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Fix an integer partition λ that has no more than n parts. Let β be a weakly increasing n-tuple with entries from
{1, ..., n}. The flagged Schur function indexed by λ and β is a polynomial generating function in x1, ..., xn for certain
semistandard tableaux of shape λ. Let π be an n-permutation. The type A Demazure character (key polynomial,
Demazure polynomial) indexed by λ and π is another such polynomial generating function. Reiner and Shimozono
and then Postnikov and Stanley studied coincidences between these two families of polynomials. Here their results
are sharpened by the specification of unique representatives for the equivalence classes of indexes for both families
of polynomials, extended by the consideration of more general β, and deepened by proving that the polynomial
coincidences also hold at the level of the underlying tableau sets. Let R be the set of lengths of columns in the shape
of λ that are less than n. Ordered set partitions of {1, ..., n}with block sizes determined byR, calledR-permutations,
are used to describe the minimal length representatives for the parabolic quotient of the nth symmetric group specified
by the set {1, ..., n− 1}\R. The notion of 312-avoidance is generalized from n-permutations to these set partitions.
The R-parabolic Catalan number is defined to be the number of these. Every flagged Schur function arises as a
Demazure polynomial. Those Demazure polynomials are precisely indexed by the R-312-avoiding R-permutations.
Hence the number of flagged Schur functions that are distinct as polynomials is shown to be the R-parabolic Catalan
number. The projecting and lifting processes that relate the notions of 312-avoidance and of R-312-avoidance are
described with maps developed for other purposes.

Keywords: Catalan number, Flagged Schur function, Demazure character, Key polynomial, Pattern avoiding permu-
tation, Symmetric group parabolic quotient

MSC Codes. 05E15, 05A15, 05E10, 14M15

1 Introduction
This is the second of three papers that develop and use structures which are counted by a “parabolic”
generalization of Catalan numbers. Apart from some motivating remarks, it can be read by anyone inter-
ested in tableaux or symmetric functions. It is self-contained, except for some references to its tableau
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precursors. Our predecessor paper [PW3] listed roughly a half-dozen parabolic Catalan structures. The-
orem 13.1 here lists roughly a dozen more such structures; it can be understood in conjunction with this
introduction as soon as the definitions of its objects have been read. Experimental combinatorialists may
be interested in Problem 10.5. Algebraic geometers may be interested in Problem 12.1.

Let n ≥ 1 and N ≥ 1. Set [n] := {1, 2, ..., n}. Fix a partition λ of N that has no more than n parts.
Use the symbol λ to also denote the shape of this partition; it has N boxes. Let R ⊆ [n − 1] be the set
of lengths of columns in λ that are less than n. Set r := |R| and J := [n − 1]\R. Multipermutations
of n non-distinct items whose repetition multiplicities are determined by R can be used to describe the
minimum length representatives in W J for the cosets in the quotient Sn/WJ , where Sn is the symmetric
group and WJ is its parabolic subgroup specified by J . Given a semistandard tableau T of shape λ with
values from [n], let Θ(T ) denote the census for these values in T . Given variables x1, ..., xn, the weight of
T is the monomial xΘ(T ). The Schur function sλ(x) is the sum of the weight xΘ(T ) over all semistandard
tableaux T of shape λ.

Flagged Schur functions arose in 1982 when Lascoux and Schützenberger were studying Schubert
polynomials for the GL(n)/B flag manifold. Let β be a weakly increasing n-tuple with entries from
[n]. Using the weight xΘ(T ), the flagged Schur function sλ(β;x) is usually defined to be the polynomial
generating function for the semistandard tableaux with values row-bounded by the entries of β. To exclude
the zero polynomial, we also require βi ≥ i. We call these “flag Schur polynomials”. Let UFλ(n)
denote the set of all such n-tuples β, which we call “upper flags”. Demazure characters arose in 1974
when Demazure introduced certain B-modules while studying singularities of Schubert varieties in the
G/B flag manifold. Let π be a permutation of [n]. From the work of Lascoux and Schützenberger it is
known that the type A Demazure character (key polynomial) dλ(π;x) can be expressed as the polynomial
generating function for certain semistandard tableaux specified by π, again using the weight xΘ(T ). We
call these “Demazure polynomials”. Reiner and Shimozono [RS] and then Postnikov and Stanley [PS]
studied coincidences between the sλ(β;x) and the dλ(π;x). We sharpen their results by specifying unique
representatives for the equivalence classes of indexes for both families of polynomials, extend their results
by considering more general β, and deepen their results by proving that the polynomial coincidences must
also hold at the level of the underlying tableau sets.

Note that λ is strict exactly when R = [n− 1]. Our results become easy or trivial when λ is strict, and
various aspects of our new structures become invisible when R = [n − 1] as these structures reduce to
familiar structures. The number of 312-avoiding permutations of [n] is the nth Catalan number Cn; from
our general perspective this fact is occurring in the prototypical R = [n− 1] case.

How many flag Schur polynomials are there, up to polynomial equality? We can answer this question
via our finer study of the coincidences between flag Schur polynomials and Demazure polynomials, which
is conducted after we have first precisely indexed these families of polynomials. Reiner and Shimozono
showed that every flag Schur polynomial arises as a Demazure polynomial, and Postnikov and Stanley
then showed that the Demazure polynomials that participate in such coincidences can be indexed by
the 312-avoiding permutations. But one cannot deduce from this that the number of distinct flag Schur
polynomials is Cn, since they “loosely” indexed their Demazure polynomials by permutations when R ⊂
[n−1]. It is not hard to see that the Demazure polynomials are precisely indexed by the cosets in W/WJ .
We depict these cosets with standard forms for ordered set partitions of [n] whose r + 1 block sizes are
determined by R, and refer to these standard forms as “R-permutations”. (The R-permutations can be
thought of as being “inverses” for the multipermutations mentioned above.) While permutations precisely
index the Schubert varieties in the full flag manifold GL(n)/B, one needs R-permutations to precisely
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index the Schubert varieties in the general flag manifold GL(n)/PJ . (Here PJ is the parabolic subgroup
BWJB of GL(n).) In [PW3] we introduced a notion of “R-312-avoidance” for the R-permutations and
defined theR-parabolic Catalan number CRn to be the number of suchR-permutations. Here we show that
the Demazure polynomials that participate in coincidences are precisely indexed by the R-312-avoiding
R-permutations. This implies that the number of distinct flag Schur polynomials on the shape λ is CRn .

As we were writing the earlier version [PW2] of this paper, we learned that Godbole, Goyt, Herdan,
and Pudwell had recently introduced [GGHP] a notion of pattern avoidance by ordered partitions like
ours, but for general patterns. They apparently developed this notion purely for enumerative motivations.
Chen, Dai, and Zhou soon obtained [CDZ] further enumerative results for these pattern avoiding ordered
partitions. Our observations that CRn counts flag Schur polynomials (Theorem 13.1(iv)) and convex De-
mazure tableau sets [PW3] are apparently the first observances of these counts “in nature”. See Section 8
of [PW3] for further remarks on [GGHP] and [CDZ].

