition of dynamical system encompasses a lot of different behaviors. Let us give some
examples.

Example 2.20 Let M = 〈N, <〉 and the dynamics γ : {0, 1}×{0, 1} → {0, 1} is given by γ(x, t) =
(x+ t) mod 2. The transition system associated with this dynamical system (see Definition 2.24)
is in fact a finite automaton (see Figure 3).

Example 2.21 We can recover the continuous dynamics of the timed automaton (see [AD94]).
In this case, we have that M = 〈R, <〉 and the dynamics γ : Rn × [0, +∞[→ Rn is defined as
follows.

γ(x1, ..., xn, t) = (x1 + t, ..., xn + t)

Example 2.22 Definition 2.19 also allows dynamical systems with non deterministic(vii) behav-
ior. Let us consider (M, γ) where each point of the plane has two possible behaviors: “to go to
the right” or “to go up” (see Figure 4 on page 22). More precisely we have that M = 〈R, <〉 and
γ : R3 × R → R2 is defined as follows.

γ(x1, x2, p, t) =

{

(x1 + t, x2) if p > 0
(x1, x2 + t) if p < 0

Definition 2.23 If we fix a point x ∈ Mk1 , the set Γx = {γ(x, t) | t ∈ M} ⊆ Mk2 is called the
trajectory determined by x.

(vii) The non determinism comes in fact from the associated transition system, see Definition 2.24.

Words and bisimulations of dynamical systems 17

We define a transition system associated with the dynamical system, this definition is an
adaptation to our context of the classical continuous transition in the case of hybrid system (see
[LPS00] for example).

Definition 2.24 Given (M, γ) a dynamical system, we define a transition system Tγ = (Q,→γ)
associated with the dynamical system by:

• the set Q of states is Mk2 ;

• the transition relation y1 →γ y2 is given by:

∃x ∈ Mk1 , ∃t1, t2 ∈ M,
(

t1 6 t2 and γ(x, t1) = y1 and γ(x, t2) = y2

)

Remark 2.25 Let us notice that Tγ is a reflexive transition system.

Remark 2.26 The transition system Tγ is in general not transitive. To illustrate this fact, let
us consider Example 2.22. Given the three points of the output space y1 = (0, 0), y2 = (0, 1)
and y3 = (1, 1), we clearly have that y1 6→γ y3 since y1 →γ y2 and y2 →γ y3. Indeed y1 =
γ(0, 0,−1, 0), y2 = γ(0, 0,−1, 1) = γ(0, 1, 1, 0) and y3 = γ(0, 1, 1, 1).

3 Words and dynamics

Given a dynamical system (M, γ) and P a finite partition of the space M k2 , an interesting ques-
tion is to know if there exists a finite bisimulation of (M, γ) w.r.t. P . If such a bisimulation
exists the bisimulation algorithm 2.16 provides the coarsest one by iterating the computation of
the predecessors of the pieces of the partition P . The goal of this section is to give another proce-
dure that computes the coarsest bisimulation on a dynamical system (M, γ) (i.e. a bisimulation
on Tγ) w.r.t. a partition P . Our approach is in some sense more global that the bisimulation
algorithm. We use the idea introduced in [BMRT04] which consists in encoding the dynamics of
(M, γ) through the partition P by words on this partition. Let us first explain how we associate
a word with a trajectory.

3.1 Encoding trajectories by words

First let us define the notion of word in this general (possibly uncountable) context. This defini-
tion is inspired from [BC01], see also [Tru89, Rab03].

Definition 3.1 Given P a finite set (called the alphabet), M a totally ordered set, a word ω on
P is a function from M to P; the word ω is also denoted in a sequence-like notation by (ωi)i∈M

where ωi ∈ P is the image of the element i under the function ω.

We recover the classical finite words or ω-words when the set M is respectively finite or equal
to N.

Example 3.2 Let us consider the finite set P = {A, B}. We give three examples of words on P.

1. Given the finite set M1 = {1, 2, 3, 4} equipped with the natural ordering and the function
ω1 : M1 → P such that ω1(1) = A, ω1(2) = B, ω1(3) = A and ω1(4) = B, we recover an
example of finite word. In this case ω1 is classically denoted ABAB.

18 Thomas Brihaye

2. Given the set of natural number M2 = N equipped with the natural ordering and the function
ω2 : M2 → P such that ω2(n) = A if n is even and ω2(n) = B if n is odd, we recover an
example of ω-word. In this case ω2 is classically denoted (AB)ω.

3. Given the set of real number M3 = R equipped with the natural ordering and the function
ω3 : M3 → P such that ω3(n) = A if n ∈ Q and ω2(n) = B if n ∈ R \ Q, we have a
“degenerated” example of word.

We need to introduce basic notions related to words in this general context. For finite words,
we adopt the classical notations.

Definition 3.3 Given ω : M → P a word on P, a subword of ω is given by ωs : M ′ → P where
M ′ ⊆ M is an arbitrary subset of M considered with the order induced from M .

