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Many results are already known, concerning the palindromic factors and the palindomic prefixes of
Standard billiard words, i.e., Sturmian words and billiard words in any dimension, starting at the origin.
We give new geometrical proofs of these results, especially for the existence in any dimension of Standard
billiard words with arbitrary long palindromic prefixes.
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1 Introduction

1.1 Standard Billiard Words in dimension k = 2

Let ρ be any positive number. There are many ways to associate to ρ a family of Sturmian
words, which are special words on the two letters alphabet A := {a1, a2}. Here we choose the
geometrical one.

Consider the grid G on the first quadrant of the plane : it is the set of vertical half-lines
with integer x coordinate and of horizontal half-lines with integer y coordinate. The half-line D
starting at the origin O with slope ρ divides G into two parts. It will be more convenient for
a multidimensional generalization, to consider a positive vector α = (α1, α2) parallel to D, thus
we have ρ = α2

α1
. We construct the Christoffel word uρ = uα1,α2 and the Standard billiard word

cρ = cα1,α2 as shown in Fig.1.a:
Coding by a1 the horizontal black segment on the grid and by a2 the vertical one as in Fig.1.a

,uα1,α2 encodes the discrete path immediately under the half line D; hence we have uα1,α2 =
a1a2a1a2a1a2a2a1a2 . . . Looking at the squares crossed by D, i.e., the grey squares in Fig.1.a, the
Standard billiard word cα1,α2 encodes the sequence of horizontal and vertical segments joining
the two centers (i.e., white points in Fig. 1.a) of the consecutive grey unit squares. Consider the
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Fig. 1: Two and three-letters Billiard Words

first path. Cancelling the first horizontal segment, and then translating by vector (− 1
2 , 1

2 ), we
obtain the new path, hence we have uα1,α2 = a1cα1,α2 .

Consider now a mobile point P , starting from the origin O and moving on D up to infinity.
This point intersects successively horizontal and vertical parts of the grid, the corresponding
position are the black points in Fig.1.a. We encode now by a1 an intersection point (black point)
on a vertical line of the grid, and by a2 an intersection point on an horizontal line. As P goes from
O up to infinity, we get an infinite word on A which is the Standard billiard word cα1,α2 . So these
words are also called cutting sequences or billiard words starting at the origin, and denoted by
c.... These two geometrical constructions of Standard billiard words are useful in any dimension.
In this paper, we shall use the second one.

General Sturmian words can be obtained in the same way, using arbitrary lines D of positive
slope ρ. The set of factors of these words depends only on the slope ρ, so that factors of Sturmian
words are factors of the Christoffel word. In this paper, we consider only Standard words, i.e.,
those corrresponding to the half-lines starting from he origin.

Christoffel words have been known since Bernoulli. They have been introduced in [8], and
have many applications in mathematics and physics : they are related to continuous fraction
expansions, Farey sequences, and the Stern-Brocot tree, see [6] and [14] for the later. General
presentations of Christoffel and Sturmian words can be found in [1], [5] or [17].

1.2 Standard Billiard Words in dimension k ≥ 3

Let D be the half-line of origin O in the k-dimensional space, and parallel to vector (α1, α2, . . . , αk),
with positive αi. We consider the sequence of k-dimensional unit cubes, or ”k-cubes”, crossed
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A geometrical approach to Palindromic Factors of Standard Billiard Words 197

by D, and the ”k-facets” joining each k-cube to the next : a k-facet is the subset of the k-cube
formed by all the points having a fixed integer i-th coordinate, there are 2 k-facets for each i,
and so each k-cube has 2k k-facets.

In Fig.1.b, in dimension k = 3, the half-line D crosses the six 3-cubes which are represented
in the figure.

Looking again to the sequence of intersection points (the black points in Fig.1.b), and coding
these points by ai when the i-th coordinate is an integer for the corresponding k-facet, we obtain
an infinite word on the alphabet Ak := {a1, a2, . . . , ak}. This word is the Standard billiard word
associated to D. This word also encodes, as in dimension 2, the sequence of segments between
the centers of consecutive crossed k-cubes (the white points in Fig.1.b).

This Standard billiard word is denoted by cα1,α2,...,αk
. The example given in Fig.1.b corre-

sponds to cα1,α2,α3 = a1a2a3a1a2a3 . . .

