
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9:2, 2007, 153–174

REGULAR LANGUAGES AND ASSOCIATIVE

LANGUAGE DESCRIPTIONS†

Marcella Anselmo1, Alessandra Cherubini2

and Pierluigi San Pietro3

1Dip. Informatica ed Applicazioni, Università di Salerno, 84084 Fisciano (Salerno), Italia.
email: anselmo@dia.unisa.it.
2Dip. di Matematica, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milano, Italia.
email: alessandra.cherubini@polimi.it.
3Dip. di Elettronica e Informazione, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milano,
Italia. email: sanpietr@elet.polimi.it.

received 15 Jan 2005, revised 10 Jun 2005, accepted 1 Jul 2005.

The Associative Language Description model (ALD) is a combination of locally testable and constituent
structure ideas. It is consistent with current views on brain organization and can rather conveniently
describe typical technical languages such as Pascal or HTML. ALD languages are strictly enclosed in
context-free languages but in practice the ALD model equals CF grammars in explanatory adequacy.
Various properties of ALD have been investigated, but many theoretical questions are still open. For
instance, it is unknown, at the present, whether the ALD family includes the regular languages. Here it
is proved that several known classes of regular languages are ALD: threshold locally testable languages,
group languages, positive commutative languages and commutative languages on 2-letter alphabet. More-
over, we show that there is an ALD language in each level of restricted star height hierarchy. These results
seem to show that ALD languages are ”well-distributed” over the class of regular languages.

Keywords: Formal languages, Regular languages, Associative descriptions, Commutative languages,
Group languages, Threshold locally testable languages

1 Introduction

The Associative Language Description model (ALD) (6) was originally motivated by the want of
a brain compatible theory of language. In essence, this definition combines the concepts of local
testability and of phrase structure in as simple a way as possible, aligned with current views on

†Work partially supported by MIUR grants PRIN 2005015419-002: “Linguaggi Formali e Automi: Metodi,
Modelli e Applicazioni” and FIRB RBAU01MCAC: “Applicazioni della Teoria degli Automi all’Analisi, alla Com-
pilazione e alla Verifica di Software Critico e in Tempo Reale”.
()

1365–8050 c© 2007 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

154 Marcella Anselmo, Alessandra Cherubini and Pierluigi San Pietro

information processing in the brain (5). A similar model was already proposed in (7). The ALD
definition introduces a solution to a few shortcomings of Context-Free (CF) grammars, disal-
lowing certain “unpractical” languages (such as counting context-free languages, where derivation
trees are characterized by numerical congruences) and not requiring metasymbols (the nonter-
minals) which are “external” to the language. Many basic properties of the ALD model were
established in (1) and in (2), such as: nonclosure under union, concatenation and homomor-
phism; strict inclusion in the CF family (only noncounting context-free languages are ALD);
comparison with other families; hierarchy theorems; etc. The expressive adequacy of the ALD
family in terms of common artificial languages such as Pascal and HTML has been shown in (8).

The main open problem about the ALD family is the inclusion of regular languages in the
ALD family. The lack of closure properties does not allow the use of standard ways to prove the
(non)inclusion of regular languages in other families of languages, while many “ad hoc” methods
enable to prove the inclusion of several classes of regular languages in ALD family, but they do
not seem to generalize to all regular languages.

The objective of this paper is to prove some inclusion results of subfamilies of regular languages
into ALD family. More in details, we show that regular threshold locally testable languages (3),
regular positive commutative languages, regular commutative languages on an alphabet of at
most two elements and regular group languages are all ALD languages. Moreover, there is an
ALD language in each level of the (restricted) star hierarchy. All these results seem to show that
ALD languages are “well-distributed” over the class of regular languages. These considerations,
together with many efforts towards finding a negative answer to the question, seem to support
the conjecture that every regular language is ALD. Unfortunately, the proof techniques applied
to show that each of these families are ALD do not seem to be generalizable to every regular
language.

Section 2 recalls the basic definitions and some relevant properties of the model, while Section
3 shows the main results of the paper. Section 4 draws a few conclusions.

2 Basic definitions and properties

We recall here the following definitions from (2).
Let Σ be a finite alphabet, and let ∆ 6∈ Σ be the placeholder. A stencil tree is a tree T such

that: the internal nodes of T are labelled by ∆ and the leaves of T have labels in Σ ∪ {ǫ}. The
constituents of a stencil tree are its subtrees of height one and leaves with labels in Σ∪{ǫ}∪{∆}.
The frontier of a stencil tree T or of a constituent K is denoted, respectively, by τ(T) and τ(K).
A maximal subtree of T is a subtree of T whose leaves are also leaves of T .

Definition 2.1 (Left and right contexts)
Let T be a stencil tree. For an internal node i of T , let Ki and Ti be respectively the constituent

and the maximal subtree of T having root i. Consider the tree T ′ obtained by excising the subtree Ti

from T , leaving only the root labelled ∆ of Ti behind. Let s, t ∈ Σ∗ be two words such τ(T ′) = s∆t.
The left context of Ki in T and of Ti in T is left(Ki, T) = left(Ti, T) = s; the right context of
Ki in T and of Ti in T is right(Ki, T) = right(Ti, T) = t.

Definition 2.2 (ALD, pattern, permissible contexts of a rule) Let ⊥6∈ Σ be the left/right ter-
minator. An Associative Language Description (ALD) A is a finite collection of triples (x, z, y),

REGULAR LANGUAGES AND ASSOCIATIVE LANGUAGE DESCRIPTIONS 155

K 1

K 2 K 3

K 4

∆ ∆ aa

b ∆

∆ b

K 2
b ∆
 K 5 ε

ε

Fig. 1: A valid stencil tree for Example 2.5. Each Ki denotes a constituent matched by a rule.

called rules, where x ∈ (ǫ ∪ ⊥)Σ∗, y ∈ Σ∗(⊥ ∪ ǫ), and z ∈ (Σ ∪ {∆})∗ − {∆}. The word z is
called the pattern of the rule (x, z, y) and the words x and y are called the permissible left/right
contexts.

An ALD defines a set of constraints or test conditions that a stencil tree must satisfy, in the
following sense.

Definition 2.3 (Constituent matched by a rule, valid stencil tree) Let A be an ALD. A con-
stituent Ki of a stencil tree T is matched by a rule (x, z, y) of an ALD A iff: 1) z = τ(Ki), 2)
x is a suffix of ⊥ left(Ki, T), and 3) y is a prefix of right(Ki, T) ⊥. A stencil tree T is valid for
A iff each constituent Ki of T is matched by a rule of A.

Definition 2.4 (Tree language and word language of an ALD) The (stencil) tree language de-
fined by an ALD A, denoted by T (A), is the set of all stencil trees valid for A. The (word)
language defined by an ALD A, denoted by L(A), is the set {x ∈ Σ∗ | x = τ(T) for some tree
T ∈ T (A)}.

Example 2.5 Consider the language L on the alphabet Σ = {a, b} defined by the regular expres-
sion b∗aab∗. An ALD A for L is:

{(⊥, ∆aa∆,⊥), (ǫ, b∆, a), (a, ∆b, ǫ), (a, ǫ, ǫ), (ǫ, ǫ, a)}

A valid stencil tree for the word bbaab is shown in Figure 1.

Note that when a left/right context is ǫ then the actual context is irrelevant for a pattern.
An ALD is a device for defining a set of stencil trees and a word language, corresponding to

their frontiers by means of a test; hence, it is not a generative grammar. A simple example is
the ALD: (⊥, ∆∆,⊥), (⊥, a, b), (a, b,⊥), defining the finite language ab. One cannot define an
equivalent derivation relation →: ∆ → ∆∆ → a∆ → ab would not be correct, since each of the
two rules (⊥, a, b), (a, b,⊥) would require that the other one has already been applied.

Many other examples of regular and non regular languages belonging to ALD family as well
as of CF languages which are not ALD can be found in (1) and in (2).

156 Marcella Anselmo, Alessandra Cherubini and Pierluigi San Pietro

A few shorthands may be introduced to make the notation simpler and more compact. Given
two words v, w and finite sets X, Y, Z of words, the notation (X, vZw, Y) denotes the set of rules:

{(x, vzw, y) | x ∈ X, y ∈ Y, z ∈ Z}

Also, the new symbol Λ may be used to denote the optionality of one occurrence of ∆, that
is Λ = {ǫ, ∆}. For instance, the ALD A of Example 2.5 may be rewritten as: {(⊥, ΛaaΛ,⊥),
(ǫ, bΛ, a), (a, Λb, ǫ)}. Moreover, for w = a1 · · ·an, with a1, · · · , an ∈ Σ, Λ(w) denotes the language
Λ(w) = Λa1Λ · · ·ΛanΛ.

ALD languages have the following properties:

• Every ALD language is a CF -language (2).

• The ALD family is not closed under any of the following operations (2): union; (alpha-
betic, nonerasing) homomorphism; concatenation; Kleene star; intersection with regular
languages; complementation; inverse alphabetic homomorphism.

• Both the degree (i.e., the length of the largest permissible context) and the width (i.e., the
length of the longest pattern) classify the ALD family in an infinite, strict hierarchy.

• Every context-free language is the homomorphic image of an ALD language (1).

• Every 1-letter regular language is ALD (1).

• All regular languages of restricted star-height one are ALD (4).

3 Relations between regular languages and the ALD family

Since no proof has ever been found that every regular language is ALD, a natural approach is
trying to prove that there are regular languages which are not ALD. However, this is not an
immediate task. Before illustrating in the following subsections various new families of regular
languages which are ALD, the next subsection illustrates a few techniques which might be used
to solve the ALD vs. Regular problem.

