On the $k^{\text {th }}$ Eigenvalues of Trees with Perfect Matchings

An Chang ${ }^{1}$ and Wai Chee Shiu ${ }^{2}$
${ }^{1}$ Department of Mathematics, Fuzhou University, Fuzhou, Fujian, 350002, P.R. China.
${ }^{2}$ Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China.

received March 29, 2006, revised August 15, 2007, accepted November 2, 2007.

Let $\mathcal{T}_{2 p}^{+}$be the set of all trees on $2 p(p \geq 1)$ vertices with perfect matchings. In this paper, we prove that for any tree T in $\mathcal{T}_{2 p}^{+}$, the k th largest eigenvalue $\lambda_{k}(T)$ satisfies $\lambda_{k}(T) \leq \frac{1}{2}\left(\sqrt{\left\lceil\frac{p}{k}\right\rceil-1}+\sqrt{\left\lceil\frac{p}{k}\right\rceil+3}\right)(k=1,2, \ldots, p)$. This upper bound is known to be best possible when $k=1$. The set of trees obtained from a tree on p vertices by joining a pendent vertex to each vertex of the tree is denoted by $\mathcal{T}_{2 p}^{*}$. We also prove that for any tree T in $\mathcal{T}_{2 p}^{*}$, its k th largest eigenvalue $\lambda_{k}(T)$ satisfies $\lambda_{k}(T) \leq \frac{1}{2}\left(\sqrt{\left\lfloor\frac{p}{k}\right\rfloor-1}+\sqrt{\left\lfloor\frac{p}{k}\right\rfloor+3}\right) \quad(k=1,2, \ldots, p)$ and show that this upper bound is best possible when $k=1$ or $p \not \equiv 0(\bmod k)$. We further give the following inequality

$$
\lambda_{k}^{*}(2 p)>\frac{1}{2}\left(\sqrt{t-1-\sqrt{\frac{k-1}{t-k}}}+\sqrt{t+3-\sqrt{\frac{k-1}{t-k}}}\right) \quad t=\left\lfloor\frac{p}{k}\right\rfloor
$$

where $\lambda_{k}^{*}(2 p)$ is the maximum value of the k th largest eigenvalue of the trees in $\mathcal{T}_{2 p}^{*}$. By this inequality, it is easy to see that the above upper bound on $\lambda_{k}(T)$ for $T \in \mathcal{T}_{2 p}^{*}$ turns out to be asymptotically tight when $p \equiv 0(\bmod k)$.

Keywords: tree, eigenvalue, perfect matching.

1 Introduction

Let G be a simple graph, i.e., a graph without loops or multiple edges. Suppose the vertex set of G is $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix of G is an $n \times n$ matrix $A(G)=\left(a_{i j}\right)$, where $a_{i j}=1$ if v_{i} is adjacent to v_{j}, and $a_{i j}=0$ otherwise. The characteristic polynomial of G is $\operatorname{det}(\lambda I-A(G))$, which is denoted by $P(G ; \lambda)$. Since $A(G)$ is symmetric, its eigenvalues are real; moreover, they are independent of the ordering of the vertices of G. As usual, we write them in non-increasing order as $\lambda_{1}(G) \geq \lambda_{2}(G) \geq \lambda_{3}(G) \geq \cdots \geq \lambda_{n}(G)$ and call them the eigenvalues of G. If G is a bipartite graph, then $\lambda_{i}(G)=-\lambda_{n-i+1}(G)$ for $i=1,2, \ldots,\lfloor n / 2\rfloor$ (see [6]), where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x, i.e., the floor function of x when x is a real number. Similarly, $\lceil x\rceil$ denotes the least integer greater than or equal to x, i.e., the ceiling function of x.

[^0]Two distinct edges in a graph G incident with the same vertex will be called adjacent edges. A matching of G is a set of edges in G such that no two of them are adjacent. A largest matching is called a maximum matching. The cardinality of a maximum matching of G is commonly known as its matching number, denoted by $\mu(G)$. Let M be a matching of $G . M$ is called an s-matching of G if M contains exactly s edges of G. A vertex $v \in V(G)$ is said to be M-saturated if it is incident with an edge of M, otherwise v is called an M-unsaturated vertex. The matching M of G is called a perfect matching if all vertices of G are M-saturated. Trees are connected acyclic graphs, and it is obvious that they are also bipartite graphs. So we only need to investigate those eigenvalues $\lambda_{k}(T)$ of a tree T with n vertices for $k=1,2, \ldots,\lfloor n / 2\rfloor$.

Throughout this paper, we denote by \mathcal{T}_{n} and $\mathcal{T}_{2 p}^{+}$the set of trees on n vertices and the set of trees on $2 p$ vertices with perfect matchings. For simplicity, a tree with n vertices is often called a tree of order n. For symbols and concepts not defined in this paper we refer to the book [2].