Definition 3.4 Given ω : M → P a word on P, a suffix of ω is a subword of a particular form.
A subword ωs : M ′ → P is a suffix if and only if M ′ = {t | t > t0} or M ′ = {t | t > t0} for some
t0 ∈ M . In the same way we can define the notion of prefix.

Definition 3.5 Given ω1 : M1 → P and ω2 : M2 → P two words on P, the concatenation
of the words ω1 and ω2 is defined by the word ω1ω2 : M1∪̇M2 → P where ω1ω2↾M1

= ω1 and
ω1ω2↾M2

= ω2 and where the order on M1∪̇M2 is the order induced from M1 on M1, the order
induced from M2 on M2 and ∀m1 ∈ M1, ∀m2 ∈ M2 we have that m1 < m2 in M1∪̇M2.

We are now ready to build words associated with trajectories. Given (M, γ) a dynamical
system and P a finite partition of Mk2 , given x ∈ Mk1 we associate a word with the trajectory
Γx in the following way. We consider the sets {t ∈ M | γ(x, t) ∈ P} for each P ∈ P . This
gives a partition of the time M . In order to define a word on P associated with the trajectory
determined by x, we need to define the set of intervals Fx.

Fx =
{

I
∣

∣ (I is a time interval or a point) and is maximal for the property

∃P ∈ P , ∀t ∈ I, γ(x, t) ∈ P
}

.

For each x, the set Fx is totally ordered by the order induced from M . Let us note that the set
Fx can be equal to M itself. This allows us to define the word on P associated with Γx denoted
ωx.

Definition 3.6 Given x ∈ Mk1 , the word associated with Γx is given by the function ωx : Fx →
P defined by:

ωx(I) = P where I ∈ Fx is such that ∀t ∈ I γ(x, t) ∈ P.

Let us note that given x ∈ Mk1 , there exists a unique word ωx on P associated with the tra-
jectory Γx. The intuition behind the introduction of Fx is the following. We want successive(viii)

letters of the words ωx to be different.

Definition 3.7 We denote by ΩP the set of words associated with (M, γ) w.r.t. P. We have
that ΩP is a set of words on P.

(viii) The notion of successive letters is only defined for “well behaving” dynamical systems.

Words and bisimulations of dynamical systems 19

The set ΩP gives in some sense a complete static description of the dynamical system (M, γ)
through the partition P . In order to recover the dynamics, we need further information. This is
the object of the following subsection.

3.2 Dynamical type

Given a point x of the input space Mk1 , we have associated with x a trajectory Γx and a word
ωx. If we consider (x, t) a point of the space-time M k1 ×M , it corresponds to a point γ(x, t) lying
on Γx. To recover in some sense the position of γ(x, t) on Γx from ωx, we associate with (x, t) a
suffix of the word ωx denoted ω(x,t). The construction of ω(x,t) is similar to the construction of
ωx. We need to introduce the set of intervals

F(x,t) =
{

I ∩ {t′ | t′ > t}
∣

∣ I ∈ Fx}
}

.

For each (x, t), the set F(x,t) is totally ordered by the order induced from M . This allows us
to define the suffix of the word ωx associated with time t denoted ω(x,t).

Definition 3.8 Given (x, t) ∈ Mk1 ×M , the suffix of the word ωx associated with time t is given
by the function ω(x,t) : F(x,t) → P defined by:

ω(x,t)(I) = P where I ∈ F(x,t) is such that ∀t′ ∈ I γ(x, t′) ∈ P.

Due to the particular form of the suffixes ω(x,t), it makes sense to define the first letter of ω(x,t).

Definition 3.9 Given (x, t) ∈ Mk1 × M , the first letter of the suffix ω(x,t) is given by ωx(I)
where I is the interval of Fx such that t ∈ I. We denote the first letter of ω(x,t) by F(ω(x,t)).

Let us notice that given (x, t) a point of the space-time M k1 ×M there is a unique suffix ω(x,t)

of ωx associated with (x, t).
Given a point y ∈ Mk2 it may have several (x, t) such that γ(x, t) = y and so several suffixes

are associated with y. In other words, given y ∈ M k2 , the future of y is non deterministic, and so
a single suffix ω(x,t) is not enough to recover the dynamics of the transition system through the

partition P . To encode the dynamical behavior of a point y of the output space M k2 through
the partition P , we introduce several notions of dynamical type of a point y w.r.t. P .

Definition 3.10 Given a dynamical system (M, γ), a finite partition P of M k2 , a point y ∈ Mk2

the suffix dynamical type of y w.r.t. P is denoted SufP(y) and defined by:

SufP(y) = {ω(x,t) | γ(x, t) = y}.

We have that SufP (y) is a subset of suffixes of words of ΩP .

Definition 3.11 Given a dynamical system (M, γ), a finite partition P of M k2 , an integer
n ∈ N, a point y ∈ Mk2 the n-subword dynamical type of y w.r.t. P is denoted nSubP(y) and
defined by:

nSubP(y) ={ω | γ(x, t) = y and ω is a subword of ω(x,t)

and the length of ω, |ω| 6 n and F(ω) = F(ω(x,t))}.