3.1 Comparing ALD and regular languages

The nonclosure properties presented in Section 2 have been proven in (2) using nonregular ALD
languages, and therefore do not help in ruling out that some regular language is not ALD. Also
the obvious analogy between the ALD model and 1-variable CF grammars (definable by ALDs
where all contexts are empty) do not help, even though regular languages are not included in the
family of 1-variable CF languages. In fact, all languages of the form Ra, where R is a regular
language on an alphabet Σ and a 6∈ Σ are not 1-variable CF languages, but they are indeed ALD
provided that R is an ALD language (if A is an ALD for R, an ALD for Ra is easily obtained
by A transforming all the rules whose right context is ⊥ in rules whose right context is a ⊥ and
adding the rule (⊥, ∆a,⊥) to A if the empty word does not belong to R, the rule (⊥, Λa,⊥)
otherwise).

The similarities of CF and ALD languages (due to the their structural equivalence) break down
when considering regular languages. For example, it is well-known that all regular languages can

REGULAR LANGUAGES AND ASSOCIATIVE LANGUAGE DESCRIPTIONS 157

be defined by a right-linear grammar. However, it is immediate to prove that this is not the case
for right-linear ALD, as defined next.

Definition 3.1 An ALD is right-linear if all its rules are of the form (x, yΛ,⊥), for x ∈ (⊥
∪ǫ)Σ∗, y ∈ Σ+.

Proposition 3.2 There exist regular languages that cannot be defined by a right-linear ALD.

Proof: Consider L = {w ∈ {a, b}∗ | |w|a = 1}, where |w|a gives the number of occurrences of the
letter a in the word w. Assume that there is a right-linear ALD A for L of degree k > 0 and
width m > 0. Consider a word zb2m+kab2m+k corresponding to a stencil tree Z. Since the ALD
is right-linear, there are two constituents K, K ′ of Z such that τ(K) ∈ b+∆, τ(K ′) ∈ b∗ab∗∆ and
left(K, Z) ∈ b∗bk = left(K ′, Z ′) ∈ b∗bk, with right(K, Z) = right(K ′, Z ′) =⊥. Hence, the stencil
tree Z ′ obtained by replacing K ′ in Z with K is valid for A, but τ(Z ′) ∈ b+ and hence is not in
L. ✷

The proof above can be generalized to provide a general tool to prove that a language is not
ALD, namely the Swapping Lemma (2), which allows the exchange of two subtrees of two ALD
valid trees, provided they have similar profiles. Before presenting it, a few definitions are needed.

Definition 3.3 (firstk, lastk,leftk, rightk)
For every w ∈ Σ∪ ⊥∗, firstk(w) denotes the prefix of length k of w if |w| ≥ k, otherwise it

denotes w; lastk(w) is the suffix of w of length k if |w| ≥ k, otherwise w. The two operators are
extended to every stencil tree T : firstk(T) =firstk(τ(T)), lastk(T) = lastk(τ(T)).

Let Z be a stencil tree and T be one of its maximal subtrees: leftk(T, Z) = lastk(left(T, Z)),
that is the left context of length k of T in Z. Symmetrically, rightk(T, Z) = firstk(right(T, Z)),
that is the right context of length k of T in Z.

Lemma 3.4 (Swapping Lemma)
Let A be an ALD of degree k ≥ 0 and let Z and Z ′ be two valid trees of A, not necessarily

distinct. Suppose that there exist two maximal subtrees T of Z and T ′ of Z ′ such that:
leftk(T, Z) = leftk(T ′, Z ′), rightk(T, Z) = rightk(T ′, Z ′), lastk(T) = lastk(T ′), firstk(T) =

firstk(T ′).
Then also the stencil tree Z ′′ obtained from Z by replacing the subtree T with the subtree T ′ is

a valid tree of A.

The crux of Lemma 3.4 for proving that a regular language R is not ALD is that it requires
identifying valid stencil trees for a word of R: unfortunately, in general, one does not have much
information about their structure. The lemma is however particularly useful to prove that certain
nonregular languages are not ALD, by combining it with traditional pumping lemmata of CF
languages (that allow the identification of valid ALD trees for a word), as shown in Prop. 3.8
below (which is a more precise version of Corollary 3.7 of (2)). We first recall a traditional
periodicity result for CF languages, namely the Ogden Lemma. A few preliminary definitions
are useful. The symbols in a word z may be characterized by their positions: 1, 2, . . . , |z| in z,
starting from the leftmost and going to the rightmost. A m-marked word m−mk(z) is a word z
with a set of at least m ≥ 0 positions of z.

158 Marcella Anselmo, Alessandra Cherubini and Pierluigi San Pietro

Definition 3.5 Given a language L, an integer m ≥ 0 and a m-marked word m − mk(z), with
z ∈ L and |z| ≥ m, an Ogden factorization of z is a 5-tuple (x, u, w, v, y) such that:

1. z = xuwvy;

2. u and v together correspond to at least one marked position in m − mk(z);

3. uwv corresponds to at most m marked positions in m − mk(z);

4. for every i ≥ 0, xuiwviy ∈ L.

Lemma 3.6 (Ogden’s Lemma) For an infinite CF language L there exists an integer m > 0
such that for all m-marked words m − mk(z), with z ∈ L and |z| > m, there exists an Ogden
factorization.

We remind the reader that if all positions are marked, then Ogden’s Lemma is reduced to what
is typically called the Pumping Lemma for CF languages.

Definition 3.7 Two Ogden factorizations (x, u, w, v, y) and (x′, u′, w′, v′, y′) are k-similar if the
following conditions hold for some i, j ≥ 0:

1. firstk(uiwvi) = firstk(u′jw′v′
j
),

2. lastk(ujwvi) = lastk(u′jw′v′
j
),

3. firstk(y) = firstk(y′),

4. lastk(x) = lastk(x′).

Proposition 3.8 For any ALD language L ⊆ Σ∗ of degree k ≥ 0, there exists a constant m > 0
such that, given two marked words m−mk(z), m−mk′(z′), with z, z′ ∈ L and |z| > m, |z′| > m,
if all pairs of Ogden factorizations for m− mk(z) and m −mk′(z′) are k-similar, then for every
pair of Ogden factorizations (x, u, w, v, y) and (x′, u′, w′, v′, y′) of m − mk(z) and m − mk′(z′)
(respectively), xu′hw′v′hy ∈ L for every h ≥ 0.

To show that a language L is not ALD, one has to suppose that there is an ALD of degree
k, select z, z′ ∈ L and a marking for z and a marking for z′; then, find all possible Ogden
factorizations of z and z′, show they are all pairwise k-similar and then prove that a contradiction
ensues for every factorization, by creating for each case a word z ′′ 6∈ L. For instance, we can show
that the (nonregular) language {ancbnamdbm | n, m ≥ 0} is not ALD. Apply Ogden’s Lemma
to a string z = ancbnamdbm, where n and m are greater than the constant of the Lemma. Mark
the leftmost group of a in z: by Ogden’s Lemma, for every corresponding Ogden factorization
(x, u, w, v, y) of z then firstk(uwv) = ak = lastk(x), lastk(uwv) = bk = firstk(y) and uwv is
of the form a+cb+ (if |u| < k or |v| < k consider xukwvky instead). Analogously, by marking
the rightmost group of a, if (x′, u′, w′, v′, y′) is an Ogden factorization then firstk(u′w′v′) =
ak = lastk(x′), lastk(u′w′v′) = bk = firstk(y′) and u′w′v′ is of the form a+db+. By applying
Proposition 3.8 to z′ = z, a word in a+db+a+cd+ should be in the language, a contradiction.

Unfortunately, Proposition 3.8 does not seem very helpful in proving that some regular lan-
guages are not ALD. In fact, Ogden’s Lemma seems too weak, when applied to regular lan-
guages, to restrict enough the possible Ogden factorizations of a word. For instance, the proof

REGULAR LANGUAGES AND ASSOCIATIVE LANGUAGE DESCRIPTIONS 159

above does not work for the (ALD) regular language L = a∗cb∗a∗db∗. As above, consider in
fact a string z = z′ = ancbnamdbm, where n and m are greater than the constant of Ogden’s
Lemma. Mark the leftmost group of a in z. Then two sets of Ogden factorizations (x, u, w, v, y)
of z are possible: a set o1 of factorizations such that x ∈ a∗, uwv ∈ a+, y ∈ a∗cbnamdbm,
and a set o2 such that x ∈ a∗, uwv ∈ a+cb+, y ∈ b+amdbm. Similarly, by marking the right-
most group of a in z, at least two sets of Ogden factorizations (x′, u′, w′, v′, y′) of z are pos-
sible: a set o′1 such that x′ ∈ ancbna∗, u′w′v′ ∈ a+, y ∈ a+dbm, and another set o′2 such that
x′ ∈ ancbna∗, u′w′v′ ∈ a+db+, y ∈ b+. Then the Ogden factorizations in o1 and o′2 are not even
k-similar, and Proposition 3.8 cannot be applied. Also, even if non- k-similar factorizations could
be eliminated, the statement of Proposition 3.8 may not lead to a contradiction. For instance, if
(x, u, w, v, y) ∈ o1 and (x′, u′, w′, v′, y′) ∈ o′1 are k-similar, then for every h ≥ 0, xu′hw′v′hy is of
the form a∗a+a∗cbnamdbm, which is in L.

3.2 Regular threshold locally testable languages

Threshold locally testable languages are a generalization of better known locally testable lan-
guages. In this section we prove that the class of regular threshold locally testable languages is
contained in the ALD family. For any regular threshold locally testable language, an ALD can
be devised in such a way to simulate the run of a scanner that reading a word from left to right
counts the occurrences of meaningful factors.

Let Σ be a finite alphabet. Denote with Σ<h the set {ǫ} ∪ Σ ∪ Σ2 ∪ . . . Σh−1. For every word
x, w ∈ Σ+ let |w|x be the number of occurrences of x as a factor of w and let F(w) be the set of
factors of w. For every integer h, let F (x, h) = {w ∈ Σ∗ | |w|x ≥ h ≥ 0}. For instance, F (x, 1)
is the language Σ∗xΣ∗ and its complement F (x, 1) is the set of words where x is a forbidden
factor. Let A ⊆ Σ+ be a finite set. A regular language L is said to be threshold locally testable
(tlt (3)) if may be described as a boolean composition of a finite set B of languages of the form
Σ∗x, xΣ∗, {x}, F (x, h), with x ∈ Σ+, h ≥ 0. A locally testable language is a special case of tlt
where each language of the form F (x, h) has h = 1.