The investigation on the eigenvalues of trees in \mathcal{T}_{n} is one of the oldest problems in the spectral theory of graphs and has been intensively studied by many authors (see [1, 6, 11, 12, 13, 15]). A classic result is that for any $T \in \mathcal{T}_{n}, \lambda_{1}(T) \leq \sqrt{n-1}$ and equality holds if and only if T is the star $K_{1, n-1}$. In particular, H. Yuan [12] studied the k th eigenvalue of a tree $T \in \mathcal{T}_{n}$ and obtained the following upper bound.

Theorem 1.1 ([12]) Let T be a tree in \mathcal{T}_{n}. Then

$$
\lambda_{k}(T) \leq \sqrt{\left\lfloor\frac{n-2}{k}\right\rfloor} \quad\left(2 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor\right)
$$

and the upper bound is best possible if $n \equiv 1(\bmod k)$.
J.Y. Shao [15] improved the above result.

Theorem 1.2 ([15]) Let T be a tree in \mathcal{T}_{n}. Then

$$
\lambda_{k}(T) \leq \sqrt{\left\lfloor\frac{n}{k}\right\rfloor-1} \quad\left(1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor\right)
$$

Moreover, the bound is best possible when $n \not \equiv 0(\bmod k)$ and it is an asymptotically tight bound when $n \equiv 0(\bmod k)(2 \leq k \leq\lfloor n / 2\rfloor)$.

Concerning the trees in $\mathcal{T}_{2 p}^{+}$there are lots of results on the first two largest eigenvalues (see [3. $3.5 .5,8,9$. 10, 16, 17, 18]).

Frucht and Harary [7] gave the following construction of graphs. Given two graphs G and H, the corona of G with H, denoted by $G \odot H$, is the graph with

$$
\begin{aligned}
& V(G \odot H)=V(G) \cup \bigcup_{i \in V(G)} V\left(H_{i}\right) \\
& E(G \odot H)=E(G) \cup \bigcup_{i \in V(G)}\left(E\left(H_{i}\right) \cup\left\{i u_{i} \mid u_{i} \in V\left(H_{i}\right)\right\}\right),
\end{aligned}
$$

where $H_{i} \cong H$ for all $i \in V(G)$.
Let $T_{2 p}^{1}=K_{1, p-1} \odot N_{1}$ (see Fig. 1.1p, where N_{s} is the null graph (i.e., edgeless graph) of order s. G.H. Xu [17] got the following initial result.

Fig. 1.1: The tree $T_{2 p}^{1}$

Fig. 1.2: Two graphs $T_{2 p}^{a}$ and $T_{2 p}^{b}\left(=T_{2 p}^{2^{\prime}}\right)$

Theorem 1.3 ([17]) Let T be a tree in $\mathcal{T}_{2 p}^{+}$. Then

$$
\lambda_{1}(T) \leq \frac{1}{2}(\sqrt{p-1}+\sqrt{p+3})=\lambda_{1}\left(\mathcal{T}_{2 p}^{1}\right) \quad p=1,2,3, \ldots
$$

and equality holds if and only if $T \cong T_{2 p}^{1}$.
A. Chang [3] studied bounds for the second largest eigenvalue of trees in $\mathcal{T}_{2 p}^{+}$and proposed the following conjecture:

Let p be a positive integer, and T be a tree in $\mathcal{T}_{2 p}^{+}$. Then

$$
\lambda_{2}(T) \leq\left\{\begin{array}{ll}
r^{\prime} & \text { if } p=2 t \\
r^{\prime \prime} & \text { if } p=2 t+1
\end{array} \text { for } t=1,2,3, \ldots\right.
$$

where r^{\prime} and $r^{\prime \prime}$ are the maximum positive roots of the equations $x^{3}-(t+1) x+1=0$ and $x^{4}-(t+2) x^{2}+x+1=0$, respectively. Equality holds in the first inequality if and only if $T \cong T_{2 p}^{a}$, and equality holds in the second inequality if and only if $T \cong T_{2 p}^{b}$, where $T_{2 p}^{a}$ and $T_{2 p}^{b}$ are the trees shown in Fig. 1.2

More recently, J-M. Guo and S-W. Tan [9] proved that the second inequality holds but the first one does not hold. A correct version of the first inequality was given by J-M. Guo and S-W. Tan in [10]. Their results can be stated as follows.

Fig. 1.3: The tree $T_{2 p}^{2}$
Theorem 1.4 ([9, 10]) Let p be a positive integer, and T be a tree in $\mathcal{T}_{2 p}^{+}$. Then

$$
\lambda_{2}(T) \leq\left\{\begin{array}{ll}
r_{1} & \text { if } p=2 t \\
r_{2} & \text { if } p=2 t+1
\end{array} \text { for } t=2,3, \ldots,\right.
$$

where r_{1} and r_{2} are the maximum positive roots of the equations $\left(x^{4}-(t+1) x^{2}+1\right)\left(x^{2}+x-1\right)+x=0$ and $x^{4}-(t+2) x^{2}+x+1=0$, respectively. Equality holds in the first inequality if and only if $T \cong T_{2 p}^{2}$, and equality holds in the second inequality if and only if $T \cong T_{2 p}^{2^{\prime}}$, where $T_{2 p}^{2}$ and $T_{2 p}^{2^{\prime}} \cong T_{2 p}^{b}$ are the trees shown in Fig. 1.3 and 1.2 respectively.
It is natural to consider the problem of determining upper and lower bounds of the k th eigenvalues of the trees in $\mathcal{T}_{2 p}^{+}$. This is the purpose of our paper.