20 Thomas Brihaye

Definition 3.12 Given a dynamical system (M, γ), a finite partition P of M k2 , a point y ∈ Mk2

the subword dynamical type of y w.r.t. P is denoted SubP(y) and defined by:

SubP(y) =
⋃

n∈N

nSubP(y).

We have that nSubP(y) is a subset of SubP(y) for all n ∈ N.

Notations 3.13 If we want to talk about a dynamical type of the point y without specifying if it
is a subword, n-subword or suffix dynamical type, we use the notation TP(y).

Our goal is to refine the partition P in order to build a bisimulation w.r.t. P . For this purpose
we consider the equivalence relation between points of the output space M k2 “to have same
dynamical type w.r.t. P”. This equivalence relation induces a new partition of the output space
Mk2 which refines P .

Definition 3.14 We denote by T (P) the refinement of the partition P obtained by considering
the equivalence relation ≡T (P) on Mk2 given by:

y1 ≡T (P) y2 if and only if TP (y1) = TP(y2).

Notations 3.15 The partition T (P) is respectively denoted Suf (P), nSub (P) and Sub (P) in
the case of the suffix, n-subword and subword dynamical type.

Remark 3.16 The nSub (P) partitions are only relevant for n > 2. Indeed, 0Sub (P) =
{

Mk2

}

and 1Sub (P) = P. This is why in the sequel of the paper when we talk about n-subword dynamical
typen we always assume n > 2.

Remark 3.17 The different dynamical types induced different partitions. Those partitions are
related as follows in term of refinement.

P ⊇ 2Sub (P) ⊇ ... ⊇ nSub (P) ⊇ ... ⊇
⋂

i∈N

(iSub (P)) = Sub (P) ⊇ Suf (P)

Once T (P) is computed(ix) two possibilities can occur. On one hand we can have that
P = T (P), in this situation, we have that P is in fact a bisimulation on (M, γ) w.r.t. P
(see Theorem 3.27). On the other hand we can have that P 6= T (P). In this case we can re-
fine T (P) by considering the dynamical types on T (P). We start by building words on T (P)
associated with the trajectories Γx to obtain ΩT (P) and finally we obtain the different kinds of
dynamical types w.r.t. T (P). This leads to a third partition T (T (P)) denoted T 2 (P). Again
two situations can occur: T (P) = T 2 (P) or T (P) 6= T 2 (P). This allows us to consider a general
procedure that we describe in the following subsection.

Remark 3.18 The readers familiar with the classical bisimulation algorithm (2.16) realised that
the partition induced by 2Sub (P) is sufficent in order to compute bisimulation. We investigate
the other dynamical types in order to “accelerate” in some sense the construction of the bisimu-
lation, in particular when the bisimulation algorithm does not terminate (see Corollary 3.37 and
Example 4.1).

(ix) the meaning of the word “computed” is discussed in Remark 3.20.

Words and bisimulations of dynamical systems 21

3.3 Procedure Bisiω

By starting with some initial partition P0 we have seen how to build a new partition T (P0). We
iterate the construction to obtain a sequence of partitions

(

T i (P0)
)

i∈N
such that for each i ∈ N

we have that the partition
(

T i+1 (P0)
)

= T
(

T i (P0)
)

corresponds to the partition induced by
the dynamical types w.r.t. T i (P0). This construction is summarized by the following procedure,
we call this procedure Bisiω.

Procedure 3.19

Initialization: P := P0

Do

Compute the set of words ΩP

Associate TP(y) with each y ∈ Mk2 use it to Build T (P)
If P = T (P)

Then Return P
Else P := T (P)

End Do

Remark 3.20 Procedure Bisiω is merely conceptual. Indeed in general it is far to be computable.
One main problem to be settled is to determine when two general words, as defined in our context,
are equal. Let us be more explicit, assume that ωx and ωx′ are words respectively associated with
the trajectories Γx and Γx′ . The problem is that ωx and ωx′ are not equal as functions since their
domains are different: they are respectively Fx and Fx′ . Since the order on Fx and Fx′ is possibly
not discrete, and even not well-founded, we need to introduce a general notion of synchronization
for ordered sets which is nothing else than an isomorphism of ordered structures. So we will say
that ωx and ωx′ are equal if and only there exist an isomorphism σ between the ordered structures
Fx and Fx′ such that for all I ∈ Fx we have that ωx(I) = ωx′ (σ(I)).
Let us remark that the partition T (P) is in general even not definable by a first-order L-formula
where L is the language given by the order and the initial partition: L = {<,P , γ}.
However we have shown that in the case of o-minimal structures the first step of Procedure
Bisiω already provides interesting results. A discussion about computation of the words and the
dynamical types in this particular case can be found in [BM05].

Remark 3.21 Given P ∈ T (P) it can be seen as a subset of M k2 , or it can be seen as a
dynamical type w.r.t. P i.e. a set of words on P.

Lemma 3.22 Given y a point of the output space M k2 , the first letter of each ω ∈ TP (y) is P
where P ∈ P and y ∈ P . This is true for the each kind of dynamical type defined previously.