To prepare the proof of the next theorem, we need a few more definitions. Given B as above,
there is a finite set GB ⊆ (⊥ ∪Σ)+ such that: GB = {x ⊥| Σ∗x ∈ B}∪ {⊥ x | xΣ∗ ∈ B}∪ {⊥ x ⊥|
{x} ∈ B} ∪ {x | ∃h ≥ 0 : F (x, h) ∈ B}. We also extend the notion of stencil tree to a generalized
stencil tree:

Definition 3.9 A tree α is a generalized stencil tree if the internal nodes of α are labelled by ∆
and the leaves of α have labels in Σ ∪ {ǫ, ∆} (i.e., ∆ is allowed on the frontier of α).

The concepts of constituents and validity can be immediately extended to generalized stencil
trees. The generalized tree language GT (A) of an ALD A is the set of generalized stencil trees
valid for A. Notice that the word language L(A) is equal to {x ∈ Σ∗ | x = τ(α) for some tree
α ∈ GT (A)}.

The proof that every tlt L, defined by a boolean function of a set B, is ALD is based on the
following observation. To decide whether a word w is in L it is possible to use a scanner endowed
with one vector V of monotonic, finite counters, with one counter Vx for all x ∈ GB: the scanner
reads the word from left to right, one letter at a time, and increments one counter Vx whenever:
1) the current prefix of w ends in the factor x, and 2) the counter Vx has not reached its threshold.
At the end of the scan of w, the scanner may check whether the various counters have reached

160 Marcella Anselmo, Alessandra Cherubini and Pierluigi San Pietro

their threshold, storing the results in a boolean vector. To check if w ∈ L, it is enough to apply
a suitable boolean function, depending on L, to this boolean vector. A linear ALD A can be
devised in such a way that a root-to-frontier visit of the constituents of a valid tree of frontier w,
for every long enough w ∈ Σ+, replicates the left-to-right run of the above scanner on w, with
the left context l representing the prefix of w already examined by the scanner, and the length
of the right context as a monotonic encoding of the vector V . An ALD for this contains (apart
from some suitable initialization and termination rules to be described next) rules of the following
form:

(y, a∆Σh, Σj ⊥)

with y ∈ Σk−1 (k being the length of the largest word in GB) , a ∈ Σ, and h, j defined by a
suitable encoding rule to be discussed. Hence, a rule as above simulates a move of the scanner
reading a after a factor y (hence, matching a factor ya), with a counter configuration V encoded
by j, and moving to the new configuration V ′ encoded by h + j.

Initialization rules (i.e., matching only constituents at the root of a valid tree) are quite straight-
forward. They have the form (⊥, y∆Σh,⊥) with y ∈ Σk−1 and h encoding the factor of y in GB.

Termination rules are those matching only constituents without children, i.e., constituents at
the frontier of a valid tree. The idea is that a generalized stencil tree, valid for A, has a frontier
always of the form v∆z, with v, z ∈ Σ∗, and |z| bounded. Hence, a termination rule of the form:

(y, ǫ, z ⊥)

with y ∈ Σk−1, z ∈ Σ∗ is in A whenever the encoding |z| corresponds to an acceptance con-
figuration of the scanner. More precisely, since |z| only encodes the configuration of the scanner
after reading v, and not after reading w = vz itself, one has to add a termination rule (y, ǫ, z ⊥)
considering the configuration reached by the scanner after reading vz: there may be other factors
of GB in z that have not been already counted. However, this test need not know the exact (un-
bounded) prefix v encountered by the scanner, but only its (bounded) encoding |z|, the bounded
suffix y of v, and the factors in GB of the bounded word yz. Hence, for a tlt L there is finite set
of possibilities and therefore the termination rules are finite and can be added to A.

Notice that all words whose encoding is longer than the word itself are not dealt with by the
above construction. However, since the possible encodings are finite, the set F of words x ∈ L
that are not longer than the largest encoding is finite. Hence, we just add to A a finite set of
rules of the form (⊥, x,⊥), for every x ∈ F .

The encoding used to store the vector V of monotonic counters is based on traditional ideas,
loosely inspired by Gödel’s famous encoding, based on prime factors, of sentences, proofs and
theorems of arithmetic theory in his historical proof of the Incompleteness Theorem. Let g :
GB → P , where P is the set of prime numbers, and g is one-to-one. We extend g to every x
in the set (⊥ ∪Σ)∗, by defining g(x) = 1 for each x 6∈ GB. Now, given an integer j ≥ 0 and
the decomposition pe1

1 pe2
2 . . . , with pi ∈ P , ei ≥ 0 in prime factors of an integer q > 0, define

[q]j = p
min(j,e1)
1 p

min(j,e2)
2 Define ḡ to enumerate all relevant factors of each word v ∈ (Σ∪ ⊥)∗

as follows: ḡ(ǫ) = 0 and for v 6= ǫ:

ḡ(v) =

[
∏

w∈GB

g(w)|v|w

]

n

(1)

REGULAR LANGUAGES AND ASSOCIATIVE LANGUAGE DESCRIPTIONS 161

Hence, the encoding ḡ(v) of v stores all counter values up to the largest threshold n. As
an example, consider GB = {⊥ a,⊥ b, aa, ab, ba, abab, abba, b ⊥,⊥ aba ⊥}, with n = 2. An
enumeration g is g(⊥ a) = 2, g(⊥ b) = 3, g(ab) = 5, g(ba) = 7, g(aa) = 11, g(b ⊥) = 13, g(⊥
aba ⊥) = 17, g(abab) = 19, g(abba) = 23. Then, ḡ(⊥ aabab ⊥) = 2 × 3 × 52 × 7 × 11 × 13 × 19.

The complete proof of following Prop. 3.10 contains the correct update rules of the encodings
used in the right contexts.

Proposition 3.10 Each regular threshold locally testable language is an ALD language.

Proof:
Let L be a tlt, with B,GB defined as above. Let n = max (h | ∃x ∈ Σ+ : F (x, h) ∈ B), and

let k be the length of the largest word in GB. We claim that there exists an ALD Q such that
L(Q) = L. The following property of the above-defined enumeration ḡ is immediate, for all
x, z ∈ Σ+, y ∈ Σ≤k:

ḡ(xyz) = [ḡ(xy) · ḡ(yz)/ḡ(y)]n (2)

Let G = {h ≥ 0 | ∃v ∈ Σ∗ : v ∈ Σ∗ ∧ h = ḡ(⊥ v ⊥)}. Clearly, G is finite. Let M = {m ≥
0 | ∃v ∈ Σ+ : v ∈ L ∧ m = ḡ(⊥ v ⊥)}. We claim that v ∈ L iff ḡ(v) ∈ M (with M finite). The
“only if” part is obvious from the definition of M , while the “if” part follows from the fact that L
is a tlt: L is testable by checking a boolean expression, whose atoms can be checked for truth by
looking at the encoding ḡ(⊥ v ⊥) (each F (x, h) can be checked since h ≤ n).

Let Q1 = {(⊥, x,⊥) | x ∈ Σ∗, |x| ≤ k + max(G), x ∈ L}. Q1 is the ALD defining exactly all
the (finite number of) words of L of length not greater than k + max(G) (thus, Q1 can always
be constructed by checking all words of length up to k + max(G)).

Let Q2 = Q′
2 ∪ Q′′

2 , with:

Q′
2 =

{
(⊥, y∆Σh,⊥) | y ∈ Σk−1, h = ḡ(⊥ y)

}

Q′′
2 =

{
(y, a∆Σh, Σj ⊥) | y ∈ Σk−1, a ∈ Σ, j ∈ G, h[j · ḡ(ya)/ḡ(y)]n − j

}

We claim that: (*) if a generalized stencil tree α is valid for Q2 (i.e., α ∈ GT (Q2)), then
∃v, z ∈ Σ∗ : τ(α) = v∆z, ḡ(⊥ v) = |z|. The proof of (*) is by induction on the number i of
constituents of a (obviously linear) generalized stencil tree α valid for Q2. The base case i = 1 is
immediate from the definition of Q′

2. Let α have i + 1 constituents for i > 0. Then there exist
a ∈ Σ, x, v1, z ∈ Σ∗, y ∈ Σk−1, β ∈ GT (Q2) such that τ(β)v1y∆z, τ(α) = v1ya∆xz. Hence, α
has one constituent more than β, matched by the rule (y, a∆x, z ⊥) ∈ Q′′

2 . Hence, by definition
of Q′′

2 , |x| = [|z| · ḡ(ya)/ḡ(y)]n − |z|. By (2), ḡ(v1ya) = [ḡ(v1y) · ḡ(ya)/ḡ(y)]n. By induction
hypothesis (applied to β), ḡ(⊥ v1y) = |z|. Hence, |xz| = |x|+ |z|([|z| · ḡ(ya)/ḡ(y)]n −|z|)+ |z|[|z| ·
ḡ(ya)/ḡ(y)]n = [ḡ(⊥ v1y) · ḡ(ya)/ḡ(y)]nḡ(⊥ v1ya).
We also claim that: (+) for every v ∈ Σk−1Σ∗, z ∈ Σ∗ such that ḡ(⊥ v) = |z|, there exists a
generalized stencil tree α ∈ GT (Q2) such that τ(α) = v∆z. The proof of (+) is by induction on
the length of v. The base case is v ∈ Σk−1: the thesis follows immediately from the definition of
Q′

2. If |v| > 0 then let v = w′a, w′ ∈ Σ∗, a ∈ Σ. By induction hypothesis, for all z′ ∈ Σ+ such that
|z′| = ḡ(⊥ w′) there exists a generalized stencil tree in GT (Q2) of frontier w′∆z′. In particular,
we can select z′ to be a suffix of z (|z′| = ḡ(⊥ w′) ≤ ḡ(⊥ w′a) = |z|): z = z′′z′ for one z′′ ∈ Σ∗.
Let w′′ be the suffix of length k−1 of w′. The claim is proved if (w′′, a∆z′′, z′) ∈ Q2. By definition

162 Marcella Anselmo, Alessandra Cherubini and Pierluigi San Pietro

of Q2, it is enough to show that |z′′| = [|z′| · ḡ(w′′a)/ḡ(w′′)]n − |z′|, that is equivalent to show
that |z| = |z′| + |z′′| must equal [|z′| · ḡ(w′′a)/ḡ(w′′)]n. By induction hypothesis, |z′| = ḡ(⊥ w′):
[|z′| · ḡ(w′′a)/ḡ(w′′)]n [ḡ(⊥ w′) · ḡ(w′′a)/ḡ(w′′)]n, which by (2), is equal to ḡ(⊥ w′a) = ḡ(⊥ v),
which by hypothesis is exactly equal to |z|.