To obtain a complete picture for the coincidences, it is necessary to develop precise indexes for the
flag Schur polynomials as well. When are two flag Schur polynomials to be regarded as being “the
same”? Postnikov and Stanley apparently regarded two flag Schur polynomials sλ(β;x) and sλ′(β′;x)
to be the same only when λ = λ′ and β = β′: On p. 158 of [PS] it was stated that there are Cn
flag Schur polynomials for any shape λ. For n = 3 and λ = (1, 1, 0), note that sλ((3, 3, 3);x) =
x1x2 + x1x3 + x2x3 = sλ((2, 3, 3);x). So for this λ there cannot be C3 = 5 flag Schur polynomials that
are distinct as polynomials.

In addition to the notion of polynomial equality, we consider a second way in which two of the poly-
nomials considered here can be “the same”. Let Pλ and Qλ′ be sets of semistandard tableaux with values
from [n] that are respectively of shape λ and of shape λ′. Using the weight xΘ(T ), let pλ(x) and qλ′(x)
be the corresponding polynomial generating functions. We define pλ(x) and qλ′(x) to be “identical as
generating functions” if Pλ = Qλ′ as sets. Then we write pλ(x) ≡ qλ(x); clearly we must have λ = λ′

here. If pλ(x) = qλ′(x) while pλ(x)�≡ qλ′(x), we say that pλ(x) and qλ′(x) are “accidentally equal”.
Denoting the underlying tableau sets for sλ(β;x) and sλ′(β′;x) by Sλ(β) and Sλ′(β

′), we write β ≈λ β′
when Sλ(β) = Sλ′(β

′). This is an equivalence relation on UFλ(n). Denote the underlying tableau set
for dλ(π;x) by Dλ(π). We show that the polynomial coincidences actually hold at the deeper level of the
underlying tableau sets: Whenever sλ(β;x) = dλ(π;x), it must be the case that sλ(β;x) ≡ dλ(π;x) (or
Sλ(β) = Dλ(π)). It is not hard to see that Demazure polynomials indexed by distinct R-permutations
cannot be accidentally equal. Since every flag Schur polynomial arises as a Demazure polynomial, we
can conclude that two flag Schur polynomials cannot be accidentally equal.

To facilitate the development of the clearest picture of the coincidences, when we began this project
we specified unique representatives for the equivalence classes of row bounds β indexing the tableau sets
Sλ(β). This specification process led us to reconsider the set of row bounds being used: The weakly
increasing requirement on β seemed needlessly restrictive, especially when λ is not strict. We decided
to initially require only βi ≥ i, to exclude the zero polynomial. Let Uλ(n) denote the set of all such
n-tuples. For any β ∈ Uλ(n), we define the “row bound sum” sλ(β;x) in the same manner as the flag
Schur polynomial sλ(β;x). We extend ≈λ to Uλ(n). For a given row bound sum generating function, the
most efficient n-tuple β of row bounds is increasing on any subinterval of [n] for which the row lengths in
λ are constant. If such a locally increasing n-tuple is equivalent to some upper flag, we call it a “gapless
λ-tuple”. Such n-tuples are the most efficient row bound indexes to use when the flag Schur polynomials
are being viewed more generally as row bound sums. Let UGCλ(n) be the subset of Uλ(n) consisting of
all n-tuples that are equivalent to some upper flag. This is the largest set of row bound indexes for viewing
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flag Schur polynomials as row bound sums. When β ∈ UGCλ(n), we call the row bound sum sλ(β;x)
a “gapless core Schur polynomial”. We honor these row bound sums with the name ‘Schur’ since they
inherit from flag Schur polynomials the properties of arising as Demazure polynomials and (therefore)
not suffering from accidental equalities. In contrast, as is noted in Problem 10.5, we do not know how
to rule out accidental equalities among general row bound sums. In Sections 8 and 5 we describe the
equivalence classes of ≈λ in each of Uλ(n) ⊇ UGCλ(n) ⊇ UFλ(n) and present two systems of unique
representatives in each of the three cases.

When studying the “key” of shape λ for an R-permutation in [PW3], we introduced the rank λ-tuple
map Ψλ and its inverse Πλ. When studying the equivalence ≈λ here, we introduce the λ-core map ∆λ on
Uλ(n) and the notion of the “critical list” of β ∈ Uλ(n). When λ is not strict, the calculations involving
β usually do not need to refer to all of its entries. The critical list of β contains only its essential entries.
Using the maps Ψλ,Πλ, and ∆λ and our precise indexing schemes, we state our main results in Theorems
9.1 and 10.3. These completely describe the possible coincidences between the sets Sλ(β) and Dλ(π)
and between the polynomials sλ(β;x) and dλ(π;x). The equality ∆λ(β) = γ = Ψλ(π) is the central
requirement for a coincidence between a gapless core Schur polynomial sλ(β;x) and an R-312-avoiding
Demazure polynomial dλ(π;x): Here β ∈ UGCλ(n), γ is a gapless λ-tuple, and π is an R-312-avoiding
R-permutation. Our foremost tools for proving the main results here were the two main results of the
predecessor [PW3] to this paper: Being indexed by an R-312-avoiding R-permutation π is necessary
and sufficient for a Demazure tableau set Dλ(π) to be convex in ZN . These form Theorem 7.6 below.
Those two results were in turn made possible by our earlier development of tractable descriptions of all
of the sets Dλ(π) in [Wi1] and [PW1] using the scanning method of [Wi1] for finding the “right key” of
a tableau of shape λ.

The referee for this paper remarked that our tableau convexity Theorem 7.6 is roughly paralleled by an
aspect of Theorem 1.2 of [KST] for Gelfand-Zetlin patterns, and that that result gives another perspective
for considering coincidences between flag Schur polynomials and Demazure polynomials. See Section
12 below.

What is the relationship between the notions of 312-avoidance for permutations and ofR-312-avoidance
for R-permutations? Surprisingly, the lifting and projecting answers to this question in Propositions 11.2
and 11.5 are expressed in terms of the maps Ψλ,Πλ, and ∆λ that were developed for other reasons.

Each of the two main themes of this series of papers is at least as interesting to us as is any one
of the stated results in and of itself. One of the main themes is that many of the new structures and
statements arising that are parameterized by n and λ or R are equinumerous with the R-312-avoiding
R-permutations. It is reasonable to view this common count as being a “parabolic” generalization of the
Catalan number, since the notion of 312-avoidance is being generalized from n-permutations to repre-
sentatives for the cosets in the parabolic quotient Sn/WJ . (As noted at the end of [PW3], Mühle and
Williams have recently independently proposed another parabolic generalization of the numbers Cn.)
The other main theme of this series of papers is the ubiquity of some of the structures that are counted
by the parabolic Catalan numbers. The gapless λ-tuples arose as the images of the R-312-avoiding R-
permutations under the R-ranking map in [PW3] and they arise here as the minimum members of the
equivalence classes for the indexing n-tuples of the flag Schur polynomials. Moreover, the λ-gapless
condition provides half of the solution to the nonpermutability problem considered in our third paper
[PW4]. Since the gapless λ-tuples and the structures equivalent to them are enumerated by a parabolic
generalization of Catalan numbers, it would not be surprising if they were to arise in further contexts.