Proof: This is an immediate consequence of the different definitions of the dynamical types. ✷

Lemma 3.23 Given a dynamical system (M, γ) and P a partition of M k2 we have that T (P)
refines P.

Proof: This a direct consequence of Remark 3.17 and the fact that P = 1Sub(P). ✷

22 Thomas Brihaye

Remark 3.24 By Lemma 3.23 we have that Procedure Bisiω generates a decreasing sequence of
partitions:

P ⊇ T (P) ⊇ T 2 (P) ⊇ · · · ⊇ T i (P) ⊇ · · ·

To illustrate how Procedure Bisiω works, let us give an example.

Example 3.25 We consider the dynamical system (M, γ) of Example 2.22. We associate to
(M, γ) the initial partition P = {A1, A2} where A1 = {(0, 0)} and A2 = R2 \ {(0, 0)} (see
Figure 4). We apply Procedure Bisiω on (M, γ) with P as initial partition and using the suffix
dynamical type.

A1

A2

Fig. 4: P = {A1, A2}

First, we compute the set of words w.r.t. P,

ΩP = {A2, A1A2, A2A1A2}.

From ΩP we see that there exist three dynamical types w.r.t. P:

B1 = {A2, A2A1A2} ; B2 = {A1A2} ; B3 = {A2}.

These dynamical types lead to the new partition Suf (P) = {B1, B2, B3} (see Figure 5) where
B1 = {(y1, 0) | y1 < 0} ∪ {(0, y2) | y2 < 0}, B2 = {(0, 0)} and B3 = R2 \ (B1 ∪ B2). Notice that
Suf (P) is a strict refinement of P, so we iterate the construction. We compute the set of words
w.r.t. Suf (P),

ΩSuf(P) = {B1B2B3, B3B1B3, B2B3, B1B3, B3}.

From ΩSuf(P) we see that there exist four dynamical types w.r.t. Suf (P):

C1 = {B1B2B3, B1B3} ; C2 = {B3B1B3} ; C3 = {B2B3} ; C4 = {B3}

Again these dynamical types lead to a new partition Suf2 (P) = {C1, C2, C3, C4} (see Figure 6).
Let us compute the set of words w.r.t. Suf2 (P),

ΩSuf2(P) = {C2C1C4, C1C3C4, C1C4, C3C4, C4}.

Words and bisimulations of dynamical systems 23

B1

B1

B2

B3

B3

Fig. 5: Suf (P)

C1

C1

C3

C2

C4

Fig. 6: Suf2 (P)

D1

D1

D3

D2

D4

Fig. 7: Suf3 (P)

From ΩSuf2(P) we see that there exist four dynamical types w.r.t. Suf2 (P):

D1 = {C1C3C4, C1C4} ; D2 = {C2C1C4} ; D3 = {C3C4} ; D4 = {C4}

Those four dynamical types do not refine the partition Suf2 (P) (see Figure 7). In other words,
we have the following equality Suf2 (P) = Suf3 (P). One can check that Suf2 (P) is a bisimulation
on (M, γ) w.r.t. P.

Remark 3.26 The dynamical system of Example 3.25 is non-deterministic. Indeed two trajec-
tories are associated with each point y of the output space M k2 . In the papers [BMRT04, BM05],
we were unable to deal with such situations.

The situation of Example 3.25 is not a particular case. Indeed if Procedure Bisiω terminates,
it provides a bisimulation. We can now state the main result of the paper:

Theorem 3.27 Let (M, γ) be a dynamical system, let Tγ be the associated transition system on
Mk2 , and let P0 be a finite partition of Mk2 . If Procedure Bisiω terminates, then it provides a
bisimulation on Tγ w.r.t. P0.

Proof: By hypothesis, Procedure Bisiω returns a partition P such that P = T (P). To prove
that the equivalence relation induced from P is a bisimulation on Tγ w.r.t. P0. We will show
that given any y1, y2 ∈ A and y′

1 ∈ B (for some A, B ∈ P) if y1 →γ y′
1 then there exists y′

2 ∈ B
such that y2 →γ y′

2.
Since P = T (P), A corresponds to a dynamical type on P (i.e. an element of T (P)). Hence

we have that TP(y1) = TP(y2). Depending of the kind of dynamical type, the argument to find
y′
2 is slightly different. We do the rest of the proof with the suffix dynamical type, the other(x)

cases are similar.
Since y1 →γ y′

1 there exists x1 ∈ Mk1 and t1, t′1 ∈ M with t1 6 t′1 such that γ(x1, t1) = y1 and
γ(x1, t

′
1) = y′

1. By definition of the suffix dynamical type, ω(x1,t1) ∈ SufP(y1). Since y1 ∈ A and

y′
1 ∈ B, we have that AB is a subword(xi) of ω(x1,t1). Using the fact that SufP(y1) = SufP(y2),

we can find x2 ∈ Mk1 and t2 ∈ M such that γ(x2, t2) = y2 and ω(x2,t2) = ω(x1,t1). Hence it is
possible to find an interval (or a point) I ∈ F(x2,t2) such that ω(x2,t2) (I) = B. We pick any point
t′2 ∈ I and clearly we have that y′

2 = γ(x2, t
′
2) is the desired point.