2 Main results

We need some groundwork before giving the main result. Before we recall the well-known Cauchy Interlacing Theorem [6. Theorem 0.10], we introduce some notation and terminology first. A vertex subset with k vertices is called a k-vertex subset. Suppose V^{\prime} is a subset of vertices. $G-V^{\prime}$ is the subgraph of G obtained by deleting all vertices in V^{\prime} together with their incident edges. Cauchy Interlacing Theorem usually plays an important role in the estimation of the k th eigenvalue of trees.
Theorem 2.1 (Cauchy Interlacing Theorem) For every graph G and every k-vertex subset V^{\prime} we have

$$
\lambda_{i}(G) \geq \lambda_{i}\left(G-V^{\prime}\right) \geq \lambda_{i+k}(G), \quad i=1,2, \ldots, n-k
$$

Lemma 2.2 ([1]) Let G be a graph and H a subgraph of G. Then $\lambda_{1}(H) \leq \lambda_{1}(G)$.
Lemma 2.3 ([15]) Let T be a tree in \mathcal{T}_{n}. Then for any positive integer s, there exists a vertex $v \in V(T)$ such that the largest component of $T-v$ has order at most $\max \{n-1-s, s\}$ and all other components of $T-v$ have orders at most s.
It is worth mentioning that when the tree T considered in Lemma 2.3 is in $\mathcal{T}_{2 p}^{+}$, i.e., T is a tree with a perfect matching, then obviously all components of $T-v$ but one have perfect matchings. The only component without perfect matching, say T_{0}, has matching number $\mu\left(T_{0}\right)=\frac{1}{2}\left(V\left(T_{0}\right)-1\right)$, and the only unsaturated vertex of T_{0} is the vertex w which is adjacent with v in T and $w v$ is an edge of the perfect matching of T. This fact leads us to get the following useful lemma.

Lemma 2.4 Let $T \in \mathcal{T}_{n}^{+}$, and let s be a positive even integer not greater than n. Then there exist a vertex $v \in V(T)$ and a subtree U of T such that

1. U has a perfect matching;

2. either U is a component of $T-v$ when $v \notin V(U)$, or $U-v$ is a component of $T-v$ when $v \in V(U)$;
3. $|V(U)| \leq \max \{n-s, s\}$;
4. all components of $(T-V(U))-v$ have order at most s, and all but at most one of them have a perfect matching.

Proof: Let M be a perfect matching of T. By Lemma 2.3, there exists a vertex $v \in V(T)$ such that one component T^{\prime} of $T-v$ has order $\left|V\left(T^{\prime}\right)\right| \leq \max \{n-1-s, s\}$, and all other components of $T-v$ have orders not exceeding s. We know that only one component, say T_{0}, has no perfect matching and all the others have perfect matchings.

Suppose $T^{\prime} \neq T_{0}$. Then $M \cap E\left(T^{\prime}\right)$ is a perfect matching of T^{\prime}. Since s and n are even, $\left|V\left(T^{\prime}\right)\right| \leq$ $\max \{n-2-s, s\}$. Let $U=T^{\prime}$. Then T_{0} is a component of $(T-V(U))-v$ and its matching number is $\mu\left(T_{0}\right)=\frac{1}{2}\left(V\left(T_{0}\right)-1\right)$. Let w be the only unsaturated vertex of T_{0} which is adjacent with v in T and $w v$ is an edge of M. Now let T_{0}^{\prime} be the tree obtained from T_{0} by joining a pendant vertex u to w. Actually, we can view this vertex u as the removed vertex v. Obviously, T_{0}^{\prime} has a perfect matching $\left(E\left(T_{0}\right) \cap M\right) \cup\{v w\}$ and order $\left|V\left(T_{0}^{\prime}\right)\right|=\left|V\left(T_{0}\right)\right|+1 \leq s$, and T_{0}^{\prime} is a subtree of T.

Suppose $T^{\prime}=T_{0}$. Then T^{\prime} has a maximum matching $M_{1}=E\left(T^{\prime}\right) \cap M$ and its matching number is $\mu\left(T^{\prime}\right)=\frac{1}{2}\left(\left|V\left(T^{\prime}\right)\right|-1\right)$. Since s is even, $\left|V\left(T^{\prime}\right)\right| \leq \max \{n-1-s, s-1\}$. Let $w \in V\left(T^{\prime}\right)$ be the only M_{1}-unsaturated vertex. Then $w v$ is an edge of M. Let U be the tree obtained from T^{\prime} by joining a pendant vertex u to w. Actually, we can view this vertex u as the removed vertex v. Then U is a subtree of T and is of order not greater than $\max \{n-s, s\}$. Clearly, $M_{1} \cup\{v w\}$ is a perfect matching of U and $U-v=T^{\prime}$.