Proposition 10.1(i) says that if sλ(β;x) = sλ′(β;x) are two row bound sum polynomials, then λ = λ′.
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Corollary 10.4(i) says that one cannot then also have that sλ(β;x) and sλ′(β′;x) are not identical as
generating functions, unless perhaps β, β′ ∈ Uλ(n)\UGCλ(n). If such a possibility can be ruled out by
proving the non-existence of the counterexample sought by Problem 10.5, then Problem 12.1 seeks an
explanation for the following coincidence: It would then be known that the number of row bound sum
polynomials that cannot equal a Demazure polynomial is equal to the number of Demazure polynomials
that cannot equal a row bound sum polynomial. Further remarks on this problem and on the distinctness
of the row bound sums appear in Section 12 and in Section 16 of [PW2]. In Section 12 we also relate our
results on polynomial coincidences in Section 10 to the results in [RS] and [PS]; the lifting and projecting
results of Section 11 are used here. Section 12 closes with a preview of the third paper [PW4] in this series.
It is surprising that gapless λ-tuples are used there to characterize the applicability of the Gessel-Viennot
method for computing row bound sums with determinants.

For this introduction, we fixed a partition λ and used its shape to form a set R ⊆ [n − 1]. In such a
context this set should have been more precisely denotedRλ. However, many of our structures and results
depend only upon some subset R ⊆ [n − 1] and not upon any λ: The content of Sections 3, 4, 5, and 11
and of parts of Sections 7 and 13 are purely R-theoretic. Elsewhere R depends upon the fixed partition λ;
then (as is noted near the end of Section 6) to avoid clutter we index the Rλ-dependent quantities with ‘λ’
rather than with ‘Rλ’.

The material in this paper first appeared as two-thirds of the manuscript [PW2]; the other one-third of
[PW2] now constitutes [PW3].

Most definitions appear in Sections 2, 3, and 6. The R-core map ∆R and the critical list of β ∈
UR(n) are studied in Section 4. In Section 7 the results needed from the predecessor paper [PW3] are
quoted. Section 8 sets the stage for our main results in Sections 9 and 10: The row bound tableau sets
Sλ(β) are introduced, and using these the equivalence relation ≈λ is defined on Uλ(n). Given β ∈
Uλ(n), a maximization process in [RS] produced a tableau that we denote Qλ(β). We introduce another
maximization process in Section 6 that produces a tableau denoted Mλ(β). Proposition 8.4(ii) says that
Mλ[∆λ(β)] = Qλ(β). For a gapless λ-tuple γ, Theorem 7.4 (from [PW3]) says that Mλ(γ) is the key of
shape λ of an R-312-avoiding R-permutation π. These two results provide the foundation for the bridge
from the row bound tableau sets Sλ(β) for β ∈ UGCλ(n) to the R-312-avoiding Demazure tableau sets
Dλ(π).

2 General definitions
In posets we use interval notation to denote principal ideals and convex sets. For example, in Z one has
(i, k] = {i + 1, i + 2, ..., k}. Given an element x of a poset P , we denote the principal ideal {y ∈ P :
y ≤ x} by [x]. When P = {1 < 2 < 3 < ...}, we write [1, k] as [k]. If Q is a set of integers with q
elements, for d ∈ [q] let rankd(Q) be the dth largest element of Q. We write max(Q) := rank1(Q) and
min(Q) := rankq(Q). A set D ⊆ ZN for some N ≥ 1 is a convex polytope if it is the solution set for a
finite system of linear inequalities.

Fix n ≥ 1 throughout the paper. Except for ζ, various lower case Greek letters indicate various kinds of
n-tuples of non-negative integers. Their entries are denoted with the same letter. An nn-tuple ν consists
of n entries νi ∈ [n] that are indexed by indices i ∈ [1, n], which together form n pairs (i, νi). The 9-
tuples in Table 3.1 are nn-tuples for n = 9. Let P (n) denote the poset of nn-tuples ordered by entrywise
comparison. It is a distributive lattice with meet and join given by entrywise min and max. Fix an nn-tuple
ν. A subsequence of ν is a sequence of the form (νi, νi+1, ..., νj) for some i, j ∈ [n]. The support of this



6 Robert A. Proctor, Matthew J. Willis

subsequence of ν is the interval [i, j]. The cohort of this subsequence of ν is the multiset {νk : k ∈ [i, j]}.
A staircase of ν within a subinterval [i, j] for some i, j ∈ [n] is a maximal subsequence of (νi, νi+1, ..., νj)
whose entries increase by 1. A plateau in ν is a maximal constant nonempty subsequence of ν; it is trivial
if it has length 1.

An nn-tuple φ is a flag if φ1 ≤ . . . ≤ φn. The set of flags is a sublattice of P (n); it is essentially the
lattice denoted L(n, n) by Stanley. An upper tuple is an nn-tuple υ such that υi ≥ i for i ∈ [n]. The
upper flags are the sequences of the y-coordinates for the above-diagonal Catalan lattice paths from (0, 0)
to (n, n). A permutation is an nn-tuple that has distinct entries. Let Sn denote the set of permutations. A
permutation π is 312-avoiding if there do not exist indices 1 ≤ a < b < c ≤ n such that πa > πb < πc
and πa > πc. Let S312

n denote the set of 312-avoiding permutations. By Exercises 6.19(h) and 6.19(ff) of
[St2], these permutations and the upper flags are counted by the Catalan number Cn := 1

n+1

(
2n
n

)
.

Tableau and shape definitions are in Section 6; polynomials definitions are in Section 10.