(x) This of course does not hold for the 0-subword and the 1-subword dynamical types.
(xi) Formally, we have to take {t1, t′1} = M ′ ⊆ M .

24 Thomas Brihaye

We have that P respects P0 by iterating Lemma 3.23. ✷

Corollary 3.28 Under the assumptions of Theorem 3.27 we have that if there exists P ′
0 a re-

finement of P0 such that P ′
0 = T (P ′

0) then P ′
0 is a bisimulation on Tγ w.r.t. P0.

Unfortunately, Procedure Bisiω does not provide in general the coarsest bisimulation on Tγ

w.r.t. P . Here are two examples that illustrate this fact.

Example 3.29 We consider a dynamical system where the output space consists of two parallel
straight lines and the dynamics is completely deterministic, given a point on one of the lines,
it goes to infinity without leaving the line. In other words, we have that M = 〈R, <〉 and the
dynamics γ : R × {0, 1} × R → R × {0, 1} is defined by γ(x1, x2, t) = (x1 + t, x2). We associate
with (M, γ) the partition P = {A, B} where B = R × {0, 1} \ A and A is defined as follows:

A =
{

(n − (1/m), 0) | n ∈ N, m ∈ N \ {0}
}

∪
{

(n, 1) | n ∈ N
}

.

Let us consider the suffix dynamical type of the two points y1 = (1/2, 0) and y2 = (1, 1):

SufP (y1) =
(

(AB)ω
)ω

and SufP (y2) = (AB)ω .

Clearly, y1 and y2 do not have the same suffix dynamical type w.r.t. P however one can show
that P is the coarsest bisimulation w.r.t. P.

Remark 3.30 In the previous example, the fact that the partition is too fine is due to the fact that
the bisimulation does not distinguish (AB)ω and ((AB)ω)

ω
. Indeed, in this case the transition

system Tγ is completely deterministic, so the bisimulation only need to know that the dynamics
goes infinitely often from A to B and from B to A. The bisimulation does not care about the
“kind of infinity”. It is well-known that in the case of deterministic finite transition systems, the
bisimulation and language correspond. Example 3.29 shows that considering more complex system
make not clear how the notions of language equivalence and bisimulation are related.

Remark 3.31 Let us notice that if we consider n-subword or subword dynamical type on Exam-
ple 3.29 we obtain the coarsest bisimulation.

However when considering non deterministic system, the next example shows that using 3-
subword dynamical type leads already to a too fine analysis.

Example 3.32 Let us consider the dynamical system of Figure 8 with the partition P = {A, B, C}.
Let us consider the 3-subword dynamical type of the two points y1 and y2.

3SubP (y1) = {ABC} and 3SubP (y2) = {AB, AC} .

Clearly, y1 and y2 do not have the same 3-subword dynamical type w.r.t. P, however one can
show that P is the coarsest bisimulation w.r.t. P.

Nevertheless if we look at the 2-subword dynamical type, we always obtain the coarsest bisim-
ulation as stated in the following theorem.

Words and bisimulations of dynamical systems 25

A B C
y1

y2

Fig. 8: 3-subword dynamical types do not provide the coarsest bisimulation

Theorem 3.33 Let (M, γ) be a dynamical system, let Tγ be the associated transition system on
Mk2 , and let P0 be a finite partition of Mk2 . If Procedure Bisiω terminates with the 2-subword
dynamical type, then it provides the coarsest bisimulation on Tγ w.r.t. P0.

Proof: By Theorem 3.27 we already know that Procedure Bisiω provides a bisimulation on
Tγ w.r.t. P0, it remains to show that it is the coarsest. We proceed ab absurdo. Hence we
suppose there exists some step of Procedure Bisiω and y1, y2 ∈ Mk2 such that y1 ∼P0

y2

and 2SubP (y1) 6= 2SubP (y2). We can choose this step such that each piece of P is a union of
equivalence classes for ∼P0

. We have that y1 ∈ A for some A ∈ P . Since 2SubP (y1) 6= 2SubP (y2),
we can suppose AB ∈ 2SubP (y1) and AB /∈ 2SubP (y2) for some B ∈ P . This means that
there exists y′

1 ∈ B with y1 →γ y′
1 and that it is impossible to find y′

2 ∈ B with y2 →γ y′
2.

Since y1 ∼P0
y2 and B is a union of equivalence classes for ∼P0

, this contradicts that ∼P0
is a

bisimulation. ✷

Corollary 3.34 Let (M, γ) be a dynamical system, let Tγ be the associated transition system on
Mk2 , and let P0 be a finite partition of Mk2 . Procedure Bisiω terminates with the 2-subword
dynamical type if and only if there exists a finite bisimulation on Tγ w.r.t. P0.

Proof: If there exists a finite bisimulation on Tγ w.r.t. P0, the proof of Theorem 3.33 shows
that Procedure Bisiω terminates.