Lemma 2.5 Let T be a tree in $\mathcal{T}_{2 p}^{+}$. Then for any positive integer k with $1 \leq k \leq p$, there exists a $(k-1)$-vertex subset $V^{\prime} \subset V(T)$ such that all components of $T-V^{\prime}$ have the largest eigenvalues not greater than $\lambda_{1}\left(T_{2 t}^{1}\right)$, where $T_{2 t}^{1}$ is the tree shown in Fig. 1.1] and $t=\lceil p / k\rceil$.

Proof: When $k=1$, the result is actually Theorem 1.3 So we may assume that $k \geq 2$. Let $s=2 t=$ $2\lceil p / k\rceil$, and $T_{0}=T, n_{0}=2 p$. Since $k \geq 2$, we have $n_{0}>s$. We perform the following procedure:

By Lemma 2.4, there are a vertex $v_{1} \in V(T)$ and a subtree T_{1} of order not greater than $\max \left\{n_{0}-s, s\right\}$ such that T_{1} has a perfect matching, $T_{1}-v_{1}$ is a component of $T-v_{1}$ and the other components of $T-v_{1}$ have orders not greater than s. Note that v_{1} may not be a vertex of T_{1}.

Let $n_{1}=\left|V\left(T_{1}\right)\right|$. If all components of $T-v_{1}$ and T_{1} are of orders not greater than s, then we stop the procedure. If not, then $n_{1}>s$. By applying Lemma 2.4 to T_{1} there are a vertex $v_{2} \in V\left(T_{1}\right)$ and a subtree T_{2} of T_{1} such that the order of T_{2} is not greater than $\max \left\{n_{1}-s, s\right\}, T_{2}$ has a perfect matching, $T_{2}-v_{2}$ is a component of $T_{1}-v_{2}$ and the other components of $T_{1}-v_{2}$ have orders not greater than s.

Let $n_{2}=\left|V\left(T_{2}\right)\right|$. If all components of $T-\left\{v_{1}, v_{2}\right\}$ and T_{2} are of orders not greater than s, then we stop the procedure. If not, we continue to perform the above procedure. Since n_{0} is finite, there are h subtrees $T_{0} \supset T_{1} \supset \cdots \supset T_{h}$ and vertices v_{1}, \ldots, v_{h} (not necessary distinct) such that all components of
$T-\left\{v_{1}, v_{2}, \ldots, v_{h}\right\}$ are of orders not greater than $s, n_{i}=\left|V\left(T_{i}\right)\right| \leq \max \left\{n_{i-1}-s, s\right\}$ and $v_{i} \in V\left(T_{i-1}\right)$ for $1 \leq i \leq h$. Hence we have $n_{i}>s$ for $1 \leq i \leq h-1$. Since $s=2\lceil p / k\rceil$,

$$
k s=2 k\lceil p / k\rceil \geq 2 k(p / k)=2 p .
$$

Since $n_{i} \leq n_{i-1}-s,(i=1,2, \ldots, h)$,

$$
n_{h-1}-n_{0}=\sum_{i=1}^{h-1}\left(n_{i}-n_{i-1}\right) \leq-(h-1) s
$$

Hence

$$
s<n_{h-1} \leq 2 p-(h-1) s \leq k s-h s+s=(k-h+1) s
$$

Thus $h \leq k-1$.
Now we may choose a $(k-1)$-vertex subset V^{\prime} containing $\left\{v_{1}, v_{2}, \ldots, v_{h}\right\}$ such that the components of $T-V^{\prime}$ are of orders not exceeding s. By Lemma 2.2 and Theorem 1.3 , all components of $T-V^{\prime}$ have their largest eigenvalues not great than $\lambda_{1}\left(T_{2 t}^{1}\right)$. The proof is completed.

Combining Lemma 2.5 with the Cauchy Interlacing Theorem, we obtain the following main result.
Theorem 2.6 Let T be a tree in $\mathcal{T}_{2 p}^{+}$. Then for any positive integer k with $1 \leq k \leq p$, we have

$$
\begin{equation*}
\lambda_{k}(T) \leq \frac{1}{2}\left(\sqrt{\left\lceil\frac{p}{k}\right\rceil-1}+\sqrt{\left\lceil\frac{p}{k}\right\rceil+3}\right) \tag{2.1}
\end{equation*}
$$