3 Carrels, cohorts, R-tuples, maps of R-tuples
FixR ⊆ [n−1] through the end of Section 5. Denote the elements ofR by q1 < . . . < qr for some r ≥ 0.
Set q0 := 0 and qr+1 := n. We use the qh for h ∈ [r + 1] to specify the locations of r + 1 “dividers”
within nn-tuples: Let ν be an nn-tuple. On the graph of ν in the first quadrant draw vertical lines at
x = qh + ε for h ∈ [r + 1] and some small ε > 0. These r + 1 lines indicate the right ends of the r + 1
carrels (qh−1, qh] of ν for h ∈ [r+ 1]. An R-tuple is an nn-tuple that has been equipped with these r+ 1
dividers. Fix an R-tuple ν; as in Table 3.1 we portray it by (ν1, ..., νq1 ; νq1+1, ..., νq2 ; ...; νqr+1, ..., νn).
Let UR(n) denote the sublattice of P (n) consisting of upper R-tuples. Let UFR(n) denote the sublattice
of UR(n) consisting of upper flags. Fix h ∈ [r+ 1]. The hth carrel has ph := qh− qh−1 indices. The hth

cohort of ν is the multiset of entries of ν on the hth carrel.
An R-increasing tuple is an R-tuple α that is increasing on each carrel. Let UIR(n) denote the

sublattice of UR(n) consisting of R-increasing upper tuples. Consult Table 3.1 for an example and a
counterexample. Boldface entries indicate failures. It can be seen that |UIR(n)| =

∏r+1
h=1

(
n−qh−1

ph

)
=

n!/
∏r+1
h=1 ph! =:

(
n

p1 ... pr+1

)
=:
(
n
R

)
. An R-permutation is a permutation that is R-increasing when

viewed as an R-tuple. Let SRn denote the set of R-permutations. Note that |SRn | =
(
n
R

)
. We refer to the

cases R = ∅ and R = [n − 1] as the trivial and full cases respectively. Here |S∅n| = 1 and |S[n−1]
n | = n!

respectively. Given a permutation σ ∈ Sn, its R-projection σ̄ ∈ SRn is the R-increasing tuple obtained
by sorting its entries in each cohort into increasing order within their carrel. An R-permutation π is R-
312-containing if there exists h ∈ [r − 1] and indices 1 ≤ a ≤ qh < b ≤ qh+1 < c ≤ n such that
πa > πb < πc and πa > πc. An R-permutation is R-312-avoiding if it is not R-312-containing. (This
is equivalent to the corresponding multipermutation being 231-avoiding.) Let SR-312

n denote the set of
R-312-avoiding permutations. We define the R-parabolic Catalan number CRn by CRn := |SR-312

n |.
An R-chain B is a sequence of sets ∅ =: B0 ⊂ B1 ⊂ . . . ⊂ Br ⊂ Br+1 := [n] such that |Bh| = qh

for h ∈ [r]. A bijection from R-permutations π to R-chains B is given by Bh := {π1, π2, . . . , πqh} for
h ∈ [r]. We indicate it by π 7→ B. Fix an R-permutation π and let B be the corresponding R-chain.
For h ∈ [r + 1], the set Bh is the union of the first h cohorts of π. Note that R-chains B (and hence
R-permutations π) are equivalent to the

(
n
R

)
objects that could be called “ordered R-partitions of [n]”;

these arise as the sequences (B1\B0, B2\B1, . . . , Br+1\Br) of r + 1 disjoint nonempty subsets of sizes
p1, p2, . . . , pr+1. Now create an R-tuple ΨR(π) =: ψ as follows: For h ∈ [r+ 1] specify the entries in its
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Type of R-tuple Set Example Counterexample

Upper R-increasing tuple α ∈ UIR(n) (2, 6, 7; 4, 5, 7, 8, 9; 9) (3, 5, 5; 6, 4, 7, 8, 9; 9)

R-312-avoiding permutation π ∈ SR-312
n (2, 3, 6; 1, 4, 5, 8, 9; 7) (2, 4, 6; 1, 3, 7, 8, 9; 5)

Gapless core R-tuple η ∈ UGCR(n) (4, 5, 5; 4, 8, 7, 8, 8; 9) (4, 5, 5; 4, 8, 7, 8, 9; 9)

Gapless R-tuple γ ∈ UGR(n) (2, 4, 6; 4, 5, 6, 7, 9; 9) (2, 4, 6; 4, 6, 7, 8, 9; 9)

R-floor flag τ ∈ UFlrR(n) (2, 4, 5; 5, 5, 6, 8, 9; 9) (2, 4, 5; 5, 5, 8, 8, 9; 9)

R-ceiling flag ξ ∈ UCeilR(n) (1, 4, 4; 5, 5, 9, 9, 9; 9) (1, 4, 4; 5, 5, 7, 8, 9; 9)

Table 3.1. (Counter-)Examples of R-tuples for n = 9 and R = {3, 8}.

hth carrel by ψi := rankqh−i+1(Bh) for i ∈ (qh−1, qh]. For a model, imagine there are n discus throwers
grouped into r+ 1 heats of ph throwers for h ∈ [r+ 1]. Each thrower gets one throw, the throw distances
are elements of [n], and there are no ties. After the hth heat has been completed, the ph longest throws
overall so far are announced in ascending order. See Table 3.2. We call ψ the rank R-tuple of π. As well
as being R-increasing, it can be seen that ψ is upper: So ψ ∈ UIR(n).

Name From/To Input Image

Rank R-tuple ΨR : SRn → UIR(n) (2, 4, 6; 1, 5, 7, 8, 9; 3) (2, 4, 6; 5, 6, 7, 8, 9; 9)

R-core ∆R : UR(n)→ UIR(n) (7, 9, 6; 5, 5, 9, 8, 9; 9) (4, 5, 6; 4, 5, 7, 8, 9; 9)

Undoes ΨR|SR-312
n

ΠR : UGR(n)→ SR-312
n (2, 4, 6; 4, 5, 6, 7, 9; 9) (2, 4, 6; 1, 3, 5, 7, 9; 8)

R-floor ΦR : UGR(n)→ UFlrR(n) (3, 4, 6; 4, 5, 6, 8, 9; 9) (3, 4, 6; 6, 6, 6, 8, 9; 9)

R-ceiling ΞR : UGR(n)→ UCeilR(n) (3, 4, 5; 4, 5, 6, 8, 9; 9) (5, 5, 5; 6, 6, 6, 9, 9; 9)

Table 3.2. Examples for maps of R-tuples for n = 9 and R = {3, 8}.

We distill the crucial information from an upper R-tuple into a skeletal substructure called its “critical
list”, and at the same time define theR-core map ∆R : UR(n)→ UIR(n). Start to refer to Figure 3.1. For
motivation read the sentences following Proposition 8.4. Fix υ ∈ UR(n). To launch a running example,
take n := 9, R := {3, 8}, and υ := (2, 7, 5; 8, 6, 6, 9, 9; 9). We will specify the image δ := ∆R(υ). Fix
h ∈ [r + 1]. Working within the hth carrel (qh−1, qh] from the right we recursively find for u = 1, 2, ... :
At u = 1 the rightmost critical pair of υ in the hth carrel is (qh, υqh). Set x1 := qh. Recursively attempt
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Figure 3.1. Apply the R-core map ∆R and read off the R-critical list C (or the flag R-critical list C′). As
in Corollary 4.4, form the two (four) standard forms that serve as class representatives in Corollary 5.3.

to increase u by 1: If it exists, the next critical pair to the left is (xu, υxu), where qh−1 < xu < xu−1

is maximal such that υxu−1
− υxu > xu−1 − xu. For xu < i ≤ xu−1, write xu−1 =: x and set

δi := υx − (x − i). Otherwise, let fh ≥ 1 be the last value of u attained. For qh−1 < i ≤ xfh , write
xfh =: x and again set δi := υx − (x− i). The set of critical pairs of υ for the hth carrel is {(xu, υxu) :
u ∈ [fh]} =: Ch. Equivalently, here fh is maximal such that there exists indices x1, x2, ..., xfh such that
qh−1 < xfh < ... < x1 = qh and υxu−1

− υxu > xu−1 − xu for u ∈ (1, fh]. If υ ∈ UIR(n), the hth

carrel subsequence of υ is a concatenation of staircases in which the largest entries are the critical entries
υxu . The R-critical list for υ is the sequence (C1, ...,Cr+1) =: C of its r + 1 sets of critical pairs. In our
example C = ({(1, 2), (3, 5)}; {(6, 6), (8, 9)}; {(9, 9)}) and δ = (2, 4, 5; 4, 5, 6, 8, 9; 9).