Let Q3 =
{
(y, ǫ, z ⊥) | y ∈ Σk−1, z ∈ Σ∗, |z| ≤ max(G), [|z| · ḡ(yz ⊥)/ḡ(y)]n ∈ M,

}
.

We claim that an ALD Q for L is Q1 ∪ Q2 ∪ Q3. To show that L ⊆ L(Q), suppose v ∈ L.
If |v| ≤ k + max(G) then v ∈ L(Q1) ⊆ L(Q). If v > k + max(G) then ∃!x, x′ ∈ Σ+ | v = xx′

and |x′| = max(G) (therefore, |x| ≥ k). Hence, since ḡ(⊥ v) ≤ max(G), ∃w, z ∈ Σ+ such that
x′ = wz and |z| = ḡ(⊥ v). Q2 defines, by the above property (+), also the valid generalized
stencil tree with frontier x∆z. It is enough to show that there is a rule in Q3 of type (y, w, z ⊥),
and v = xwz ∈ L(Q). To this effect, the other conditions being obviously verified, we need to
prove that [|z| · ḡ(ywz ⊥)/ḡ(y)]n ∈ M , with y being the suffix of length k − 1 of x (|x| ≥ k). But
|z|ḡ(⊥ x). Hence, [|z| · ḡ(ywz ⊥)/ḡ(y)]n = [ḡ(⊥ x) · ḡ(ywz ⊥)/ḡ(y)]n, which by (2) (and since y is
a suffix of x) is equal to ḡ(⊥ xwz ⊥) ∈ M . To show that L(Q) ⊆ L, suppose that v ∈ L(Q2∪Q3)
(since L(Q) = L(Q1) ∪ L(Q2 ∪ Q3) and because we can ignore the obvious case v ∈ L(Q1)).
Then v = xwz, where x, w, z ∈ Σ∗ and x∆z is the frontier of a generalized stencil tree valid
for Q2 ⊆ Q, with (y, w, z ⊥) ∈ Q3, where y ∈ Σk−1 is suffix of ⊥ x. By (2), ḡ(⊥ xwz ⊥) =
[ḡ(⊥ x) · ḡ(ywz ⊥)/ḡ(y)]n, which is equal, since ḡ(⊥ x) = |z| by the above property (*) of Q2, to
[|z| · ḡ(ywz ⊥)/ḡ(y)]n that by definition of Q3 is in M . By definition of M , v = xwz ∈ L. ✷

Example 3.11 We show here an example of the construction used in the proof of Prop 3.10.
Consider the following tlt language L:

{aΣ∗} ∩ F (aa, 2) ∩ ¬{Σ∗b} ∪ ¬{aΣ∗} ∩ ¬F (aa, 2) ∩ {Σ∗b}

Then GB = {⊥ a, aa, b ⊥}. Let g(⊥ a) = 2, g(aa) = 3, g(b ⊥) = 5. Hence, n = k = 2 and
G =

{
h | ∃0 ≤ h1, h2, h3 ≤ 2ih = 2h13h25h3

}
, with max(G) = 22 · 32 · 52. A few of the elements

of G are actually useless, since for every word w,the exponent of factors 2 and 5 in ḡ(⊥ w ⊥)
can never be larger than 1. M , by the definition of the expression of L and of the encoding
g, is:

{
2 · 32, 5, 3 · 5

}
. Q1 is the finite set

{
(⊥, x,⊥) | x ∈ Σ∗, |x| ≤ 2 + 223252, x ∈ L

}
. Q′

2 =
{
(⊥, y∆Σh,⊥) | y ∈ Σk−1, h = ḡ(y)

}
=

{
(⊥, a∆Σ22

,⊥), (⊥, b∆,⊥)
}
.

Q′′
2 =

{
(y, a∆Σh, Σj ⊥) | y ∈ Σk−1, a ∈ Σ, j ∈ G, h = [j · ḡ(ya)/ḡ(y)]n − j

}
is the union of four

sets AA, AB, BA, BB.

AA =
{
(a, a∆Σh, Σj ⊥) | j ∈ G, h = [j · ḡ(aa)/ḡ(a)]2 − j

}

By the definition of ḡ and of the operator []2, h in the expression of AA is equal to [3j]2−j, which
is equal to 0 if j is a multiple of 32, 2j otherwise. Rules in AA introduce a new occurrence of the
factor aa: if the current encoding j has already counted factors aa up to the threshold 2, then the
presence of the factor is disregarded. Otherwise, the length of the right context is incremented by
twice its amount, i.e., it is multiplied by 3 = g(aa).

AB =
{
(a, b∆Σh, Σj ⊥) | j ∈ G, h = [j · ḡ(ab)/ḡ(a)]2 − j

}

REGULAR LANGUAGES AND ASSOCIATIVE LANGUAGE DESCRIPTIONS 163

By the definition of ḡ and of the operator []2, h in the expression of AB is equal to [j]2 − j,
which is equal to 0. Rules in AB introduce a new occurrence of the factor ab, which is not in GB.
Hence, the presence of this factor may be disregarded.

The other two sets can be computed as for the case of AB, obtaining h = 0 since they cannot
add any factor of GB:

BA =
{
(b, a∆, Σj ⊥) | j ∈ G

}
, BB =

{
(b, b∆, Σj ⊥) | j ∈ G

}

being very similar to AB.

Finally, the set Q3 is too large to be computed here, since one has to check, for every h ∈ M ,
if every word yz in Σh + 1 is such that ḡ(yz ⊥) ∈ M . For instance, we must check all 219 words
of length k − 1 + max(M). We just give an example of a rule in Q3: (a, ǫ, b5 ⊥) (in Q3 since
5 ∈ M and ḡ(ab5 ⊥) = 5 ∈ M) and another example of a similar rule not in Q3: (a, ǫ, a5 ⊥)
(since 5 ∈ M and ḡ(aa5 ⊥) = 32 6∈ M).

3.3 Relations with the Star-height Hierarchy

In this section we consider the (restricted) star height hierarchy of regular languages and show
that there is an ALD language in each level of this hierarchy. This implies that ALD languages
are well distributed inside the class of regular languages.

Let consider for each i ≥ 0 the language Ri on a binary alphabet given by a regular expression
ei defined recursively as follows:

• e0 = ǫ

• ei+1 = (a2i

eib
2i

ei)
∗, i ≥ 0.

The language Ri has star height i (9). We introduce below, for each i, an ALD Ai defining Ri.
Assuming that we are able of giving an ALD Ai−1 defining Ri−1, the idea of the construction is
that we can modify the rules of Ai−1 to obtain a subset of rules of Ai. In particular, by appending

valid trees of Ai−1 to a placeholder of a generalized valid tree with frontier (a2i

Λb2i

Λ)n, n ≥ 0
we obtain a tree whose frontier is in Ri.

Proposition 3.12 There is an ALD language in each level of the star height hierarchy.

Proof: We claim that Ri is defined by the ALD Ai whose rules are the following:

{(⊥, Λa2i−1

Xi−1Λ, ǫ), (⊥, ǫ,⊥)} ∪
⋃

1≤h<i

{
(⊥ a2i−1

a2i−2

· · · a2i−h

, Λa2i−h−1

Xi−h−1Λ, ǫ)
}
∪

⋃

1≤h<i,i−h≤k<i

{(ba2k

a2k−1

· · · a2i−h

, Λa2i−h−1

Xi−h−1Λ, ǫ)}∪

⋃

1≤h<i,2i−h≤j<2i−h+1

{(abj, Λa2i−h−1

Xi−h−1Λ, ǫ)}

164 Marcella Anselmo, Alessandra Cherubini and Pierluigi San Pietro

where Xt = Λb2t

if t > 0 and X0 = b. Let

Ai(⊥) = {(⊥ a2i−1

a2i−2

· · ·a2i−h

, Λa2i−h−1

Xi−h−1Λ, ǫ) | 1 ≤ h < i},

Ai(b) = {(ba2k

a2k−1

· · · a2i−h

, Λa2i−h−1

Xi−h−1Λ, ǫ) | 1 ≤ h < i, i − h ≤ k < i}

Ai(a) = {(abj , Λa2i−h−1

Xi−h−1Λ, ǫ) |1 ≤ h < i, 2i−h ≤ j < 2i−h+1}

let σi ((x, y, ǫ)) = (xa2i

, y, ǫ) for all (x, y, ǫ) ∈ Ai(⊥) ∪ Ai(b), and finally let

σi((⊥, Λa2i−1

Xi−1Λ, ǫ)) = {(⊥ a2i

, Λa2i−1

Xi−1Λ, ǫ), (ba2i

, Λa2i−1

Xi−1Λ, ǫ)}

∪{xb2i

, Λa2i−1

Xi−1Λ, ǫ) |(x, Λa2i−2

Xi−2Λ, ǫ) ∈ Ai(a)}

Then the ALDs Ai can be recursively defined as follow:

A1 = {(⊥, ΛabΛ, ǫ), (⊥, ǫ,⊥)}

Ai+1 = {(⊥, Λa2i−1

Xi−1Λ, ǫ), (⊥, ǫ,⊥)} ∪ Ai(a) ∪ Ai(b) ∪ σi((⊥, Λa2i−1

Xi−1Λ, ǫ)) ∪
⋃

(x,y,ǫ)∈Ai(⊥)∪Ai(b)