and this upper bound is best possible when $k=1$.
Proof: Suppose that $T \in \mathcal{T}_{2 p}^{+}$. By Lemma 2.5, we have a $(k-1)$-vertex subset $V^{\prime} \subset V(T)$ such that all components, say $T_{1}, T_{2}, \ldots, T_{q}$, of $T-V^{\prime}$ are trees with the largest eigenvalues not exceeding $\lambda_{1}\left(T_{2 t}^{1}\right)$, $t=\left\lceil\frac{p}{k}\right\rceil$. By Theorems 2.1 and 1.3 , we obtain

$$
\begin{aligned}
\lambda_{k}(T) & \leq \lambda_{1}\left(T-V^{\prime}\right)=\max _{1 \leq i \leq q} \lambda_{1}\left(T_{i}\right) \\
& \leq \max _{1 \leq i \leq s} \frac{1}{2}\left(\sqrt{\frac{\left|V\left(T_{i}\right)\right|}{2}-1}+\sqrt{\frac{\left|V\left(T_{i}\right)\right|}{2}+3}\right) \\
& \leq \frac{1}{2}\left(\sqrt{\left\lceil\frac{p}{k}\right\rceil-1}+\sqrt{\left\lceil\frac{p}{k}\right\rceil+3}\right)
\end{aligned}
$$

This proves the upper bound 2.1). Obviously, for $k=1$, 2.1) is just the upper bound $\lambda_{1}(T) \leq$ $\frac{1}{2}(\sqrt{p-1}+\sqrt{p+3})$ in Theorem 1.3 and it is best possible upper bound.

Example 2.1 For any $T \in \mathcal{T}_{10}^{+}$, from Theorem 2.6 we get that $\lambda_{1}(T) \leq \frac{1}{2}(\sqrt{4}+\sqrt{8}) \approx 2.414, \lambda_{2}(T) \leq$ $\frac{1}{2}(\sqrt{2}+\sqrt{6}) \approx 1.932, \lambda_{3}(T) \leq \frac{1}{2}(1+\sqrt{5}) \approx 1.618, \lambda_{4}(T) \leq \frac{1}{2}(1+\sqrt{5}) \approx 1.618$ and $\lambda_{5}(T) \leq 1$. We find that $\lambda_{1}(T)$ and $\lambda_{5}(T)$ are tight, which can be verified by the table of the spectra of all trees with n vertices $(2 \leq n \leq 10)$ in 6 .

There is a relationship between the characteristic polynomial $P\left(G \odot N_{s} ; \lambda\right)$ of $G \odot N_{s}$ and that of G as follows.

Lemma 2.7 ([6]) $P\left(G \odot N_{s} ; \lambda\right)=\lambda^{p s} P\left(G ; \lambda-\frac{s}{\lambda}\right)$.
Let $\mathcal{T}_{2 p}^{*}$ be the set of the coronas of trees of order p with N_{1}, i.e.,

$$
\mathcal{T}_{2 p}^{*}=\left\{T \odot N_{1} \mid T \in \mathcal{T}_{p}\right\}
$$

Obviously, any graph in $\mathcal{T}_{2 p}^{*}$ is a tree and has a perfect matching. Thus we have $\mathcal{T}_{2 p}^{*} \subset \mathcal{T}_{2 p}^{+}$. Note that for any $T^{*} \in \mathcal{T}_{2 p}^{*}$, there is a unique tree T with $T^{*}=T \odot N_{1}$. The tree T is called the contracted tree of the tree T^{*}. Now we prove an upper bound on the k th eigenvalue of trees in $\mathcal{T}_{2 p}^{*}$.
Lemma 2.8 Let $T^{*} \in \mathcal{T}_{2 p}^{*}$ and let T be the contracted tree of T^{*}. Then

$$
\lambda_{k}\left(T^{*}\right)=\frac{1}{2}\left(\sqrt{\lambda_{k}(T)^{2}+4}+\lambda_{k}(T)\right)
$$

Proof: By Lemma 2.7. we have $P\left(T^{*} ; \lambda\right)=\lambda^{p} P\left(T ; \lambda-\frac{1}{\lambda}\right)$. Since $\lambda_{k}(T)$ is the k th eigenvalue of T for $k=1,2, \ldots, p$,

$$
P\left(T^{*} ; \lambda\right)=\lambda^{p} \prod_{i=1}^{p}\left(\lambda-\frac{1}{\lambda}-\lambda_{i}(T)\right)=\prod_{i=1}^{p}\left(\lambda^{2}-\lambda_{i}(T) \lambda-1\right)
$$

So the positive eigenvalues of T^{*} are $\frac{1}{2}\left(\sqrt{\lambda_{i}(T)^{2}+4}+\lambda_{i}(T)\right), i=1,2, \ldots, p$. Since $f(x)=$ $\frac{1}{2}\left(\sqrt{x^{2}+4}+x\right)$ is an increasing function of the variable x, the result follows immediately.