Without having any υ specified, for h ∈ [r + 1] we define a set {(xu, yxu) : u ∈ [fh]} =: Ch of pairs
for some fh ∈ [ph] to be a set of critical pairs for the hth carrel if: xu, yxu ∈ [n], xu ≤ yxu , qh−1 <
xfh < ... < x1 = qh, and yxu−1

− yxu > xu−1 − xu for u ∈ (1, fh]. A sequence of r + 1 sets of critical
pairs for all of the carrels is an R-critical list. The R-critical list of a given υ ∈ UR(n) is an R-critical
list. If (x, yx) is a critical pair, we call x a critical index and yx a critical entry.

We say that an R-critical list is a flag R-critical list if whenever h ∈ [r] we have yqh ≤ yk, where
k := xfh+1

. This condition can be restated as requiring that the sequence of all of its critical entries be
weakly increasing. A gapless core R-tuple is an upper R-tuple η whose R-critical list is a flag R-critical
list; the name comes from Proposition 4.2(iii) and the original definition of “gapless” presented below.
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Let UGCR(n) denote the set of gapless core R-tuples. The example υ is a gapless core R-tuple, since its
critical list is a flag critical list. Clearly UFR(n) ⊆ UGCR(n).

The first part of the following definition repeats an earlier definition for the sake of symmetry. These six
kinds of nn-tuples will be seen in Proposition 4.3 to arise from extending (flag) R-critical lists in various
unique ways:

Definition 3.1. Let R ⊆ [n− 1].

(i) We said that α ∈ UR(n) is an R-increasing upper tuple if it is increasing on each carrel.
(ii) We say that ρ ∈ UR(n) is an R-shell tuple if ρi = n for every non-critical index i of ρ.

(iii) We say that γ ∈ UGCR(n) is a gapless R-tuple if it is an R-increasing tuple.
(iv) We say that κ ∈ UGCR(n) is an R-canopy tuple if it is an R-shell tuple.
(v) We say that τ ∈ UFR(n) is an R-floor flag if the leftmost pair of each non-trivial plateau in τ has

the form (qh, τqh) for some h ∈ [r].
(vi) We say that ξ ∈ UFR(n) is an R-ceiling flag if it is a concatenation of plateaus whose rightmost

pairs are the R-critical pairs of ξ.

The example δ above is a gapless R-tuple. Let UGR(n), UFlrR(n), and UCeilR(n) respectively denote
the sets of gapless R-tuples, R-floor flags, and of R-ceiling flags.

In [PW3] we defined a gapless R-tuple to be an R-increasing upper tuple γ such that whenever there
exists h ∈ [r] with γqh > γqh+1, then γqh −γqh+1 + 1 =: s ≤ ph+1 and the first s entries of the (h+ 1)st

carrel (qh, qh+1] are γqh − s + 1, γqh − s + 2, ..., γqh . This definition is equivalent to requiring for all
h ∈ [r]: If γqh > γqh+1, then the leftmost staircase within the (h + 1)st carrel must contain an entry
γqh . In Proposition 4.2(iii) we show that that definition is equivalent to the present one. In Proposition
4.6(ii) of [PW3] we showed that the restriction of ΨR to SR-312

n is a bijection to UGR(n) whose inverse
is the following map ΠR: Let γ ∈ UGR(n). See Table 3.2. Define an R-tuple ΠR(γ) =: π by: Initialize
πi := γi for i ∈ (0, q1]. Let h ∈ [r]. If γqh > γqh+1, set s := γqh − γqh+1 + 1. Otherwise set s := 0.
For i in the right side (qh + s, qh+1] of the (h+ 1)st carrel, set πi := γi. For i in the left side (qh, qh + s],
set d := qh + s − i + 1 and πi := rankd( [γqh ] \ {π1, ..., πqh} ). In words: working from right to left,
fill in the left side by first finding the largest element of [γqh ] not used by π so far, then the next largest,
and so on. In Table 3.2 when h = 1 the elements 5, 3, 1 are found and placed into the 6th, 5th, and 4th

positions. (Since γ is a gapless R-tuple, when s ≥ 1 we have γqh+s = γqh . Since ‘gapless’ includes
the upper property, here we have γqh+s ≥ qh + s. Hence | [γqh ] \ {π1, ..., πqh} | ≥ s, and so there are
enough elements available to define these left side πi. ) Since γqh ≤ γqh+1

, it can inductively be seen that
max{π1, ..., πqh} = γqh .

When we restrict our attention to the full R = [n − 1] case in Sections 11 and 12, we suppress most
prefixes and subscripts of ‘R’ (and of ‘λ’) from maps, sets of n-tuples, and terminologies. Clearly
UGC(n) = UG(n) = UF (n) = UFlr(n) = UCeil(n). The number of nn-tuples in each of these
sets is Cn.

4 Cores, shells, gapless tuples, canopies, floors, ceilings
In this section we use the critical list substructure to relate six kinds of R-tuples that can be used as
indexes for the row bound tableau sets in Section 8. Over Section 3, this section, and Section 5 we are
defining three versions of some of these notions, which have a word such as ‘floor’ in common in their
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names. When delineation of these three interrelated concepts is needed, one should consult the summary
paragraph at the end of Section 5.

The process used to define the R-core map can also be used to bijectively produce the R-tuples in
UIR(n) from the set of all R-critical lists: To see surjectivity, note that the staircases within the carrels of
a given α ∈ UIR(n) can be formed toward the left from the critical pairs of α.

Fact 4.1. Let υ ∈ UR(n) and set ∆R(υ) =: δ ∈ UIR(n). Here δ ≤ υ in UR(n) and δ has the same
critical list as υ. Another upper R-tuple υ′ has the same critical list as υ if and only if ∆R(υ′) = ∆R(υ).
If υ ∈ UIR(n), then ∆R(υ) = υ.

Part (ii) of the following statement can be used to characterize the upper R-tuples with flag R-critical
lists by referring to the original definition of gapless R-tuple.

Proposition 4.2. Let υ ∈ UR(n), η ∈ UGCR(n), and φ ∈ UFR(n).

(i) The R-cores ∆R(η) and ∆R(φ) of η and φ are gapless R-tuples.
(ii) One has ∆R(υ) ∈ UGR(n) if and only if υ ∈ UGCR(n).