σi((x, y, ǫ))

We will prove by induction on i that Ri = L(Ai). The case i = 1 is trivial (R1 = (ab)∗ is ALD).
Assume that Ri−1 = L(Ai−1). We first show that Ri ⊆ L(Ai). The proof that for all w ∈ Ri it is
the case that w ∈ L(Ai) is by induction on |w|. Both the empty word and the shortest non-empty

word in Ri, a2i−1

b2i−1

, belong to Ri and to L(Ai). Then let w =
∏

1≤h≤n(a2i−1

uhb2i−1

vh) (where∏
denotes concatenation) with uh, vh ∈ Ri−1, 1 ≤ h ≤ n and u1v1 6= ǫ if n = 1. First suppose

n = 1. If v1 6= ǫ then w0 = a2i−1

u1b
2i−1

is a word of Ri shorter than w, so there are both a valid
tree T (w0) of Ai for w0 and a generalized valid tree T0 (see Def. 3.9) of Ai, with τ(T0) = w0∆.
Moreover, v1 ∈ Ri−1, and hence there is a valid tree T (v1) of Ai−1 for v1. Since the proof now
requires references to individual nodes of a stencil tree, we denote every node by the progressive
integer obtained by enumerating the nodes of the tree in a breadth-first, left-to-right visit of the
tree starting at the root (Hence, the nodes are numbered 0, 1, 2...). Let j be the leaf of T0 labelled
by ∆. Appending T (v1) to the node j in T0 results into a tree T with τ(T) = w. To prove that T is
a valid tree of Ai we have to prove that each constituent of the maximal subtree Tj, whose root is j,
is matched by a rule of Ai. Since Tj is a copy of T (v1), each constituent K of Tj has in T (v1) a copy
matched by a rule ri−1(K) ∈ Ai−1. Moreover, left(K, T) = w0x with left(K, T (v1)) =⊥ x and

either x = ǫ or first2i−2(x) = a2i−2

. Hence, if ri−1(K) ∈ Ai−1(a) ∪ Ai−1(b) ⊂ Ai, K is matched

by the same rule (of Ai) in T . Then suppose ri−1(K) ∈ Ai−1(⊥) ∪ {(⊥, Λa2i−2

Xi−2Λ, ǫ)}. If

ri−1(K) is the rule (⊥ a2i−2

a2i−3

· · · a2i−h−1

, Λa2i−h−2

Xi−h−2Λ, ǫ) for some h, 1 ≤ h < i − 1,

then left(K, T) = w0a
2i−2

a2i−3

· · ·a2i−h−1

and since last1(w0) = b, K is matched in T by

the rule (ba2i−2

a2i−3

· · ·a2i−h−1

, Λa2i−h−2

Xi−h−2Λ, ǫ) ∈ Ai−1(b) ⊂ Ai. Otherwise, if ri−1(K)

is the rule (⊥, Λa2i−2

Xi−2Λ, ǫ) then left(K, T) = w0 and since last2i(w0) = atb2i−t for some

t > 0 such that 2i − t ≥ 2i−1, then K is matched in T by the rule (ab2i−t, Λa2i−2

Xi−2Λ, ǫ) ∈

σi−1((⊥, Λa2i−2

Xi−2Λ, ǫ)) ⊂ Ai. Hence, each constituent K of T is matched by some rule of Ai,

and therefore T is a valid tree of Ai. If v1 = ǫ, then w0 = a2i−1

u1b
2i−1

with u1 6= ǫ, u1 ∈ Ri−1.

REGULAR LANGUAGES AND ASSOCIATIVE LANGUAGE DESCRIPTIONS 165

Hence there is a valid tree T (u1) for u1 in Ai−1. Then let T0 be the generalized stencil tree

of Ai formed by the constituent matched by the initial rule (⊥, a2i−1

∆b2i−1

,⊥). Appending
T (u1) to the placeholder of T0, we get a tree T with τ(T) = w. Each constituent K of
T (u1) is matched by a rule ri−1(K) ∈ Ai−1. Again, we can assume ri−1(K) ∈ Ai−1(⊥)∪

{(⊥, Λa2i−2

Xi−2Λ, ǫ)}. If ri−1(K) is the rule (⊥ a2i−2

a2i−3

· · · a2i−h−1

, Λa2i−h−2

Xi−h−2Λ, ǫ) for

some h, 1 ≤ h < i − 1, then left(K, T) = a2i−1

a2i−2

a2i−3

· · · a2i−h−1

and K is matched by the

rule (⊥ a2i−1

a2i−2

a2i−2

a2i−3

· · ·a2i−h−1

, Λa2i−h−2

Xi−h−2Λ, ǫ) ∈ σi−1(Ai−1(⊥)) ⊂ Ai. Otherwise,

if ri−1(K) is the rule (⊥, Λa2i−2

Xi−2Λ, ǫ) then left(K, T) = a2i−1

and K is matched by the

rule (⊥ a2i−1

, Λa2i−2

Xi−2Λ, ǫ) ∈ σi−1((⊥, Λa2i−2

Xi−2Λ, ǫ)) ⊂ Ai. Then, in any case, each con-
stituent K of T is matched by some rule of Ai, and T is again a valid tree of Ai. Then consider
the case n ≥ 1. Both w1 = a2i−1

u1b
2i−1

v1, w2 =
∏

2≤h≤n(a2i−1

uhb2i−1

vh) are shorter than w
and belong to Ri: by induction, there are two valid trees T (w1) and T (w2) of Ai such that
τ(T (w1)) = w1, τ(T (w2)) = w2. T (w2) has a unique constituent K matched by a rule of

the form (⊥, x, ǫ) with x ∈ {a2i−1

Λb2i−1

Λ}. Replacing K with a constituent K ′ matched by
the rule (⊥, ∆x, ǫ), we get a generalized valid stencil tree T2 whose frontier is ∆w2. Let j be
the unique leaf of T2 labelled by a placeholder. Appending T (w1) to the node j of T2 results
in a tree T with τ(T) = w1w2 = w. To prove that T is a valid tree, it is enough to verify
that all of its constituents appended to a node k ≥ j are matched by some rule of Ai. Let
T1 be the maximal subtree of T of root j. T1 is a copy of T (w1), so each constituent C ap-
pended to a node of T1 has the same left context of its copy in T (w1): it must be matched
by some rule of Ai. Now let C be a constituent of T appended to a node m > j not be-
longing to the set of nodes of T1. C is a constituent of T2: it is matched in T2 by a rule
ri(C) of Ai. Obviously, left(C, T) = w1x where left(C, T2) =⊥ x and first2i−1(x) = a2i−1

.
So if ri(C) ∈ Ai(a) ∪ Ai(b) then C is matched by ri(C) also in T . Then let ri(C) ∈ Ai(⊥)∪

{(⊥, Λa2i−1

Xi−1Λ, ǫ)}. If ri(C) is the rule (⊥ a2i−1

a2i−2

· · · a2i−h

, Λa2i−h−1

Xi−h−1Λ, ǫ) for some

h, 1 ≤ h < i, then left(C, T) = w1a
2i−1

a2i−2

· · ·a2i−h

and since last1(w1) = b, K is matched in T

by the rule (ba2i−1

a2i−2

· · · a2i−h

, Λa2i−h−1

Xi−h−1Λ, ǫ) ∈ (Ai(b)) ⊂ Ai. Otherwise, if ri(C) is the

rule (⊥, Λa2i−1

Xi−1Λ, ǫ), then left(C, T) = w1 and since last2i(w0) = atb2i−t for some t > 0 such

that 2i − t ≥ 2i−1, C must be matched in T by the rule (ab2i−t, Λa2i−1

Xi−1Λ, ǫ) ∈ Ai(a) ⊂ Ai.
Hence, each constituent C of T is matched by some rule of Ai: T is a valid tree of Ai. So
Ri ⊆ L(Ai) for all positive integers i.

To prove the opposite inclusion, Ri ⊇ L(Ai), we have to show that the frontier of each valid
tree of Ai belongs to Ri for each i > 0. Again, the proof is by induction on i. Let T be a
valid tree of Ai. Of course, if T has height 1, τ(T) = a2i−1

b2i−1

∈ Ri. Assume τ(T ′) ∈ Ri for
each valid tree T ′ of Ai of height m < n and let T a valid tree of height n. The constituent
K0 of T with the same root 0 of T is matched by a rule (⊥, Λa2i−1

Λb2i−1

Λ,⊥). Enumerate all
the nodes in T also when they are labelled by Λ = ǫ, and denote by Ti the maximal subtree of
T appended to the node i. T1 (if non empty) is a valid tree of Ai of height m ≤ n − 1, hence
w1 = τ(T1) ∈ Ri. T2+2i−1 , T3+2i (if non empty) are valid trees of Ai−1, shortly called T2 and T3,

hence w2 = τ(T2), w3 = τ(T3) ∈ Ri−1. So the frontier of T is w1a
2i−1

w2b
2i−1w3 which obviously

is in Ri. ✷

166 Marcella Anselmo, Alessandra Cherubini and Pierluigi San Pietro

3.4 Regular group languages

A group language is a language whose syntactic monoid is a group. We will show that any regular
group language can be defined by an ALD. The proof is based on the analysis of the loops in a
particular automaton recognizing the language that is related to its syntactic monoid.