Theorem 2.9 Let T^{*} be a tree in $\mathcal{T}_{2 p}^{*}$. Then

$$
\begin{equation*}
\lambda_{k}\left(T^{*}\right) \leq \frac{1}{2}\left(\sqrt{\left\lfloor\frac{p}{k}\right\rfloor-1}+\sqrt{\left\lfloor\frac{p}{k}\right\rfloor+3}\right) \tag{2.2}
\end{equation*}
$$

for $k=1,2, \ldots, p$. Moreover, this upper bound is best possible when $k=1$ or $p \not \equiv 0(\bmod k)$.
Proof: Suppose that T is the contracted tree of the tree T^{*}. Then T is a tree of order p. By Theorem 1.2 , Lemma 2.8 and its proof, we have

$$
\begin{aligned}
\lambda_{k}\left(T^{*}\right) & =\frac{1}{2}\left(\sqrt{\lambda_{k}(T)^{2}+4}+\lambda_{k}(T)\right) \\
& \leq \frac{1}{2}\left(\sqrt{\left\lfloor\frac{p}{k}\right\rfloor-1}+\sqrt{\left\lfloor\frac{p}{k}\right\rfloor+3}\right)
\end{aligned}
$$

for $k \leq\left\lfloor\frac{p}{2}\right\rfloor$. For $k>\left\lfloor\frac{p}{2}\right\rfloor$, since $\lambda_{k}(T) \leq 0$, we have $\lambda_{k}\left(T^{*}\right) \leq 1$. The Equation 2.2 holds, since the right hand side of 2.2) is equal to 1 .

When $k=1$, it is known that this bound is best possible. To show tightness for $k \geq 2$ and $p \not \equiv 0$ $(\bmod k)$, we shall construct a corona of a tree with N_{1}. First, we write $p=\lfloor p / k\rfloor k+r$, where $1 \leq r \leq$ $k-1$. Set $t=2\lfloor p / k\rfloor$ and thus $2 p=t k+2 r$. Let T be the tree obtained by joining edges from the

Fig. 2.1: A tree T in the proof of Theorem 2.9
center u of a star $K_{1, r-1}$ to the centers $v_{1}, v_{2}, \ldots, v_{k}$ of k disjoint stars $K_{1, \frac{t}{2}-1}$ (see Fig. 2.1. Then let $T^{*}=T \odot N_{1} \in \mathcal{T}_{2 p}^{*}$. It is easy to see that

$$
\lambda_{1}(T-u)=\lambda_{2}(T-u)=\cdots=\lambda_{k}(T-u)=\lambda_{1}\left(K_{1, \frac{t}{2}-1}\right)=\sqrt{\frac{t}{2}-1}
$$

By Lemma 2.2 and the Cauchy Interlacing Theorem we have

$$
\lambda_{k}(T-u) \leq \lambda_{k}(T) \leq \lambda_{k-1}(T-u)
$$

Therefore,

$$
\lambda_{k}(T)=\sqrt{\frac{t}{2}-1}
$$

By Lemma 2.8, we have

$$
\lambda_{k}\left(T^{*}\right)=\frac{1}{2}\left(\sqrt{\frac{t}{2}-1}+\sqrt{\frac{t}{2}+3}\right)=\frac{1}{2}\left(\sqrt{\left\lfloor\frac{p}{k}\right\rfloor-1}+\sqrt{\left\lfloor\frac{p}{k}\right\rfloor+3}\right)
$$

This shows that the upper bound 2.2 is best possible when $p \not \equiv 0(\bmod k)$.
Example 2.2 For any tree $T^{*} \in \mathcal{T}_{10}^{*}$, by Theorem 2.6 we have $\lambda_{1}\left(T^{*}\right) \leq \frac{1}{2}(\sqrt{4}+\sqrt{8}) \approx 2.414, \lambda_{2}\left(T^{*}\right) \leq$ $\frac{1}{2}(1+\sqrt{5}) \approx 1.618, \lambda_{3}\left(T^{*}\right) \leq 1, \lambda_{4}\left(T^{*}\right) \leq 1$ and $\lambda_{5}\left(T^{*}\right) \leq 1$. It can be verified from the table of the spectra of all trees with n vertices $(2 \leq n \leq 10)$ in [6] that these bounds are tight.
Example 2.3 For any tree $T^{*} \in \mathcal{T}_{8}^{*}$, by Theorem 2.6 we have $\lambda_{1}\left(T^{*}\right) \leq \frac{1}{2}(\sqrt{3}+\sqrt{7}) \approx 2.189, \lambda_{2}\left(T^{*}\right) \leq$ $\frac{1}{2}(1+\sqrt{5}) \approx 1.618, \lambda_{3}\left(T^{*}\right) \leq 1$ and $\lambda_{4}\left(T^{*}\right) \leq 1$. We know that the upper bounds on λ_{1} and λ_{3} are tight but on λ_{2} and λ_{4} they are not. Actually, the maximum values of λ_{2} and λ_{4} are approximately 1.356 and 0.477 , respectively.