This works as soon as one has:
αi

αj
/∈ Q, 1 ≤ i < j ≤ k. (1)

Indeed in this case, each k-facet is crossed in its interior, so that the corresponding intersection
point belongs to a unique k-facet, so that the index i is unique and well-defined. This condition
already holds if we have:

the αi’s are Q-linearly independents (2)
and these two conditions are the same only in dimension 2. In many cases in the following, we
use the stronger condition (2), and we say that (α1, α2, . . . , αk) is totally irrational, see [2].

1.3 Classical Results

Standard billiard words and Sturmian words have been intensively studied in any dimension.
These studies specially consider the language of these words, i.e., the set of factors, and the
complexity of these words, i.e., the numbers of factors of length n, for any n.

In dimension k = 2 there are exactly n + 1 factors of length n, and this can be used to
characterize Sturmian words; moreover, they appear as the words of minimal complexity, except
for ultimate periodic words. In dimension k = 3, there are n2 + n + 1 factors of length n, see [2],
and

min(k−1,n)∑
i=0

i!
(

k − 1
i

) (
n
i

)
in any dimension k, see [3]. Hypothesis (2) is a necessary condition for these results: it is possible
to get some Standard billiard words having exactly 6 factors of length 2, in dimension 3, using
only hypothesis (1) (unpublished).
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198 Jean-Pierre Borel

2 Palindromic Factors and Palindromic Prefixes: main Results

Looking for palindromic factors of Standard billiard words, the situation is the same in any
dimension. But the situation is quite different if we only consider palindromic prefixes.

Theorem 1 With the strong irrationality hypothesis (2), the Standard billiard word cα1,α2,...,αk

contains:

• for any even integer n, a unique palindromic factor of length n, whose center is the only
pair of letters aa which belongs to the language of cα1,α2,...,αk

;

• for any odd integer n, and for each letter a in the alphabet A, a unique palindromic factor
of length n in which the letter a is in central position.

This Theorem can be found in [7] in the general case. Proof is an easy generalisation of the
proof in dimension 2. We say that a factor w of a finite word u is a central factor when we have
v = v1wv2 with |v1| = |v2|, and we call center of v the central factor of v of length 1 or 2, as
|v| is odd or even. This result implies that whenever we have two palindromic factors of a given
Standard billiard word, and with the same center, then the shorter one is a central factor of the
longuer one.

In dimension 2, any palindromic factor of a Standard billiard word is a central factor of a
palindromic prefix of this Standard billiard word. This result is proved in [10], and a geometrical
proof is given in [7]. This result cannot be extended to dimension k ≥ 3, according to the finite
number of palindromic prefixes in general case, see the Theorem below.

It is also possible to obtain a characterization of Sturmian words in dimension 2, using
properties on the first occurence of each palindromic factor in the word, see [13]. Note that
condition (2) is necessary to get these results: if we suppose only (1), it is possible to obtain some
Standard billiard words in dimension k = 3 without any palindromic factors of even length, and
in dimension k = 4 some Standard billiard words having only finitely many palindromic factors
(unpublished).

Theorem 2 With the strong irrationality hypothesis (2),

• in dimension k = 2, each Standard billiard word has infinitely many palindromic prefixes;
the length of these palindromic prefixes can be deduced from the sequence of main and
intermediate convergents, using the continued fraction expansion of the slope ρ of the line
D;

• in dimension k ≥ 3, the set of vectors (α1, α2, . . . , αk) such that cα1,α2,...,αk
has infinitely

many palindromic prefixes is a negligible set, looking to the Lebesgue measure on the k-
dimensional unit sphere. However, this set is dense on the positive part of this unit sphere.
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A geometrical approach to Palindromic Factors of Standard Billiard Words 199

In dimension 2, many proofs of this Theorem have been given, for example in [4], [10], [11],
[12], [16], with various approaches. In the multidimensional case k ≥ 3, it has been proved in
[7]. Essentially, the problem is to ”synchronize”(see [7]) the convergents of the continued fraction
expansion of the ratios αi

αj
. The existence of such a synchronization is related to probabilistic

considerations on these convergents, and is an exceptional case. The density follows from an
explicit construction of ”good” vectors (α1, α2, . . . , αk).