Let us firstly introduce some notations. Let L ⊆ Σ∗ be a regular language. Let us denote: ≡L

the syntactic congruence on L, M(L) the syntactic monoid of L with identity 1, and [w]L the ≡L-
congruence class of w ∈ Σ∗. Further, let us denote SYM(L) the automaton of transitions in M(L),
that is the automaton whose graph is the Cayley graph of M(L), the identity 1 is the initial state
and the final states are those ones representing words in L. It is well-known that SYM(L) recog-
nizes L. We will say that a path (q1, q2, · · · , qn) in a finite automaton has loop-nesting degree d = 0
if the path is simple (i.e., without loops) (qi 6= qj for any 1 ≤ i < j ≤ n); it has loop-nesting degree
d ≥ 1 if there exist 1 ≤ i1 < i2 < · · · < i2k−1 < i2k ≤ in such that for any odd h = 1, · · · , 2k − 1
we have that: qih

= qih+1
, the path (q1, · · · , qi1 , qi2+1, · · · , qi3 , qi4+1, · · · , qi2k−1

, qi2k+1, · · · , qn)
has loop-nesting degree d − 1 and the path (qih

, qih+1, · · · , qih+1
) has no repetition of states un-

less for state qih
. Finally, given an automaton A, we denote by SSP (A), the set of labels of

all successful simple paths (a simple path from an initial to a final state) in A, and by SL(A),
the set of labels of all simple loops on the initial state of A. The reference to the automaton is
dropped when there is no ambiguity on the automaton to be considered.

Remark that the automaton of transitions in M(L) is a deterministic automaton, and that
in general it is bigger than the minimal automaton. Nevertheless its introduction here is useful
because in the case of group languages its loops are very special: they can be inserted in any
position of any word of the language, regardless to the contexts. This property allows us to
construct an ALD defining the language.

Proposition 3.13 Each regular group language is an ALD language.

Proof: Let L ⊆ Σ∗ be a regular language whose syntactic monoid M(L) is a group. Consider
the automaton SYM(L) of transitions in M(L) and let y be the label of any loop on a state
m in SYM(L). Hence my ≡L m. Since M(L) is a group, there exists m′ ∈ M(L) such that
m′m = 1 and then [y]L = m′m [y]L = m′m = 1. This implies that any loop in SYM(L) is
also a loop on any state and that for any u, v ∈ Σ∗ we have uv ∈ L iff uyv ∈ L. An ALD
A(L) defining L can therefore be constructed as follows. The rules of A(L) are the following:
{(⊥, Λ(w),⊥) | w ∈ SSP} and {(ǫ, Λ(w), ǫ) | w ∈ SL}.

We claim that a word (is in L iff it) is recognized by SYM(L) iff it is defined by A(L). Remark
that since w is in Λ(w), and because of the special kind of rules in A(L), we have that there
is a valid stencil tree in A(L) with frontier w iff there is a valid generalized stencil tree (see
Def. 3.9) in A(L) with frontier w′ for any w′ in Λ(w). A word w is recognized by SYM(L) iff
there is a successful path in SYM(L) labelled w. We show by induction that there is a successful
path labelled w in SYM(L) of loop-nesting degree d iff there is a valid generalized stencil tree
for A(L) with frontier w′ for any w′ in Λ(w) and height h with h = d. One has d = 0 iff the
path is simple iff the rules (⊥, Λ(w),⊥) are in A(L), giving raise to a generalized valid stencil
tree of height h = 0 whose frontier is w′ for any w′ in Λ(w). Suppose now d > 0. According
to the above definition, a successful path of loop-nesting degree d > 0 is a successful path
(q1, · · · , qi1 , qi2+1, · · · , qi3 , qi4+1, · · · , qi2k−1

, qi2k+1, · · · , qn) having loop-nesting degree d − 1 and

REGULAR LANGUAGES AND ASSOCIATIVE LANGUAGE DESCRIPTIONS 167

1

a

a

a

a

a

a

b

b

b

ba

aa

ab

a

b

Fig. 2: The automaton SYM(L) for the language L in Example 3.14.

label z, where some simple loops with labels y1, · · · , yl are inserted on qi1 , qi3 , · · · , qi2k+1
(note

l ≥ k + 1). By induction, this holds iff there is a valid generalized stencil tree for A(L) of height
h − 1 = d − 1 and frontier z′ for any z′ in Λ(z), and the rules (ǫ, Λ(y1), ǫ), · · · , (ǫ, Λ(yl), ǫ) are in
A(L). Finally this condition holds iff there is a valid generalized stencil tree for A(L) of height
h = d and frontier w′ for any w′ in Λ(w). ✷

Example 3.14 Let L ⊆ {a, b}∗ be the language recognized by the finite automaton ({1, 2, 3}, {a, b},
{1}, {1}, δ), where the transition function is given by: δ(1, a) = δ(1, b) = 2, δ(2, a) = 3, δ(2, b) =
1, δ(3, a) = 1 and δ(3, b) = 3. The syntactic monoid of L is M(L) = {1, a, b, a2, ab, ba}
with relations b2 = 1, a3 = 1, a2b = ba, aba = b, ba2 = ab, and bab = a2. We have
that M(L) is a group. The automaton SYM(L) of transitions in M(L) is given in Fig. 2.
The sets SSP and SL for SYM(L) are the following: SSP = {1, ab, ba2, a2ba}, and SL =
{b2, a3, abab, baba, ba2ba2, a2ba2b, aba2ba}. According to Proposition 3.13, an ALD defining lan-
guage L is given by the set of the following rules: (⊥, ǫ,⊥), (⊥, Λ(ab),⊥), (⊥, Λ(ba2),⊥),
(⊥, Λ(a2ba),⊥), and (ǫ, Λ(b2), ǫ), (ǫ, Λ(a3), ǫ), (ǫ, Λ(abab), ǫ), (ǫ, Λ(baba), ǫ), (ǫ, Λ(ba2ba2), ǫ),
(ǫ, Λ(a2ba2b), ǫ), (ǫ, Λ(aba2ba), ǫ).

3.5 Relations with regular commutative languages

In this section we consider regular commutative languages. The family of regular commutative
languages on an alphabet Σ is the boolean algebra generated by languages of the form F (x, k) =
{u ∈ Σ∗ | |u|x ≥ k ≥ 0} or F (x, k, n) = {u ∈ Σ∗ | |u|x ≡ k (mod n)} with 0 < k < n, for
x ∈ Σ. Any regular commutative language has a normal form and is recognized by a normal
automaton. From the normal automaton we are able to construct an ALD for two classes
of regular commutative languages: regular languages in Com+, the positive boolean algebra
generated by languages of the form F (x, k), F (x, k, n), and regular commutative languages on an
alphabet of at most two letters.

To introduce the normal form we need some notations. Define E(x, k) = {u ∈ Σ∗ | |u|x =
k} and for every k ≥ 0 define E(x, k, n) = {u ∈ Σ∗ | |u|x ≡ k(mod n), |u|x ≥ k}. Then:

168 Marcella Anselmo, Alessandra Cherubini and Pierluigi San Pietro

F (x, k) =
⋃

0≤i<k E(x, i), F (x, k, n) =
⋃

0≤i<n,i6=k F (x, i, n), F (x, k) = E(x, k, 1), and, for k < n,
E(x, k, n) = F (x, k, n). Hence, each regular commutative language belongs to the positive (i.e.,
negation-free) boolean algebra generated by the languages of the form E(x, k) or E(x, k, n) (called
in the sequel literals L(x) on x) where k ≥ 0, n > 0, x ∈ Σ. Moreover, for each x ∈ Σ, L(x) =
L(x) ∩ E(y, 0, 1), x 6= y and ∀h > 0 : E(x, k, n) =

⋃
0≤i<t E(x, k + in, hn) where t is the least

integer such that k + tn ≥ hn.

Definition 3.15 A regular commutative language L on Σ is representable in normal form if:
∃r > 0 : L =

⋃
1≤j≤r Cj, where Cj =

⋂
x∈Σ Lj(x), with either Lj(x) = E(x, kj,x) or Lj(x) =

E(x, kj,x, nx) for some nonnegative integer kj,x depending on j and x and a positive integer nx

only depending on x. The terms Cj are called normal terms of L.

From previous remarks, using standard set operation properties, it is immediate to prove the
following result.

Fact 3.16 Each regular commutative language can be represented in normal form.

Now we show how to construct a normal automaton recognizing a regular commutative lan-
guage, starting from its normal form. The normal automaton is divided in some regions charac-
terized by the allowed letters in the loops. Further the loops in a region can be inserted on any
state in that region. This allows us to construct an ALD for any language of labels of successful
paths ending in a same region.

In the sequel L will denote a regular commutative language in normal form on the alphabet Σ =
{a1, a2, ..., an}, and then L =

⋃
1≤j≤r Cj for some positive integer r, with Cj =

⋂
i=1,··· ,n Lj(ai).

Let Li =
⋃

1≤j≤r Lj(ai) = (
⋃

j′∈J′

i
E(ai, kj′,ai

)) ∪ (
⋃

j′′∈J′′

i
E(x, kj′′,ai

, nai
)) be the union of all

literals on ai occurring in L. Denote ni = nai
, kj,ai

= kj,i and let Ki = maxj′∈J′

i
{kj′,i}, (where

Ki = 0 if J ′
i = ∅ and ni = 1 if J ′′

i = ∅).
The Cayley graph Γ(Li) of the syntactic monoid of Li has Ki + ni + 1 vertices Xi,l, 0 ≤ l ≤
Ki + ni, loops labelled by aj with j 6= i are based at each vertex, an edge labelled by ai

goes from Xi,t to Xi,t+1 for each t, 0 ≤ t ≤ Ki + ni − 1 and an edge with label ai from
Xi,Ki+ni

to Xi,Ki+1. The graph Γ(Li) has two parts: the first part contains the Ki + 1 vertices
Xi,l, 0 ≤ l ≤ Ki, and no loops whose labels contain ai are based at its vertices, the second part
contains the ni vertices Xi,l, Ki + 1 ≤ l ≤ Ki + ni and a loop labelled by ani

i is based at each
vertex. The automaton SYM(Li) has Γ(Li) as underlying graph, initial state Xi,0 and final states

{Xi,kj′,i
| j′ ∈ J ′

i} ∪
⋃

j′′∈J′′

i
{Xi,k̃j′′ ,i

| k̃j′′,i ≡ kj′′,i (mod ni) ∧ kj′′,i ≤ k̃j′′,i ≤ Ki + ni}.