Fig. 2.2: The tree T in Lemma 2.10

Example 2.3 shows that for those k satisfying $p \equiv 0(\bmod k)$, we usually only have

$$
\lambda_{k}\left(T^{*}\right)<\frac{1}{2}\left(\sqrt{\left\lfloor\frac{p}{k}\right\rfloor-1}+\sqrt{\left\lfloor\frac{p}{k}\right\rfloor+3}\right)
$$

and especially, the upper bound is not as good as that in Theorem 1.2 when $k=2$. However, the upper bound in Theorem 2.6 will be shown to be asymptotically tight when $p \equiv 0(\bmod k)$.

Lemma $2.10([\mathbf{1 4]})$ Let v be a vertex of G, and $\mathcal{C}(v)$ be the set of all cycles containing v. Then the characteristic polynomial of G satisfies

$$
P(G ; \lambda)=\lambda P(G-v ; \lambda)-\sum_{u v \in E(G)} P(G-v-u ; \lambda)-2 \sum_{Z \in \mathcal{C}(v)} P(G-V(Z) ; \lambda)
$$

We first take k copies of the star $K_{1, t-1}$ (say $S_{1}, S_{2}, \ldots, S_{k}$) with centers $u_{1}, u_{2}, \ldots, u_{k}$, respectively, and choose $v_{i} \in V\left(S_{i}\right) \backslash\left\{u_{i}\right\}(i=1,2, \ldots, k)$. Then add the edges $v_{1} v_{i}(i=2,3, \ldots, k)$ to obtain tree T with $t k$ vertices as shown in Fig. 2.2

The next lemma follows by direct calculation from Lemma 2.10 with $v=v_{1}$, observing that the last term in the lemma becomes zero because there are no cycles containing v_{1}.
Lemma 2.11 ([15]) Denoting $f(x)=x^{3}+(t-k) x^{2}-2(k-1) x-(k-1)$, the characteristic polynomial of the tree T shown in Fig. 2.2 is

$$
P(T ; \lambda)=\lambda^{t k-2(k+1)}\left(\lambda^{2}-t+1\right)^{k-2} f\left(\lambda^{2}-t+1\right)
$$

and the kth eigenvalue of T satisfies

$$
\lambda_{k}(T)=\sqrt{t-1+\lambda_{2}(f)}>\sqrt{t-1-\sqrt{\frac{k-1}{t-k}}}
$$

where $\lambda_{2}(f)$ is the second largest root of the equation $f(x)=0$.

Denote the maximum value of the k th largest eigenvalue of the trees in $\mathcal{T}_{2 p}^{*}$ by $\lambda_{k}^{*}(2 p)$. Then Theorem 2.9 tells us that $\lambda_{k}^{*}(2 p) \leq \frac{1}{2}\left(\sqrt{\left\lfloor\frac{p}{k}\right\rfloor-1}+\sqrt{\left\lfloor\frac{p}{k}\right\rfloor+3}\right)$. We shall give a lower bound for $\lambda_{k}^{*}(2 p)$, which shows that as k gets large, the upper bound in Theorem 2.6 is asymptotically tight for the value of $\lambda_{k}^{*}(2 p)$ when $p \equiv 0(\bmod k)$.

Theorem 2.12 Let p and k be integers with $1 \leq k \leq p$. If $t=\left\lfloor\frac{p}{k}\right\rfloor>k$, then

$$
\lambda_{k}^{*}(2 p)>\frac{1}{2}\left(\sqrt{\left\lfloor\frac{p}{k}\right\rfloor-1-\sqrt{\frac{k-1}{t-k}}}+\sqrt{\left\lfloor\frac{p}{k}\right\rfloor+3-\sqrt{\frac{k-1}{t-k}}}\right)
$$

Proof: Let $T^{*}=T \odot N_{1} \in \mathcal{T}_{2 t k}^{*}$ by taking the tree T with $t k$ vertices described in Fig. 2.2 From Lemma 2.11, it is easy to see that the second largest root $\lambda_{2}(f)$ of $f(x)=0$ is negative. Note that $f(0)=-(k-1)<0, f\left(-\sqrt{\frac{k-1}{t-k}}\right)>0$ and $\lim _{x \rightarrow-\infty} f(x)=-\infty$. So we know that $\lambda_{2}(f)>-\sqrt{\frac{k-1}{t-k}}$. Moreover, the expression $\lambda=\frac{1}{2}(\sqrt{t-1+\alpha}+\sqrt{t+3+\alpha})$ can be regarded as a strictly increasing function of the variable α. Thus, by Lemmas 2.8 and 2.11, we have

$$
\begin{aligned}
\lambda_{k}\left(T^{*}\right) & =\frac{1}{2}\left(\sqrt{t-1+\lambda_{2}(f)}+\sqrt{t+3+\lambda_{2}(f)}\right) \\
& >\frac{1}{2}\left(\sqrt{t-1-\sqrt{\frac{k-1}{t-k}}}+\sqrt{t+3-\sqrt{\frac{k-1}{t-k}}}\right)
\end{aligned}
$$