(iii) The two definitions of gapless R-tuple are equivalent.

Proof: For (i), note that these images are in UIR(n) and have the same R-critical lists as did η and φ.
One direction of (ii) restates part of (i), and the other direction follows from ∆R preserving the R-critical
list. Let γ ∈ UGR(n) ⊆ UIR(n). For h ∈ [r], the entry γqh does not exceed the leftmost critical entry on
the (h+ 1)st carrel. Since that entry is the maximum entry in the leftmost staircase for γ on this carrel, if
γqh > γqh+1 then an entry in that staircase must be γqh . Conversely, suppose that γ ∈ UIR(n) satisfies
the original definition to be R-gapless. The visualization above can be reversed for all h ∈ [r] to see that
γqh will not exceed the leftmost critical entry on the (h+ 1)st carrel, whether γqh > γqh+1 or not.

Most of our kinds of R-tuples correspond bijectively to R-critical lists or to flag R-critical lists. The
following six R-tuples α, ρ, γ, κ, τ, and ξ will be considered in the proposition below. Let C be an R-
critical list. For each critical pair (x, yx) in C, if x is the leftmost critical index set x′ := 0; otherwise let
x′ be the largest critical index that is less than x. Set ξx := τx := κx := γx := ρx := αx := yx. Then
for x′ < i < x: Set αi := αx − (x − i). Set ρi := n. Now suppose that C is a flag R-critical list. Set
γi := γx− (x− i). Set κi := n. If x is the leftmost critical index in the (h+ 1)st carrel for some h ∈ [r],
then x′ = qh and we set τi := max{τqh , τx − (x− i)} for i ∈ (qh, x). Otherwise set τi := τx − (x− i)
for i ∈ (x′, x). Set ξi := ξx.

Proposition 4.3. Let C be an R-critical list.

(i) The R-tuples α and ρ above are respectively the unique R-increasing upper tuple and the unique
R-shell tuple whose R-critical lists are C.

(ii) If C is a flag R-critical list, the R-tuples γ, κ, τ, and ξ above are respectively the unique gapless
R-tuple, the unique R-canopy tuple, the unique R-floor flag, and the unique R-ceiling flag whose
R-critical lists are C.

Proof: It is clear that the R-critical list of each of these six tuples is the given R-critical list. We confirm
that the six definitions are satisfied: Since the R-tuples α and γ are produced as in the definition of the
R-core map ∆R, we see that α, γ ∈ UIR(n). Since the R-critical list given for γ is a flag R-critical list,
we have γ ∈ UGR(n). Clearly ρ is an R-shell tuple. Since κ = ρ, the flag R-critical list hypothesis
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implies that κ is an R-canopy tuple. If τ has a non-trivial plateau it must occur when τi is set to τqh for
some h ∈ [r] and some consecutive indices i at the beginning of the (h+ 1)st carrel. If this τqh is greater
than τqh−1 then the definition of R-floor flag is satisfied. Otherwise τqh = τqh−1, which implies that all
entries in the hth carrel have the value τqh−1

. This plateau will necessarily terminate at the rightmost entry
in some earlier carrel, since the entries in the first carrel are strictly increasing. Clearly ξ is an R-ceiling
flag.

For the uniqueness of α: It was noted earlier that this construction is bijective from R-critical lists
to UIR(n); its injective inverse is the formation of the R-critical list. Restrict this bijection to the flag
R-critical lists to get uniqueness for γ. It is clear from the definitions of R-shell tuple, R-canopy tuple,
and R-ceiling flag that for each of these notions any two R-tuples with the same R-critical list must also
have the same non-critical entries. Let τ ′ be any R-floor flag with flag R-critical list C. Let h ∈ [r]. Let
x be the leftmost critical index in (qh, qh+1]. Then for i ∈ (qh, x) it can be seen that the critical entries
at qh and x force τ ′i = max{τ ′qh , τ

′
x − (x − i)}. On (x, qh+1] and (0, q1] the flag τ ′ must be increasing.

So on (x, qh+1) and (0, q1) the entries of τ ′ are uniquely determined by the critical pairs via staircase
decomposition for α.

Here we say that α and ρ are respectively the R-increasing upper tuple and the R-shell tuple for the R-
critical list C. We also say that γ, κ, τ, and ξ are respectively the gapless R-tuple, the R-canopy tuple, the
R-floor flag, and the R-ceiling flag for the flag R-critical list C.

Corollary 4.4. The six constructions above specify bijections from the set of R-critical lists (flag R-
critical lists) to the sets of R-increasing upper tuples and R-shell tuples (gapless R-tuples, R-canopy
tuples, R-floor flags, and R-ceiling flags).

Proof: These maps are injective since they preserve the (flag) R-critical lists. To show surjectivity, first
find the R-critical list of the target R-tuple.

5 Equivalence classes in UR(n), UGCR(n), UFR(n)
Here we present results needed to study the sets of tableaux of shape λ with given row bounds in Section
8. There we reduce that study to the study of the following sets of R-increasing tuples, after we determine
R := Rλ ⊆ [n − 1] from λ: For β ∈ UR(n), set {β}R := {ε ∈ UIR(n) : ε ≤ β}. This is not á priori
a principal ideal in UIR(n), since it is possible that β /∈ UIR(n). But we will see that for any β there
exists α ∈ UIR(n) such that {β}R is the principal ideal [α] in UIR(n).

Define an equivalence relation ∼R on UR(n) as follows: Let υ, υ′ ∈ UR(n). We define υ ∼R υ′ if
{υ}R = {υ′}R. Sometimes we restrict ∼R from UR(n) to UGCR(n), or further to UFR(n). We denote
the equivalence classes of ∼R in these three sets respectively by 〈υ〉∼R , 〈η〉G∼R , and 〈φ〉F∼R . We indicate
intervals in UGCR(n) and UFR(n) respectively with [·, ·]G and [·, ·]F .

The proofs for the results stated in this section appear in [PW2].

Lemma 5.1. Let υ ∈ UR(n), η ∈ UGCR(n), and φ ∈ UFR(n).

(i) Here {υ}R = [∆R(υ)] ⊆ UIR(n). So υ′ ∼R υ for some υ′ ∈ UR(n) if and only if ∆R(υ′) =
∆R(υ) if and only if υ′ has the same R-critical list as υ.