Let Γ =
∏

i=1,n Γ(Li). Γ is partitioned in 2n regions denoted by Γ(η1,...,ηn), with ηi = 0, 1,
composed as follows. For each region Γ(η1,...,ηn) let I ′(η1,...,ηn) = {i | 1 ≤ i ≤ n ∧ ηi = 1},

I ′′(η1,...,ηn) = {i | 1 ≤ i ≤ n ∧ ηi = 0}. Then Γ(η1,...,ηn) has
∏

i′∈I′

(η1,...,ηn)
ni′×

∏
i′′∈I′′

(η1,...,ηn)
(Ki′′ +

1) vertices V
(η1,...,ηn)
(m1,m2,...,mn) = (X1,m1 , ..., Xn,mn

) with Ki + 1 ≤ mi ≤ Ki + ni for i ∈ I ′(η1,...,ηn) and

0 ≤ mi ≤ Ki for i ∈ I ′′(η1,...,ηn). The same set of loops are based at each vertex, the loops are

labelled by anagrams of
∏

i∈I′

(η1,...,ηn)
asi·ni

i , si ≥ 0. In particular Γ(0,0,...,0) has
∏

i=1,n(Ki + 1)

vertices V
(0,0,...,0)
(m1,m2,...,mn) = (X1,m1 , ..., Xn,mn

) with 0 ≤ mi ≤ Ki, and no loop is based on its

vertices. The apices on the vertex names indicate the region of Γ which the vertex belongs to
and can be omitted.

REGULAR LANGUAGES AND ASSOCIATIVE LANGUAGE DESCRIPTIONS 169

Γ

(1,1)Γ

(1,0) (0,1)

(0,0)

(1,1)(0,1)

(1,0)(0,0)

Γ

5

4

3

2

1

a

3210

b

Γ Γ

Γ

Γ

Γ

Fig. 3: The normal automaton for language L of Example 3.18.

Definition 3.17 Using the above notations, the normal automaton of a regular commutative
language L on the alphabet Σ is an automaton A =< Γ, V(0,0,...,0), F >, (with Γ the underlying
graph, V(0,0,...,0) the initial state, F the set of final states) such that a vertex V(m1,m2,...,mn) ∈ F
iff there exists a normal term Cj =

⋂
1≤i≤n Lj(ai) of L and either Lj(ai) = E(ai, mi) or Lj(ai) =

E(ai, ti, ni) with ti ≡ mi (mod ni) and ti ≤ mi ≤ Ki + ni.

Example 3.18 Let L ⊆ {a, b}∗ be the commutative language L = C1∪C2, where C1 = E(a, 2, 3)∩
E(b, 3) and C2 = E(a, 3, 3) ∩ E(b, 4, 2). Following the above definitions and considering a = a1,
b = a2, we have: na = 3, nb = 2, J ′

1 = ∅, J ′′
1 = {1, 2}, J ′

2 = {1}, J ′′
2 = {2}, K1 = 0 and K2 = 3.

The normal automaton of L is represented in Fig. 3, where the four regions Γ(0,0), Γ(1,0), Γ(0,1)

and Γ(1,1) are shown. We find that in Γ(0,0) there are no loops on the vertices; in Γ(1,0) there are
only loops labelled a3 based on each vertex; in Γ(0,1) there are only loops labelled b2 based on each
vertex; and in Γ(1,1) there is the same set of loops based on each vertex labelled by any anagram of
a3tb2s, for some t, s ≥ 0. Fig. 3 also shows the way one can move from a region of the automaton
to another one.

It is easy to verify that the normal automaton of a language L recognizes L. Moreover, for each
V(m1,m2,...,mn) ∈ F , denote by A(m1,m2,...,mn) the automaton < Γ, V(0,0,...,0), V(m1,m2,...,mn) >,
whose unique final state is V(m1,m2,...,mn). Then, the language L(A(m1,m2,...,mn)) is a normal term
of L; conversely, each normal term of L is a language L(A(m1,m2,...,mn)) for some V(m1,m2,...,mn) ∈
F . If V(m1,m2,...,mn) is in the region Γ(η1,...,ηn) of Γ, L(A(m1,m2,...,mn)) will be called for shortness
an (η1, ..., ηn)-normal term of L. A word w belonging to an (η1, ..., ηn)-normal term of L, has mi

occurrences of ai for i ∈ I ′′(η1,...,ηn) while no upper bound is given for the occurrences of ai with

i ∈ I ′(η1,...,ηn).
For the definitions of SSP and SL, see Section 3.4.

Lemma 3.19 With the above notations, each (η1, ..., ηn)-normal term of a regular commutative
language L on the alphabet Σ is an ALD language.

Proof: Obviously a (0, 0, ..., 0)- normal term of L is a finite language L(A(m1,m2,...,mn)) (and it is

170 Marcella Anselmo, Alessandra Cherubini and Pierluigi San Pietro

obviously defined by the ALD A
(0,0,...,0)
(m1,m2,...,mn) whose rules are {(⊥, w,⊥) | w ∈ L(A(m1,m2,...,mn))}).

Then let L(A(m1,m2,...,mn)) be a (η1, ..., ηn)-normal term of L with (η1, ..., ηn) 6= (0, 0, ..., 0). It is

easy to verify that the automaton A
(η1,...,ηn)
(m1,m2,...,mn), obtained by A(m1,...,mn) adding an edge labelled

by ai going from each vertex V(h1,...,hi,...,hn), with hi ≥ nai
− 1, to the vertex Vh1,...,hi−nai

+1,...,hn

for all i ∈ I ′
(η1,η2,...,ηn) recognizes L(A(m1,m2,...,mn)). The same set of loops is based at each

vertex of the automaton A
(η1,...,ηn)
(m1,m2,...,mn), so using an argument similar to the one used in the

proof of of Proposition 3.13, it is easy to prove that the ALD A
(η1,...,ηn)
(m1,m2,...,mn) whose rules are

{(⊥, Λ(w),⊥) | w ∈ SSP (A
(η1,...,ηn)
(m1,m2,...,mn))} and {(ǫ, Λ(w), ǫ) | w ∈ SL(A

(η1,...,ηn)
(m1,m2,...,mn))}, defines

L(A(m1,m2,...,mn)). ✷

Remark 3.20 For each commutative regular language L on the alphabet Σ, denote by F(η1,η2,...,ηn)

the set of final states of its normal automaton belonging to the region Γ(η1,...,ηn). If either
F = F(η1,η2,...,ηn) or F = F(0,0,...,0) ∪ F(η1,η2,...,ηn) for some region Γ(η1,...,ηn) then L is an ALD-
language. In fact, in such cases, all normal terms of L are either (η1, η2, ..., ηn) or (0, 0, ...0)-
normal terms. The ALDs defining (η1, η2, ..., ηn)-normal terms differ only for their initial rules
(i.e., rules of the form (⊥ u, v, w ⊥) for some u, w ∈ Σ∗, v ∈ (Σ ∪ ∆)∗) and the ALDs defin-
ing (0, 0, ..., 0)-normal terms have only initial rules. Then the ALD defining L is obtained by
taking all the rules of the ALDs defining the terms of L. In the other cases the union A of
the ALDs defining the normal terms of L does not define L because the pattern of non initial
rules of an ALD defining an (η1, η2, ..., ηn)-normal term ((η1, η2, ..., ηn) 6= (0, 0, ..., 0)) of L, are
different from the patterns of non initial rules of an ALD defining an (η′

1, η
′
2, ..., η

′
n)-normal term

((η′
1, η

′
2, ..., η

′
n) 6= (η1, η2, ..., ηn), (η′

1, η
′
2, ..., η

′
n) 6= (0, 0, ..., 0)) of L but these rules are not distin-

guished by means of their contexts, hence some words not belonging to L can be the frontier of
a valid tree of the ALD A.

We have shown how to construct an ALD for any normal term of a regular commutative
language. Unfortunately we are not able to construct an ALD in the general case of a regular
commutative language, since the union of the ALD for each normal term does not always define
the language (see Remark 3.20). Now we show how to solve the problem in two particular cases:
regular languages in Com+ (Proposition 3.21); and regular commutative languages on alphabets
with two letters at most (Proposition 3.22).

Consider a language L belonging to Com+(Σ), i.e., to the positive boolean algebra generated
by the languages of the form F (x, k) or F (x, k, n) with k < n and x ∈ Σ. In this case all final
states of L are in the region Γ(1,...,1) of the normal automaton of L. Hence by Lemma 3.19 and
Remark 3.20 the following Proposition immediately follows.

Proposition 3.21 Let Σ be a finite alphabet. Each language in Com+(Σ) is an ALD language.

The following result for regular commutative languages on small alphabets can also be proved.
Let Sh(u, v) = {u0v1u1...vsusvs+1 | u = u0u1...us, v = v1v2...vs+1, s ≥ 0, u0, vs+1 ∈ Σ∗, ui, vi ∈
Σ+ for 0 < i < s} denote the shuffle of some u, v ∈ Σ+.

Proposition 3.22 A regular commutative language on an alphabet Σ with |Σ| ≤ 2 is an ALD
language.

REGULAR LANGUAGES AND ASSOCIATIVE LANGUAGE DESCRIPTIONS 171

Proof: In (2), it was proved that each unary regular language is an ALD language. Then, let L
be a regular commutative language in normal form on Σ = {a1, a2} and let A =< Γ, V(0,0), F >
be the normal automaton recognizing L. Obviously A has four regions. By Remark 3.20, it

follows that the ALDs A
(η1,η2)
(i,j) defining (η1, η2)-normal terms of L have to be modified in ALDs

Ã
(η1,η2)
(i,j) so that if (η1, η2) 6= (η′

1, η
′
2) the non initial rules of the ALD defining an (η1, η2)-normal

term have the same contexts of a non initial rule of the ALD defining an (η′
1, η

′
2)-normal term

only if they also have equal patterns.
The regions of the normal automaton of L are four, and for each region (η1, η2) a corresponding
type of ALD A(η1,η2) was defined in Lemma 3.19. The ALDs A(0,0) defining (0, 0)-normal terms

contain only initial rules, so they do not require modifications, hence A
(0,0)
(i,j) = Ã

(0,0)
(i,j) for each

(i, j) such that L(A
(0,0)
(i,j)) is a (0, 0)-normal term of L. So we have to deal with the following three

regions.