There is a tree U of order p containing T described above. Hence $U^{*}=U \odot N_{1} \in \mathcal{T}_{2 p}^{*}$ and

$$
\begin{aligned}
\lambda_{k}\left(U^{*}\right) & \geq \lambda_{k}\left(T^{*}\right)>\frac{1}{2}\left(\sqrt{t-1-\sqrt{\frac{k-1}{t-k}}}+\sqrt{t+3-\sqrt{\frac{k-1}{t-k}}}\right) \\
& =\frac{1}{2}\left(\sqrt{\left\lfloor\frac{p}{k}\right\rfloor-1-\sqrt{\frac{k-1}{t-k}}}+\sqrt{\left\lfloor\frac{p}{k}\right\rfloor+3-\sqrt{\frac{k-1}{t-k}}}\right)
\end{aligned}
$$

Thus we get the theorem.
Remark: If we let $t \rightarrow \infty$ (that is, $2 p \rightarrow \infty$) for a fixed k, then $\sqrt{\frac{k-1}{t-k}} \rightarrow 0$, i.e.,

$$
\lambda_{k}^{*}(2 p) \rightarrow \frac{1}{2}\left(\sqrt{\left\lfloor\frac{p}{k}\right\rfloor-1}+\sqrt{\left\lfloor\frac{p}{k}\right\rfloor+3}\right) \text { as } t \rightarrow \infty .
$$

So we can say that our upper bound 2.2 is asymptotically tight. Of course, if we denote the maximum value of the k th eigenvalues of trees in $\mathcal{T}_{2 p}^{+}$by $\lambda_{k}^{+}(2 p)$, then by Theorem 2.9, we have $\lambda_{k}^{+}(2 p) \geq$ $\frac{1}{2}\left(\sqrt{\left\lfloor\frac{p}{k}\right\rfloor-1}+\sqrt{\left\lfloor\frac{p}{k}\right\rfloor+3}\right)$. So the upper bound 2.1) is also asymptotically tight in a sense.

References

[1] N.L. Biggs, Algebraic Graph Theory, 2nd Ed., Cambridge University Press, Cambridge, 1993.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, MacMillan Press Ltd., 1976.
[3] A. Chang, Bounds on the second largest eigenvalue of a tree with perfect matchings, Linear Algebra and its Applicatins, 283 (1998), 247-255.
[4] A. Chang, The sublargest value and quasi-smallest value of the largest eigenvalue of the tree with perfect matchings (in Chinese), Applied Mathematics - A Journal of Chinese Universities. 14(4) (1999), 397-403.
[5] A. Chang, On the largest eigenvalue of a tree with perfect matchings, Discrete Mathematics, 269 (2003), 45-63.
[6] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs -Theory and Applications, Academic Press, New York, 1980.
[7] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Mathematicae, 4 (1970), 322-325.
[8] C.D. Godsil, Inverse of trees, Combinatorica, 5 (1985), 33-39.
[9] J-M. Guo and S-W. Tan, A conjecture on the second largest eigenvalue of a tree with perfect matchings, Linear Algebra and its Applications, 347 (2002), 9-15.
[10] J-M. Guo and S-W. Tan, A note on the second largest eigenvalue of a tree with perfect matchings, Linear Algebra and its Applications, 380 (2004), 125-134.
[11] M. Hofmeister, On the two largest eigenvalues of trees, Linear Algebra and its Applications, 260 (1997), 43-59.
[12] Y. Hong, The k th largest eigenvalue of a tree, Linear Algebra and its Applications, 73 (1986), 151-155.
[13] A. Neumaier, The second largest eigenvalue of a tree, Linear Algebra and its Applications, 46 (1982), 9-25.
[14] A.J. Schwenk, Computing the characteristic polynomial of a graph, In: Graphs and Combinatorics (Lecture Notes in Mathematics, 406), edited by R.A. Bari, F. Harary, Springer-Verlag, New York, 1974, 153-173.
[15] J.Y. Shao, Bounds on the k th eigenvalues of trees and forests, Linear Algebra and its Applications, 149 (1991), 19-34.
[16] J.Y. Shao and Y. Hong, Bounds on the smallest positive eigenvalue of trees with a perfect matching (in Chinese), Science Bulletin, 18 (1991), 1361-1364.
[17] G.H. Xu, On the spectral radius of trees with perfect matchings, in: Combinatorics and Graph Theory, World Scientific, Singapore, 1997.
[18] F. Zhang and A. Chang, Acyclic molecules with greatest HOMO-LUMO separation, Discrete Applied Mathematics, 98 (1999), 165-171.

[^0]: ${ }^{\dagger}$ Corresponding author. The work was supported by the National Natural Science Foundation of China (No. 10371019 and 10431020); CERG Research Grant Council of Hong Kong; and Faculty Research Grant, Hong Kong Baptist University.

 1365-8050 © 2007 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