(ii) The equivalence classes 〈υ〉∼R , 〈η〉G∼R , and 〈φ〉F∼R are closed respectively in UR(n), UGCR(n),
and UFR(n) under the meet and the join operations for UR(n).
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So by Part (i) we can view these three equivalence classes as consisting of R-tuples that share (flag)
R-critical lists. And by Part (ii), each of these equivalence classes has a unique minimal and a unique
maximal element under the entrywise partial orders. We denote the minimums of 〈υ〉∼R ⊆ UR(n) and
of 〈η〉G∼R ⊆ UGCR(n) by υ˜ and η. respectively. We call the maximums of 〈υ〉∼R ⊆ UR(n) and of
〈η〉G∼R ⊆ UGCR(n) the R-shell of υ and the R-canopy of η and denote them by υ̃ and η̇ respectively. For
the class 〈φ〉F∼R ⊆ UFR(n), we call and denote these respectively the R-floor φ

¯
of φ and the R-ceiling φ̄

of φ.
These definitions give the containments 〈υ〉∼R ⊆ [υ˜,υ̃], 〈η〉G∼R ⊆ [η. , η̇]G, and 〈φ〉F∼R ⊆ [φ

¯
,φ̄]F for our

next result:

Proposition 5.2. Let υ ∈ UR(n), η ∈ UGCR(n), and φ ∈ UFR(n).

(i) Here υ˜ = ∆R(υ), the R-core of υ. In UR(n) we have 〈υ〉∼R = [υ˜, υ̃]. The R-core υ˜ of υ (respec-
tively R-shell υ̃ of υ) is the R-increasing upper tuple (respectively R-shell tuple) for the R-critical
list of υ.

(ii) We have [υ˜, υ̃] ⊆ UGCR(n) or [υ˜, υ̃] ⊆ UR(n)\UGCR(n), depending on whether υ ∈ UGCR(n)

or not. We also have η. = η˜ and η̇ = η̃. And 〈η〉G∼R = [η. , η̇]G = [η˜, η̃] = 〈η〉∼R : The equivalence

classes UGCR(n) ⊇ 〈η〉G∼R and 〈η〉∼R ⊆ UR(n) are the same subset of UR(n), which is an
interval in both contexts. The R-core η. of η (respectively R-canopy η̇ of η) is the gapless R-tuple
(respectively R-canopy tuple) for the flag R-critical list of η.

(iii) In UFR(n) we have 〈φ〉F∼R = [φ
¯

, φ̄]F . The R-floor φ
¯

of φ (respectively R-ceiling φ̄ of φ) is the
R-floor flag (respectively R-ceiling flag) for the flag R-critical list of φ. We have [φ

¯
, φ̄]F ⊆

[φ. , φ̇] = 〈φ〉∼R ⊆ UGCR(n).

So for υ ∈ UR(n) the equivalence classes 〈υ〉∼R are intervals [υ˜, υ̃] that lie entirely in UR(n)\UGCR(n)

or entirely in UGCR(n), in which case they coincide with the equivalence classes 〈η〉G∼R = [η. , η̇]G for
η ∈ UGCR(n) originally defined by restricting ∼R to UGCR(n). However, although for φ ∈ UFR(n)
the equivalence class 〈φ〉F∼R is an interval [φ

¯
, φ̄]F when working within UFR(n), it can be viewed as

consisting of some of the elements of the interval [φ. , φ̇]G of UGCR(n) (or of UR(n)) that is formed by
viewing φ as an element of UGCR(n).

Corollary 5.3. The equivalence classes of ∼R can be indexed as follows:

(i) In UR(n), they are precisely indexed by the R-increasing upper tuples or the R-shell tuples (or by
the R-critical lists).

(ii) In UGCR(n), they are precisely indexed by the gapless R-tuples or the R-canopy tuples (or by the
flag R-critical lists, the R-floor flags, or the R-ceiling flags).

(iii) In UFR(n), they are precisely indexed by the R-floor flags or the R-ceiling flags (or by the flag
R-critical lists, the gapless R-tuples, or the R-canopy tuples).

If the gaplessR-tuple label for an equivalence class inUFR(n) is not a flag, we may want to convert it to
the uniqueR-floor (orR-ceiling) flag that belongs to the same class. Let γ ∈ UGR(n) and find the flagR-
critical list of γ. As in Section 4, compute theR-floor flag τ and theR-ceiling ξ for this flagR-critical list.
Define the R-floor map ΦR : UGR(n) −→ UFlr(n) and R-ceiling map ΞR : UGR(n) −→ UCeilR(n)
by ΦR(γ) := τ and ΞR(γ) := ξ. See Figure 5.1.
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Proposition 5.4. The maps ΦR : UGR(n) −→ UFlrR(n) and ΞR : UGR(n) −→ UCeilR(n) are
bijections; each has inverse ∆R.

To summarize: In Section 3 the six notions of R-increasing upper tuple, R-shell tuple, gapless R-tuple,
R-canopy tuple, R-floor flag, and R-ceiling flag were defined with conditions on the entries of an R-
tuple. While introducing the word ‘for’ into these terms, in Section 4 one such R-tuple was associated to
each (flag) R-critical list. While introducing the word ‘of’ into four of these terms, in this section these
kinds of R-tuples arose as the extreme elements of equivalence classes. This began with the classes in
UR(n). Here these extreme elements were respectively R-increasing upper and R-shell tuples. When
these classes were restricted to the subset UGCR(n) of upper R-tuples with gapless cores, these extreme
elements were respectively gapless R-tuples and R-canopy tuples. When these classes were restricted
further to the subset UFR(n) of upper flags, these extreme elements were respectively R-floor and R-
ceiling flags.

Figure 5.1. Proposition 5.4 and Proposition 7.2(ii)

6 Shapes, tableaux, connections to Lie theory
A partition is an n-tuple λ ∈ Zn such that λ1 ≥ . . . ≥ λn ≥ 0. Fix such a λ for the rest of the paper.
We say it is strict if λ1 > . . . > λn. The shape of λ, also denoted λ, consists of n left justified rows with
λ1, . . . , λn boxes. We denote its column lengths by ζ1 ≥ . . . ≥ ζλ1

. The column length n is called the
trivial column length. Since the columns are more important than the rows, the boxes of λ are transpose-
indexed by pairs (j, i) such that 1 ≤ j ≤ λ1 and 1 ≤ i ≤ ζj . Sometimes for boundary purposes we refer
to a 0th latent column of boxes, which is a prepended 0th column of trivial length. If λ = 0, its shape is
the empty shape ∅. Define Rλ ⊆ [n − 1] to be the set of distinct non-trivial column lengths of λ. Note
that λ is strict if and only if Rλ = [n− 1], i.e. Rλ is full. Set |λ| := λ1 + . . .+ λn.

A (semistandard) tableau of shape λ is a filling of λ with values from [n] that strictly increase from
north to south and weakly increase from west to east. Let Tλ denote the set of tableaux T of shape
λ. Under entrywise comparison ≤, this set Tλ becomes a poset that is the distributive lattice L(λ, n)
introduced by Stanley. The principal ideals [T ] in Tλ are clearly convex polytopes in Z|λ|. Fix T ∈ Tλ.