Region (1, 0). Let L(A
(1,0)
(i,j)) be a (1, 0)-normal term of L. For w ∈ Σ∗ define EXP(1,0)(w) =

Λ({Sh(w, ahn1
1) |h ≤ 2(|w| + 1)}) ∩ (a∗

2a
n1
1 a∗

1Λa∗
2)

∗. Then the ALD Ã
(1,0)
(i,j) with the following

rules: {(⊥, EXP(1,0)(w),⊥) | w ∈ SSP (A
(1,0)
(i,j))} ∪ {(an1

1 , Λan1
1 , ǫ)}, defines L(A

(1,0)
(i,j)). In fact, the

initial rules allow the introduction, by means of a valid tree of height 1, of all the words belonging

to L(A
(1,0)
(i,j)) in the form am0

1 ah1
2 am2

1 ah2
2 ...a

mq

1 a
hq

2 with q > 0, 0 ≤ mi ≤ 2n1. The non initial rules

allow to pump an1
1 .

Region (0, 1). Let L(A
(0,1)
(i,j)) be a (0, 1)-normal term. For every w ∈ Σ∗, define EXP(0,1)(w) =

Λ({Sh(w, ahn2
2) | h ≤ 2(|w| + 1)}) ∩ (a∗

1a
n2
2 a∗

2Λa∗
1)

∗. Then the ALD Ã
(0,1)
(i,j) with the following

rules: {(⊥, EXP(0,1)(w),⊥) | w ∈ SSP (A
(0,1)
(i,j))} ∪ {(an2

2 , Λan2
2 , ǫ)}, defines L(A

(0,1
(i,j)). The same

argument of Region (1, 0) applies.

Region (1, 1). Let L(A
(1,1)
(i,j)) be a (1, 1)-normal term. For every w ∈ Σ∗, define EXP(1,1)(w) =

Λ({Sh(w, Sh(ahn1
1 , aln2

2)) | h, l ≤ 2(|w| + 1)}). Then let Ã
(1,1)
(i,j) be the ALD with the following

rules:

{(⊥, EXP(1,1)(w),⊥) | w ∈ SSP (A
(1,1)
(i,j))} ∪

{(a2a
t
1, EXP(1,1)(w), ǫ) | 0 < t < n1, w ∈ SL(A

(1,1)
(i,j))} ∪

{(a1a
s
2, EXP(1,1)(w), ǫ) | 0 < s < n2, w ∈ SL(A

(1,1)
(i,j))} ∪

{(an1
1 , Λan1

1 , ǫ), (an2
2 , Λan2

2 , ǫ)}

Ã
(1,1)
(i,j) defines L(A

(1,1)
(i,j)). Of course the frontier of each valid stencil tree is a word in L(A

(1,1)
(i,j));

conversely, a standard proof based on induction on the length of the words gives that a word

w ∈ L(A
(1,1)
(i,j)) belongs to the language defined by Ã

(1,1)
(i,j) .

Now in the initial rules of ALDs Ã(1,0) defining the (1, 0)-normal terms of L, each placeholder
has a left context of the form van1

1 for some v ∈ Σ∗; hence, only the rule (an1

1 , Λan1

1 , ǫ) matches
a constituent and does not affect the left context of the placeholder. Analogously, in the initial
rules of ALDs Ã(0,1), defining the (0, 1)-normal terms of L, each placeholder has a left context

172 Marcella Anselmo, Alessandra Cherubini and Pierluigi San Pietro

of the form van2
2 , for some v ∈ Σ∗; hence, only the rule (an2

2 , Λan2
2 , ǫ) matches a constituent and

does not affect the left context of the placeholder. So the non initial rules ALDs Ã(1,1), whose
left context belong to the set {(a2a

t
1 | 0 < t < n1} ∪ {(a1a

s
2| 0 < s < n2}, which are the only

rules whose patterns can contain both a1, a2 can be applied only when the rule used as initial
rule belongs to an ALD Ã(1,1) defining a (1, 1)-normal term of L. ✷

Example 3.23 Let L ⊆ {a, b}∗ be the commutative language L = C1∪C2, where C1 = E(a, 2, 3)∩
E(b, 3) and C2 = E(a, 3, 3) ∩ E(b, 4, 2), as in Example 3.18.

Let us construct an ALD defining L. From Lemma 3.19, the language C1 is defined by the

ALD A
(1,0)
(2,3) containing the rules: (⊥, Λ(w),⊥), for any w ∈ SSP (A

(1,0)
(2,3)), that is the set of all

anagrams of a2b3; and (ǫ, Λ(a3), ǫ). Again from Lemma 3.19, the language C2 is defined by the

ALD A
(1,1)
(3,4) containing the rules: (⊥, Λ(w),⊥), for any w ∈ SSP (A

(1,1)
(3,4)), that is the set of all

anagrams of a3b4; and (ǫ, Λ(w), ǫ), for any w ∈ SL(A
(1,1)
(3,4)), that is the set containing a2, b3 and

all anagrams of a3b2.

Unfortunately the ALD A
(1,0)
(2,3) ∪ A

(1,1)
(3,4) does not define L; indeed it also defines some word

not belonging to L: as an example it defines a2b5. Following Proposition 3.22, let us construct

another ALD Ã
(1,0)
(2,3) defining C1, and another ALD Ã

(1,1)
(3,4) defining C2, whose union defines L.

The ALD Ã
(1,0)
(2,3) has the following rules:

{(⊥, EXP(1,0)(w),⊥) | w ∈ SSP (A
(1,0)
(2,3))} ∪ {(a3, Λa3, ǫ)}

where EXP(1,0)(w) = Λ({Sh(w, a3h) |h ≤ 2(|w| + 1)}) ∩ (b∗a3a∗Λb∗)∗. That is the initial rules

are obtained from some x that is the shuffle of an anagram of a2b3 with some a3h with h ≤ 12
where we can put Λ only just after an a3. As an example for h = 1 we obtain as x: a5Λb3,
ba5Λb2, b2a5Λb, b3a5Λ; for h = 2 we obtain: a3Λa5Λb3, ba3Λba5Λb, and so on.

The ALD Ã
(1,1)
(3,4) has the following rules: {(⊥, EXP(1,1)(w),⊥) | w ∈ SSP (A

(1,1)
(3,4))}∪

{(bat, EXP(1,1)(w), ǫ) | t = 1, 2, w ∈ SL(A
(1,1)
(3,4))} ∪ {(ab, EXP(1,1)(w), ǫ) | w ∈ SSL(A

(1,1)
(3,4))} ∪

{(a3, Λa3, ǫ), (b2, Λb2, ǫ)}, where EXP(1,1)(w) = Λ({Sh(w, Sh(a3h, b2l)) | h, l ≤ 2(|w|+1)}) and

SSL(A
(1,1)
(3,4)) is the set of all anagrams of a3b2. As an example the initial rules are (⊥, Λ(w),⊥)

for any w anagram of a3+3hb4+2l with h, l ≤ 16.

4 Conclusions

In this paper, we partially tackled the inclusion of regular languages in the ALD family. The
classes of regular languages known to be ALD do not cover all regular languages, but exhibit a
remarkable variedness. For instance, group and locally testable languages have completely differ-
ent syntactic monoids (groups and aperiodic monoids, respectively). Star-height one languages
have non-empty intersection with both classes, and Proposition 3.12 says that ALD languages
are “well-distributed” inside the class of regular languages, and that may be all regular languages
are indeed ALD

REGULAR LANGUAGES AND ASSOCIATIVE LANGUAGE DESCRIPTIONS 173

On the other hand, the techniques used to capture these families in this paper do not seem
to be generalizable to all regular languages. For instance, the method used here for showing
that threshold locally testable (tlt) languages are ALD does not work for showing that regular
languages in Com+(Σ) are ALD; but the method used to prove the latter, does not work for
many commutative languages that are not in Com+(Σ) but are actually tlt (and hence ALD).

Other open questions for the ALD family concern the hierarchy with respect to the number
of placeholders, various decidability properties, minimization in the length of contexts and of
patterns of the rules.

Acknowledgements: We are indebted with many people for long discussions on the issue of
inclusion of regular languages in ALD. Among them, we gratefully thank Eberhard Bertsch and
Mark-Jan Nederhof, who proposed many candidate counterexamples and found the first proof
that star-height one languages are ALD, and M. Volkov, who suggested some possible extensions
to the results presented here.

References

[1] A.Cherubini, S.Crespi Reghizzi, and P.San Pietro. Some structural properties of associative
language descriptions. volume 2202 of Lecture Notes in Computer Science, pages 172–183,
Berlin, 2001. Springer-Verlag.

[2] A.Cherubini, S.Crespi Reghizzi, and P.San Pietro. Associative language descriptions. Theo-
retical Computer Science, 270:463–491, 2002.

[3] D. Beauquier and J.E. Pin. Factors of words. volume 372 of Lecture Notes in Computer
Science, pages 63–79, Berlin, 1989. Springer-Verlag.

[4] E. Bertsch and M.J. Nederhof. Personal communication. Feb 2002.

[5] V. Braitenberg and F. Pulvermüller. Entwurf einer neurologischen Theorie der Sprache.
Naturwissenschaften, (79):103–117, 1992.

[6] A. Cherubini, S. Crespi Reghizzi, and P. San Pietro. Languages based on structural local
testability. In C. S. Calude and M.J. Dinnen, editors, Combinatorics, Computation and
Logic: Proceedings of DMTCS99,Auckland, New Zealand, 18-21 Jan 1999, pages 159–174.

[7] A.K. Joshi, L.S.Levy, and K. Yueh. Local constraints in the syntax and semantics of pro-
gramming languages.

[8] S. Crespi Reghizzi, M. Pradella, and P. San Pietro. Associative definitions of programming
languages. Computer Languages, 26:105–123, 2000.

[9] A. Salomaa. Theory of Automata. Pergamon Press, Oxford, 1969.

174 Marcella Anselmo, Alessandra Cherubini and Pierluigi San Pietro