In this paper, we show that we can obtain these results by using only the geometrical approach
of Standard billiard words : the two results above are proved in dimension 2, and the existence
and the density property in dimension k ≥ 3, for Standard billiard words with infinitely many
palindromic prefixes.

3 A geometrical Characterization of Palindromic Prefixes

3.1 Some kinds of Integer Points

Definition 1 Let M = (x1, x2, . . . , xk) ∈ RI k
+ be a k-dimensional point with positive coordinates.

Such a point is called:

• a 2-integer point when at least two coordinates xj are positive integers;

• a visible point whenever there are no 2-integer points N on the segment OM , except for the
endpoints O and in some cases M ;

• an integer point whenever all its coordinates are positive integers;

• a visible integer point when it is both visible and integer.

The condition (1) of irrationnality, which allows to define the Standard billiard word cα1,α2,...,αk
,

corresponds to the non-existence of 2-integer points on the half-line D, except for the origin O.

A visible integer point M is a point whose coordinates mj are pairwise coprimes positive
integers, and this property corresponds to the following geometrical property: the segment OM
crosses the k-cubes only in the interior of k-facets. As before, we can encode the finite sequence
of these intersection on the alphabet A. The corresponding word, of length

∑k
j=1 (mj − 1), is

called a finite Standard billiard word and denoted by cM . It has been pointed by Jean Berstel, in
the beginning of the nineties, that:

Proposition 1 For any visible integer point M , the finite Standard billiard word cM is a palin-
dromic word.

Proof The geometrical proof is immediate. Consider the mid-point I of the segment OM , and
all the intersection points between OM and the k-facets. I is a center of symmetry of the figure
(see Fig.2). The two segments OM and MO have the same encoded sequence of intersection
points with the grid, so the reverse word c̃M and cM are the same, and this word is a palindrome.
�
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Fig. 2: Symmetry and Palindromicity

The following definition has been introduced in [7], and the corresponding points play a crucial
role in the sequel.

Definition 2 Let us consider a vector (α1, α2, . . . , αk) satisfying condition (1), an integer point
M , and the point H which is the second intersection point between D and the rectangle parallelepi-
ded whose edges are parallel to the axes, and whose OM is the main diagonal. The integer point
M is called an integer prefix point of D when the triangle OHM does not contain any 2-integer
points, except for O and M .

It can be noticed that, in dimension 2, we can replace in the definition above the point H either
by the orthogonal projection H ′ of M on D, or by the intersection point H ′′ between D and the
sphere of center O and radius OM : the segment HH ′′ contains H ′, and it remains in the unit
cube whose M is a vertex (see Fig.3).

3.2 Palindromic Prefixes and Integer Prefix Points

The two following results give the relation between the palindromic prefix factors of Standard
billiard words and the integer prefix points of the corresponding half-line.

Proposition 2 Let M = (m1, m2, . . . , mk) be any integer point and D any half-line parallel to
vector (α1, α2, . . . , αk) satisfying the irrationality condition (1). The following properties are the
same:

• M is an integer prefix point of D;

• cM is a palindromic prefix factor of cα1,α2,...,αk
.

This result, which is proved in [7], has an immediate geometric proof: let M be any integer
prefix point of D. Consider H as above, and a point N moving continuously on the segment
MH from M to H . Then the segment ON remains in the triangle OMH , so that OH and OM
have the same encoding sequence of intersection points with the interiors of k-facets, and the
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A geometrical approach to Palindromic Factors of Standard Billiard Words 201

palindromic word cM encodes OH , hence it is a prefix factor of cα1,α2,...,αk
.

The converse is a special case of the following.

Proposition 3 Let D be any half-line parallel to vector (α1, α2, . . . , αk) satisfying the irrational-
ity condition (1), and u a palindromic prefix factor of the Standard billiard word cα1,α2,...,αk

.
Then the integer point M whose coordinates are the positive integers mj := |u|aj +1 is an integer
prefix point of D.

We denote as usual by |u|a the number of occurences of the letter a in the finite word u, for
any a ∈ A.

Observe that, using the proposition above, this implies that u = cM : indeed, u and cM are
two prefixes of the same Standard billiard word, with the same length.