Let us now suppose that Procedure Bisiω terminates. Since P0 is finite, the number of 2-
subword dynamical types is finite, (i.e. 2Sub (P0) is finite). By an easy induction using the same
argument, one can see that 2Subi (P0) is finite for all i ∈ N. Hence if Procedure Bisiω terminates,
we clearly have that there exists a finite bisimulation on Tγ w.r.t. P0. ✷

In the sequel, we investigate extra assumptions which provide that Procedure Bisiω terminates
with the coarsest bisimulation.

Theorem 3.35 Let (M, γ) be a dynamical system and let P0 be a finite partition of Mk2 such
that for all n ∈ N and for all y ∈ M k2 we have that SufSubn(P0)(y) reduces to a singleton, and let

Tγ be the associated transition system on M k2 . If Procedure Bisiω terminates with the subword
dynamical type, then it provides the coarsest bisimulation on Tγ w.r.t. P0.

Proof: The proof is similar to the proof of Theorem 3.33. We also proceed ab absurdo. Hence
we can find some step of Procedure Bisiω and y1, y′

1 ∈ Mk2 such that y1 ∼P0
y′
1 and SubP (y1) 6=

26 Thomas Brihaye

SubP (y′
1). We can choose this step such that each piece of P is a union of equivalence classes for

∼P0
.

Given any ω = A1...An ∈ SubP (y1), we can build the following sequence of transitions.

y1 →γ y2 →γ ... →γ yn,

with yi ∈ Ai for i = 1, ..., n. Since y1 ∼P y′
1 we can build a similar sequence of transitions.

y′
1 →γ y′

2 →γ ... →γ y′
n,

with yi ∼P0
y′

i for i = 1, ..., n. Since each Ai is a union of equivalence classes for ∼P0
, we have

that y′
i ∈ Ai for i = 1, ..., n. Let us now prove that the suffix uniqueness hypothesis implies that

there exists x ∈ Mk1 and t1,...,tn ∈ M with t1 6 ... 6 tn such that γ(x, ti) ∈ Ai for i = 1, ..., n
; meaning that ω ∈ SubP (y′

1). Clearly we can find x, t1, t2 with t1 6 t2, γ(x, t1) ∈ A1 and
γ(x, t2) ∈ A2 (since y′

1 →γ y′
2). Let us suppose, for a contradiction, that given x, t1, t2 such that

t1 6 t2, γ(x, t1) ∈ A1 and γ(x, t2) ∈ A2 we have that γ(x, t3) /∈ A3 for all t3 > t2. In particular,
using the suffix uniqueness hypothesis, this means that the unique word of SufP (y′

2) does not
contain the letter A3. This contradicts the existence of the transition y′

2 →γ y′
3 where y′

3 ∈ A3.
Thus we can find t3 with the desired conditions. Iterating the same argument we find the other
ti’s.

Similarly, given any ω ∈ SubP (y′
1), we can prove that ω ∈ SubP (y1). This contradicts that

SubP (y1) 6= SubP (y′
1). ✷

The assumptions of Theorem 3.35 are very strong. To weaken these assumptions, one could
investigate cases where Tγ is transitive or deterministic.

Corollary 3.36 Under the hypothesis of Theorem 3.35, if there exists a finite bisimulation on
Tγ w.r.t. P0, Procedure Bisiω terminates with the subword dynamical type.

Corollary 3.37 Under the hypothesis of Theorem 3.35, if some step of Procedure Bisiω, with
the subword dynamical type, provides an infinite partition P there is no finite bisimulation on Tγ

w.r.t. P0.

Corollary 3.38 Under the hypothesis of Theorem 3.35, when Procedure Bisiω has terminated,
we have that:

2Sub (P) = ... = nSub (P) = ... = Sub (P) ⊇ Suf (P)

Remark 3.39 The assumptions of Theorem 3.35 are satisfied when γ(., .) is a flow of a vector
field F : Rn → Rn which does not depend on the time (this is the assumption in [LPS00]). In
this case, Tγ is both transitive and deterministic.

Remark 3.40 An interesting question is of course to know when Procedure Bisiω terminates.
In [BM05] Theorem 4.21 gives a condition of termination for Procedure Bisiω.

Remark 3.41 Given (M, γ) a dynamical system and P a finite partition of M k2 such that there
is no finite bisimulation on Tγ w.r.t. P, there are examples where Procedure Bisiω terminates
with the subwords (or suffix) dynamical types (see Example 4.1).

Words and bisimulations of dynamical systems 27

A B

Fig. 9: Dotted words partition

A B

Fig. 10: Suffixes partition

Remark 3.42 In order to obtain similar results on back-bisimulation, one could apply an analog
to Procedure Bisiω where the suffixes are replaced by the prefixes.

Remark 3.43 In [BMRT04] in order to define the dynamical type of a point w.r.t. some par-
tition, we introduced the notion of (multi)dotted words (instead of the suffixes). One can show
that the finite bisimulation obtained with (multi)dotted words is both forward and backward stable.
However the use of suffixes instead of (multi)dotted words leads to a coarser bisimulation than the
one obtained with the suffixes. This is illustrated in Figures 9 and 10. In Figure 9, the partition
induced by the dotted words have nine pieces corresponding to the dotted words Ȧ, ȦBA, ...,
ABȦ, ȦBABA, ..., ABABȦ. In Figure 10, the partition induced by the suffixes have five pieces
corresponding to the non empty suffixes of the word ABABA.