Proof We prove this result at first in the two dimensional case, and then use the projections
πij (see [7]), defined as follow for any 1 ≤ i < j ≤ k :

• on finite and infinite words, by uij := πij(u) is the word on Aij := {ai, aj} obtained by
cancelling in u any letter except ai and aj;

• on RI k
+, by πij(x1, x2, . . . , xk) := (xi, xj), which belongs to the plane Πij ;

• on the set of vectors (α1, α2, . . . , αk) in RI k
+, by πij(α1, α2, . . . , αk) := (αi, αj).

3.2.1 The case of Dimension k = 2

Let u be a palindromic prefix factor of the Standard billiard word cα1,α2 , and M the integer point
whose coordinates are (|u|a1 + 1, |u|a2 + 1). u is a prefix factor of the Standard billiard word,
hence D crosses the grey square on Fig.3, whose M is the right upper vertex. Fig.3 corresponds
to the case cα1,α2 = a1a2a1a1a2a1a2 . . . and u = a1a2a1a1a2a1. The letter a2 following u in cα1,α2

shows that D crosses the horizontal upper side of the grey square. We use the mid-point I of
the segment OM as a center of symmetry for the figure. Consider the symetric point G of H
with respect to I : this point is on the x-axis, on the first unit segment. The open segment OH
crosses the grid m1 + m2 − 2 times, i.e., |u|a1 + |u|a2 times. Hence the finite word v on A coding
these intersections is a prefix factor of cα1,α2 , of length |u| : so v = u.

Using the symmetry, the finite word coding the intersections of the open segment GM with
the grid is the reverse word ũ of u.

We made the hypothesis that u is a palindromic word, and so we have v = u = ũ, and
the two segments OH and GM have the same intersection coding sequence with the grid. We
move continuously from OH to GM by a horizontal translation. Then, the moving segment
cannot cross any integer point: if it were, the coding word of the segment is modified, and some
factor a2a1 is replaced by a1a2, so that the coding word decreases strictly, corresponding to the
lexicographic order. But the word is the same at the beginning and at the end of this translation
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Fig. 3: M is an integer prefix point of D

movement. Hence we obtain that there are no integer point in the parallelogram OHMG, except
for O and M . Thus there are no integer point in the triangle OHM , except for O and M , and
this proves that M is an integer prefix point of D.

3.2.2 The case of Higher Dimensions

Consider now k ≥ 3. Let u be a palindromic prefix factor of the Standard billiard word cα1,α2,...,αk
,

and M be the integer point whose coordinates are mj := |u|aj + 1, 1 ≤ j ≤ k. We must prove
that there are no 2-integer points in the triangle OHM , except for O and M .

Suppose that such a 2-integer point exists, namely P , and let 1 ≤ i < j ≤ k such that the
two coordinates pi and pj of P are integers. We use the corresponding projection πij . Then :

• uij is a palindromic prefix factor of cαi,αj ;

• πij(P ) is the integer point Pij of the plane Πij whose coordinates are (pi, pj);

• πij(M) is the integer point Mij of the plane Πij whose coordinates are (|u|ai +1, |u|aj +1).

Observe that |u|ai = |uij |ai and |u|aj = |uij |aj . So we can use the result above in dimension 2, Mij

is an integer prefix point of Dij := πij(D), and the triangle OHijMij does not contain any integer
point, except for O and Mij . This contradicts the fact that Pij is both an integer point and in
the interior of the triangle OHijMij , by projection : P is an interior point of the triangle OHM ,
and the projection πij(OHM) = OKMij of this triangle is included in the triangle OHijMij , the
point K being on the segment OHij . �
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A geometrical approach to Palindromic Factors of Standard Billiard Words 203

3.2.3 Synthesis

Combining the two propositions above we get the following geometric characterization of the
palindromic prefix factors. This characterization will be used in the sequel.

Proposition 4 The palindromic prefix factors of the Standard billiard words are related to the
integer prefix points M of the half-line D, and are exactly the finite Standard billiard words cM .

4 Palindromic Factors in dimension k = 2

4.1 Palindromic Prefixes

As we have said, the palindromic prefix factors correspond to those points M such that there
are no integer points in the triangle OMH , except for O and M . These points M of coordinates
(m1, m2) exactly correspond to the main and intermediate convergents m2

m1
of the continued

fraction expansion of ρ := α2
α1

. This is an easy consequence of a geometrical presentation of the
continued fractions developement theory, made by H.J.S.Smith and Felix Klein, [15], at the end
of the XIXth century, see for example [9], and can be resumed as follow.

Theorem 3 Let N− and N+ be the sets of all integer points strictly below (resp. above) the
half-line D of irrational slope ρ = α2

α1
. Let C− and C+ be the convex hulls of these sets. Then:

• The boundaries of C− and C+ are two infinite polygonal lines. For C− (resp. C+), this line
contains the positive part of the x-axis (resp. y-axis) starting from I (resp. from J), and
an infinite sequence of finite segments, whose slopes are decreasing (resp. increasing) and
are equal to the main convergents of ρ, bigger (resp. smaller) than ρ.

• The vertices M = (m1, m2) of these polygonal lines are the integer points such that m2
m1

is
a main convergent of the continued fraction expansion of ρ;

• The other integer points M = (m1, m2) on the polygonal line are the integer points such
that m2

m1
is an intermediate convergent of the continued fraction expansion of ρ;

These boundaries are called the Newton polygonal line associated to the half-line D. They are
very close to D, as seen in Fig.4, and closer when the partial quotients an of the slope are large
integers. In Fig.4 above, the vertices of the Newton polygonal line are the black points, and the
other integer points on the line are the white ones, except for those on the axis. It corresponds
to the continued fraction expansion:

ρ = [0; 1, 2, 1, 2, . . .] =
1

1 + 1
2+ 1

1+ 1
2+ 1

...

which has 0
1 , 1

1 , 2
3 , 3

4 , 5
7 , 8

11 , ..., as main convergents, and 1
2 and 5

7 as intermediate convergents in
the corresponding area.

It is an easy consequence of this construction that any integer point M on the Newton polyg-
onal line is an integer prefix point of D : the corresponding triangle OMH is in the intermediate
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J 

I 

Fig. 4: The two Newton polygonal lines.

area between the two polygonal lines, so contains no integer points, except for O and M .

The converse property is true:

Proposition 5 Let M be any integer point, not on the Newton polygonal line. Then the interior
of the triangle OMH contains some integer point, so that M cannot be an integer prefix point.

Proof Let M is any integer prefix point of D below the half-line (note that the other case can
be treated in a similar way), and suppose that M is not on the Newton polygonal line. Then
there exists an edge AB of the Newton line such that the two segments OM and AB intersects
in their interior. There are no integer points, except for O, A or B, in the two following triangles:

1. the triangle OH ′M : M is an integer prefix point, so that the rectangle OH ′MG′ does not
contain any integer point, except for O and M , as noticed before;

2. the triangle OA′B′, except for O and integer points on the segment AB, where A′ and B′

are the intercepts of the line (AB) with the x-axis and the half-line D respectively (the
triangle is as in Fig.5, since the slope of AB is bigger than ρ). Indeed, AB is an edge of the
Newton line, so all the integer points below D are under the line (AB), or on the segment
AB.

From 1. we deduce that the point M is in the interior of the triangle BJA, where AJ is parallel
to D and BJ is perpendicular to D.

From 2. we deduce that there are no integer point in the triangle OBA, except for O and
the integer points on AB, and the parallelogram OCBA has no integer point in its interior, by
symmetry with respect to the mid-point I of OB : the coordinates of I take their values in 1

2ZZ ,
so that the symmetric point of an integer point is another integer point.
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A geometrical approach to Palindromic Factors of Standard Billiard Words 205
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Fig. 5: Integer points and lattices.

This property implies that all the integer points in the plane are on the new grid built on this
parallelogram (the pointed lines in Fig.5). The intersection points of this grid are integer points,
and it is possible to have some other integer points on the pointed lines: this case corresponds
to partial quotients an > 1, i.e., to the existence of other integer points on the segment AB than
the endpoints A and B.

Let ABED the fondamental domain of the grid obtained from OCBA by translation of vector
�OA (for simplicity reasons, E is outside the figure). M is in the interior of the triangle AJB,

and so is in the interior of the parallelogram ABED.