4 Examples

This section illustrates Procedure Bisiω on some examples. In each case, we give a dynamical
system (M, γ) and an initial partition P and we observe how Procedure Bisiω behaves.

Example 4.1 We consider a dynamical system (M, γ) related to the spiral example of [LPS00].
We have M = 〈R, <〉 and γ : R2 × R → R2 are defined as follows.

γ(x, t) = et (x cos t, x sin t)

The dynamics γ is a solution of the system of differential equations (2) which is not time
depending. Hence we can apply Corollary 3.37 (see Remark 3.39) to this example.

(

Ẋ

Ẏ

)

=

(

1 −1
1 1

)

·

(

X
Y

)

(2)

The dynamics γ describes spirals moving away from the origin when time elapses. We associate
with this dynamical system the partiton P = {A, B} where A = {(y1, 0) | 0 6 y1 6 1} and
B = R2 \ {A}. Let us focus on the the trajectory Γ1 = {(et cos t, et sin t) | t ∈ R}. We divide the
trajectory Γ1 into two distinct parts:

Γ−
1 = {(et cos t, et sin t) | t 6 0} and Γ+

1 = {(et cos t, et sin t) | t > 0}

We have that Γ−
1 is included in the ball of radius 1 centered at the origin (0, 0) and Γ+

1 has
no interesection with this ball. In particular we have that the subword dynamical type of any

28 Thomas Brihaye

A1

A2

Fig. 11: A simple loop

C1

C2

C3

C4

C5

C6

Fig. 12: T 2 (P) = T 3 (P)

point y ∈ Γ+
1 is given by {B}. If we now consider points on Γ−

1 , one can see that their subword
dynamical consists of words in (AB)+ or (BA)+. Let us now show that there are infinitely many
subword dynamical types by describing explicitely the dynamical types of the points on Γ−

1 . Given
y ∈ Γ−

1 , we have that y = γ(1, t) for some t 6 0, two cases can occur.

If t = −2kπ then (AB)k+1 ∈ SubP(y) and (AB)k+2 /∈ SubP(y),

if t ∈] − 2(k + 1)π,−2kπ[then (BA)k+1B ∈ SubP(y) and (BA)k+2B /∈ SubP(y).

Hence the first step of Procedure Bisiω with subword dynamical types, already provides an infinite
partition Sub (P). This shows that there is no finite bisimulation on Tγ w.r.t. P by Corollary 3.37.
However one can see that Sub (P) = Sub2 (P). This means that Sub (P) is the coarsest bisimula-
tion on Tγ w.r.t. P.

Remark 4.2 In Example 4.1, we have just seen that Tγ does not admit a finite bisimulation
w.r.t. P. However Tγ admits a finite back-bisimulation w.r.t. P. In particular when considering
points on the trajectory Γ1, we only have two prefixes to consider, (AB)ω and (BA)ω. That
justifies the interest of considering both back-bisimulations and bisimulations given a dynamical
system.

We now consider an example with self intersecting curve(xii).

Example 4.3 We consider the dynamical system of Figure 11 with initial partition P = {A1, A2}.
There are four suffix dynamical types w.r.t. P:

B1 = {A1A2A1} ; B2 = {A2A1} ; B3 = {A1} ; B4 = {A1, A1A2A1}.

This leads to the four pieces partition T (P). The set ΩT (P) consists of the unique word
B1B4B1B2B3B4B3. There are six dynamical types w.r.t. T (P):

C1 = {B1B4B1B2B3B4B3} ; C2 = {B4B1B2B3B4B3, B4B3} ;

C3 = {B1B2B3B4B3} ; C4 = {B2B3B4B3} ; C5 = {B3B4B3} ; C6 = {B3}.

We obtain the partition T 2 (P). One can easily check that T 2 (P) = T 3 (P).

(xii) This kind of behavior motivated the notion of multidotted words in [BMRT04].

Words and bisimulations of dynamical systems 29

5 Conclusion

In this paper we introduced a merely conceptual algorithm called Procedure Bisiω. This proce-
dure aims to build a finite bisimulation of a given dynamical system w.r.t. a given partition using
words. Procedure Bisiω gives a more “global” vision of the bisimulation than the well-known
bisimulation algorithm. The papers [KV04, KV06] illustrates that Procedure Bisiω can help to
compute complexity bound on the size of the coarsest bisimulation.

Two of the main challenges for futur work are the following questions, “When is Procedure
Bisiω effective?”, “When does Procedure Bisiω terminate?”.

Another question to address is the following. In Section 3, we introduced several “interme-
diate”equivalence relations (see Definition 3.14). These equivalence relations deserve to be in-
vestigate for their own. At present we did not manage to find any relevant property of these
equivalence relations.

Acknowledgments. The author would like to thank Véronique Bruyère for helpfull discussions
and Christian Michaux for careful reading of the drafts of this paper and numerous relevant
comments. He also want to thank the referees for their serious work and useful remarks.