But there are no integer points in the interior of the grid, so we get a contradiction, and
this proves the announced result: the palindromic prefix factors of the Standard billiard word
correspond to the integer points on the Newton polygonal line associated with the half-line, i.e.,
to the continued fraction expansion of the slope ρ. �

4.2 Palindromic Factors

In dimension 2, any palindromic factor of a Standard billiard word is a central factor of some
palindromic prefix factor. This result is proved in [10], and an easy geometrical proof is given in
[7]. This property gives an other characterization of sturmian words (see [13]).
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206 Jean-Pierre Borel

5 Palindromic Prefixes in dimension k ≥ 3

In this section, we prove in a geometrical way that there exist, for any k ≥ 3, some half-lines
D satisfying the irrationnality condition (1), and having infinitely many integer prefix points.
Moreover the proof implies the two following properties:

• the set of the half-lines having infinitely many integer prefix points is a dense subset of the
positive part of the unit sphere in RI k;

• this set has the cardinality of the continuum.

In the following we consider some open cones C in the positive quadrant RI k
+ of the k-dimensional

space, with vertex O. The proof is based on the two following principles.

Proposition 6 Let M be any visible integer point. There exists an open cone C with vertex O,
such that:

• the point M is in C;

• the point M is an integer prefix point for any half-line D ∈ C satisfying (1).

Proof There are no 2-integer points on the open segment OM . Note that the set of 2-integer
points is a closed subset of the positive k-dimensional space. So there exists an open cylinder
(see Fig.6) whose central axis is the segment OM , and containing no 2-integer points, except for
those close to the the origin and to M .

The condition (1) implies that there is no 2-integer point on the segment OH , thus the 2-
integer points close to M are not inside the triangle OHM .

The other exceptional 2-integer points are close to the origin, they have two zero coordinates,
so they cannot be in the cone C having the same base as the cylinder, see Fig.6, where the doted
lines are inside both the cone and the cylinder.

Let D be any half-line in C, the orthogonal projection H of M on D is contained in the open
cylinder, and so is the triangle OHM , except for the two points O and M . Thus this triangle
does not contain any 2-integer point, except for O and M , and this means that M is an integer
prefix point of D. �

Proposition 7 Let C be any open cone with vertex O. Then C contains at least one visible integer
point M .

By iteration we get immediately that C contains infinitely many visible integer points. The proof
of this proposition needs some technical preliminary lemmas.

5.1 Non-lacunary Sets of Integers

We consider now infinite subsets, or sequences, NI j of the set of positive integers NI ∗, whose
elements are enumerated in an increasing order by nj,r, r ∈ NI ∗. We call such a sequence an
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A geometrical approach to Palindromic Factors of Standard Billiard Words 207

 

D 

C 
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O 

Fig. 6: Cylinder without 2-integer points and the associated cone

unlacunary sequence whenever the following property is true:

lim
r→+∞

nj,r+1

nj,r
= 1 (3)

Thus an unlacunary sequence is a sequence such that for any ε > 0, the interval [x, (1 + ε)x]
contains at least one point in the sequence, for sufficient large x. This property is denoted by
unlac.

Lemma 1 The sequence PI of prime numbers is unlacunary.

This result is an easy consequence of the Prime Number Theorem, which is equivalent to pn ∼
n ln n if we denote by pn the nth prime number in the increasing order. However the Prime
Number Theorem is not easy to prove, so we shall not use this lemma.

Lemma 2 Let p and q be two distinct prime numbers. Then the sequence NI p,q of those integers
having only p and q as prime factors, is unlacunary.

Proof We consider the increasing sequence of the logarithms of the numbers in NI p,q, i.e., all real
numbers n ln p+m ln q with non negative integer coefficients n and m, except for n = m = 0. We
have to prove that the difference between two consecutive numbers in this new sequence tends to
0, thus the same property for the increasing sequence of real numbers:

n + m
ln q

ln p
.

It is well known that ln q
ln p =: β is an irrational number, so that the sequence of the fractional

parts {mβ},with positive integers m, is dense in the unit interval [0, 1].