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P;-H. Ho, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoret.
Comput. Sci., 138(1):3–34, 1995. Special issue on hybrid systems.

[Acz88] P. Aczel. Non-well-founded sets, volume 14 of CSLI Lecture Notes. Stanford University
Center for the Study of Language and Information, Stanford, CA, 1988. With a
foreword by Jon Barwise [K. Jon Barwise].

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[AHLP00] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete abstractions of
hybrid systems. Proceedings of the IEEE, 88:971–984, 2000.

[ASY01] Eugene Asarin, Gerardo Schneider, and Sergio Yovine. On the decidability of the
reachability problem for planar differential inclusions. In Di Benedetto and Maria
Domenica, editors, HSCC’2001, volume 2034 of Lecture Notes in Computer Science,
pages 89–104. Springer, 2001.

[BC01] V. Bruyère and O. Carton. Automata on linear orderings. In Mathematical founda-
tions of computer science, 2001 (Mariánské Láznĕ), volume 2136 of Lecture Notes in
Comput. Sci., pages 236–247. Springer, Berlin, 2001.

[BFH91] A. Bouajjani, J.-C. Fernandez, and N. Halbwachs. Minimal model generation. In
E. M. Clarke and R. P. Kurshan, editors, Computer-Aided Verification: Proc. of the
2nd International Conference CAV’90, pages 197–203. Springer, Berlin, Heidelberg,
1991.

30 Thomas Brihaye

[BM05] Thomas Brihaye and Christian Michaux. On the expressiveness and decidability of
o-minimal hybrid systems. Journal of Complexity, 21(4):447–478, 2005.

[BMRT04] T. Brihaye, C. Michaux, C. Rivière, and C. Troestler. On o-minimal hybrid systems.
In Rajeev Alur and George J. Pappas, editors, HSCC’2004, volume 2993 of Lecture
Notes in Computer Science, pages 219–233. Springer, 2004.

[Cau95] D. Caucal. Bisimulation of context-free grammars and of pushdown automata. In
Modal logic and process algebra (Amsterdam, 1994), volume 53 of CSLI Lecture Notes,
pages 85–106. CSLI Publ., Stanford, CA, 1995.

[Dav99] J.M. Davoren. Topologies, continuity and bisimulations. Theor. Inform. Appl., 33(4-
5):357–381, 1999. Fixed points in computer science (Brno, 1998).

[Hen95] T.A. Henzinger. Hybrid automata with finite bisimulations. In ICALP 95: Automata,
Languages, and Programming, Lecture Notes in Computer Science 944, pages 324–
335. Springer-Verlag, 1995.

[Hen96] T.A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual
Symposium on Logic in Computer Science, pages 278–292. IEEE Computer Society
Press, 1996.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s
decidable about hybrid automata? J. Comput. System Sci., 57(1):94–124, 1998. 27th
Annual ACM Symposium on the Theory of Computing (STOC’95) (Las Vegas, NV).

[HNSY94] T.A. Henzinger., X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. Inform. and Comput., 111(2):193–244, 1994. 1992 IEEE Sympo-
sium on Logic in Computer Science.

[JdS04] A.A. Julius and A.J.van der Schaft. State maps of general behaviors, their lattice
structure and bisimulations. In Proceedings of the Sixteenth International Symposium
on Mathematical Theory of Networks and Systems (MTNS2004), 2004.

[KS90] Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. Inform. and Comput., 86(1):43–68, 1990.

[KV04] M. Korovina and N. Vorobjov. Pfaffian hybrid systems. In Jerzy Marcinkowski
and Andrzej Tarlecki, editors, CSL 2004, volume 3210 of Lecture Notes in Computer
Science, pages 430–441. Springer-Verlag, 2004.

[KV06] Margarita V. Korovina and Nicolai Vorobjov. Upper and lower bounds on sizes of
finite bisimulations of Pfaffian hybrid systems. In CiE, volume 3988 of Lecture Notes
in Computer Science, pages 267–276. Springer, 2006.

[LPS00] G. Lafferriere, G. J. Pappas, and S. Sastry. O-minimal hybrid systems. Math. Control
Signals Systems, 13(1):1–21, 2000.

Words and bisimulations of dynamical systems 31

[Rab03] A. Rabinovich. Automata over continuous time. Theoret. Comput. Sci., 300(1-3):331–
363, 2003.

[SJSL00] S. N. Simic, K. H. Johansson, S. Sastry, and J. Lygeros. Towards a geometric theory
of hybrid systems. In N. Lynch et al, editor, HSCC’2000, volume 1790 of Lecture
Notes in Computer Science, pages 421–436. Springer, 2000.

[Tru89] J. K. Truss. Infinite permutation groups. II. Subgroups of small index. J. Algebra,
120(2):494–515, 1989.

[vdD98] L. van den Dries. Tame topology and o-minimal structures, volume 248 of London
Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,
1998.

[Wil91] Jan C. Willems. Paradigms and puzzles in the theory of dynamical systems. IEEE
Trans. Automat. Control, 36(3):259–294, 1991.

32 Thomas Brihaye