Lemma 3 Let β be any positive irrational number. Then the increasing sequence of all numbers
n + mβ, (n, m) ∈ NI 2, is such that the difference of two consecutive terms tends to 0.
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208 Jean-Pierre Borel

Proof It is sufficient to show that for any positive integer N , any interval of the form[K
N , K+1

N ]
contains some number n + mβ, for sufficiently large K : this property implies that the upper
limit of the difference of two consecutive terms is bounded by 1

N for any positive integer N , so is
0.

Let N be any positive integer, and consider the N intervals Ik := [ k
N , k+1

N ], 0 ≤ k ≤ N − 1.
Each of them contains the fractional part {mkβ}, for some positive integer mk > 0, using the
density of this sequence. We can write {mkβ} = mkβ − nk with some positive integer nk > 0.

Choose K > N(1 + max0≤k≤N−1 nk). Using the Euclidian division, K = AN + r, the
remainder r satisfies 0 ≤ r ≤ N − 1 and the quotient A is such that A > max0≤k≤N−1 nk. Then
we have :

K

N
= A +

r

N
< (A − nr) + mrβ < A +

r + 1
N

=
K + 1

N

which implies the expected result, since A − nr and mr are positive integers. �

As said before, the ratio ln q
ln p is an irrational real number, which proves lemma 2. �

Lemma 4 Let NI j, 1 ≤ j ≤ k, be k unlacunary sequences, and C any open cone with vertex O.
Then C contains infinitely many points of the direct product

⊗k
j=1 NI j.

Proof The open cone C contains some point X = (x1, x2, . . . , xk) and some neighbourhood of
X . Thus it contains some k-cube whose main diagonal is of the form XY with Y = (1 + ε)X :=
((1 + ε)x1, (1 + ε)x2, . . . , (1 + ε)xk) for some ε > 0. Then we use the unlac property for all the
sequences NI j : there exists some λ such that the interval [λxj , (1+ε)λxj ] contains some element
nj of NI j for all j (we consider only a finite number of unlacunary sequences). The new k-cube
whose main diagonal is X ′Y ′, with X ′ := λX and Y ′ := λY , is the image of the former one by
the homothety of center O and ratio λ. So this new cube is in the interior of C. But the integer
point (n1, n2, . . . , nk) is inside the new k-cube, so is inside C. �

Note that the proof can be made for arbitrary large values of λ, so that we get infinitely many
points in the direct product

⊗k
j=1 NI j , which are contained in C.

5.2 Proof of Proposition 7

We apply lemma 4, using NI j := NI p2j−1,p2j for 1 ≤ j ≤ k, where pj is the jth prime number
in increasing order. Then the cone C contains some points of the direct product

⊗k
j=1 NI j , and

such a point is a visible point: any two of its coordinates are coprime. �

An other proof can be made, using NI j = PI for any j. We must consider some open cone
C′ in C such that any half-line (α1, α2, . . . , αk) in C′ have distincts αj ’s. Such a cone exists, and
contains some point in PI ⊗n, whose coordinates are distinct prime numbers. It is clear that this
point is a visible point.
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5.3 Existence of Lines with an Infinity of Integer Prefix Points

We can now give the geometrical proof of the main announced result, by combining propositions
6 and 7. We start from any visible point M0, then there exists some open cone C0 such that M0

is an integer prefix point of any half-line D in C0 and satisfying (1). Then we take a new visible

 

M1 

M0 

O 

C0 

C1 

M2 
D 

Fig. 7: Successive cones

point M1 inside this cone, this new point is an integer prefix point of any half-line D satisfying
(1) in a new cone C1, included in C0 (see Fig.7): using proposition 6 we get an open cone C′

1, and
take C1 := C0 ∩ C′

1. Then we iterate, taking inside C1 a new visible point M2, and then the open
cone C2, and so on.

The infinite sequence of the open cones Cn is a decreasing one, so there exists some half-line
D in the limit set

⋂∞
n=0 Cn (more precisely, it can be proved that the limit set is exactly equal to

some half-line starting from the origin), and all the integer points Mn are integer prefix points of
D. �

More precisely, this method gives the existence of a large set of lines with infinitely many
integer prefix points. We start from any open cone C0 as above. Then there exist two visible
points M1 and M ′

1 in this cone. Then by iteration, we get two new open cones, and two new
visible points in each cone, and so on. This proves that the set of those lines in C0 with infinitely
many integer prefix points, has the cardinality of the continuum.
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