14 Robert A. Proctor, Matthew J. Willis

For j ∈ [λ1], we denote the one column “subtableau” on the boxes in the jth column by Tj . Here for
i ∈ [ζj ] the tableau value in the ith row is denoted Tj(i). The set of values in Tj is denoted B(Tj).
Columns Tj of trivial length must be inert, that is B(Tj) = [n]. The 0th latent column T0 is an inert
column that is sometimes implicitly prepended to the tableau T at hand: We ask readers to refer to its
values as needed to fulfill definitions or to finish constructions. We say a tableau Y of shape λ is a λ-key
if B(Yl) ⊇ B(Yj) for 1 ≤ l ≤ j ≤ λ1. To define the content Θ(T ) := θ of T , for i ∈ [n] take θi to be
the number of values in T equal to i. The empty shape has one tableau on it, the null tableau. Fix a set
Q ⊆ [n] with |Q| =: q ≥ 0. The column Y (Q) is the tableau on the shape for the partition (1q, 0n−q)
whose values form the set Q. Then for d ∈ [q], the value in the (q + 1− d)th row of Y (Q) is rankd(Q).

The most important values in a tableau of shape λ occur at the ends of its rows. Using the latent column
when needed, these n values from [n] are gathered into an Rλ-tuple as follows: Let T ∈ Tλ. The λ-row
end list ω of T is the Rλ-tuple defined by ωi := Tλi(i) for i ∈ [n]. Note that for h ∈ [r + 1] one has
λi = λi′ for i, i′ ∈ (qh−1, qh]. For h ∈ [r + 1] the entries in the hth cohort of ω are increasing. So
ω ∈ UIRλ(n).

For h ∈ [r], the columns of length qh in the shape λ have indices j such that j ∈ (λqh+1
, λqh ]. A

bijection from R-chains B to λ-keys Y is obtained by juxtaposing from left to right λn inert columns and
λqh−λqh+1

copies of Y (Bh) for r ≥ h ≥ 1. We indicate it byB 7→ Y . A bijection fromRλ-permutations
π to λ-keys Y is obtained by following π 7→ B withB 7→ Y . The image of anRλ-permutation π is called
the λ-key of π; it is denoted Yλ(π). It is easy to see that the λ-row end list of the λ-key of π is the rank
Rλ-tuple ΨRλ(π) =: ψ of π: Here ψi = Yλi(i) for i ∈ [n].

Let α ∈ UIRλ(n). Define Zλ(α) to be the subset of tableaux T ∈ Tλ that have λ-row end list α. To
see that Zλ(α) 6= ∅, for i ∈ [n] take Tj(i) := i for j ∈ [1, λi) and Tλi(i) := αi. This subset is closed
under the join operation for the lattice Tλ. We define the λ-row end max tableau Mλ(α) for α to be the
unique maximal element of Zλ(α). The definition of Qλ(β), a close relative to Mλ(α), can be found in
Section 8.

When we are considering tableaux of shape λ, much of the data used will be in the form of Rλ-tuples.
Many of the notions used will be definitions from Section 3 that are being applied with R := Rλ. The
structure of each proof will depend only upon Rλ and not upon any other aspect of λ: If λ′ and λ′′

are partitions such that Rλ′ = Rλ′′ , then the development for λ′′ will in essence be the same as for λ′.
To emphasize the original independent entity λ and to reduce clutter, from now on rather than writing
‘R’ or ‘Rλ’ we will replace ‘R’ by ‘λ’ in subscripts and in prefixes. Above we would have written
ω ∈ UIλ(n) instead of having written ω ∈ UIRλ(n) (and instead of having written ω ∈ UIR(n)
after setting R := Rλ). When λ is a strict partition, we omit the ‘λ-’ prefixes and the subscripts since
Rλ = [n− 1].

To connect to Lie theory, fix R ⊆ [n − 1] and set J := [n − 1]\R. The R-permutations are the one-
rowed forms of the “inverses” of the minimum length representatives collected in W J for the cosets in
W/WJ , where W is the Weyl group of type An−1 and WJ is its parabolic subgroup 〈si : i ∈ J〉. A
partition λ is strict exactly when the weight it depicts for GL(n) is strongly dominant. If we take the set
R to be Rλ, then the restriction of the partial order ≤ on Tλ to the λ-keys depicts the Bruhat order on that
W J . Consult the second and third paragraphs of Section 10 for the Demazure and flag Schur polynomials.
Further details appear in Sections 2, 3, and the appendix of [PW1].
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7 Results needed from the first paper
The content of this section should be referred to when it is cited in later sections. We begin with the
material that will be needed from Section 4 of [PW3]:

Given a set of integers, a clump of it is a maximal subset of consecutive integers. After decomposing
a set into its clumps, we index the clumps in the increasing order of their elements. For example, the set
{2, 3, 5, 6, 7, 10, 13, 14} is the union L1 ∪ L2 ∪ L3 ∪ L4, where L1 := {2, 3}, L2 := {5, 6, 7}, L3 :=
{10}, L4 := {13, 14}.

We return to our fixed R ⊆ [n− 1]. (See Section 4 of [PW3] for the simple full case R = [n− 1].) Let
B be an R-chain. We say B is R-rightmost clump deleting if this condition holds for each h ∈ [r]: Let
Bh+1 =: L1∪L2∪...∪Lf decomposeBh+1 into clumps for some f ≥ 1. We requireLe∪Le+1∪...∪Lf ⊇
Bh+1\Bh ⊇ Le+1 ∪ ...∪Lf for some e ∈ [f ]. This condition requires the set Bh+1\Bh of new elements
that augment the set Bh of old elements to consist of entirely new clumps Le+1, Le+2, ..., Lf , plus some
further new elements that combine with some old elements to form the next “lower” clump Le in Bh+1.
Here are some reformulations of the notion of R-rightmost clump deleting:

Fact 7.1. Let B be an R-chain. For h ∈ [r], set bh+1 := min(Bh+1\Bh) and mh := max(Bh). This
R-chain is R-rightmost clump deleting if and only if each of the following holds:

(i) For h ∈ [r], one has [bh+1,mh] ⊆ Bh+1.
(ii) For h ∈ [r], one has (bh+1,mh) ⊂ Bh+1.

(iii) For h ∈ [r], let s be the number of elements of Bh+1\Bh that are less than mh. These must be the s
largest elements of [mh]\Bh.

In the proofs of both parts of the following result, one takes (bh+1,mh) in Part (ii) above to be
(min{πqh+1, ..., πqh+1

},max{π1, ..., πqh}) for π ∈ SRn under the correspondence π ↔ B. The bijec-
tion in Part (ii) below generalizes the inverse bijection for Theorem 14.1 of [PS].

Proposition 7.2. For R ⊆ [n− 1] we have:

(i) The restriction of the global bijection π 7→ B from SRn to SR-312
n is a bijection to the set of R-

rightmost clump deleting chains.
(ii) The restriction of the rank R-tuple map ΨR from SRn to SR-312

n is a bijection to UGR(n) whose
inverse is ΠR.

We also need some material from Section 5 of [PW3]. We return to our fixed partition λ.

Lemma 7.3. The λ-row end max tableau Mλ(γ) of a gapless λ-tuple γ is a key.

A λ-key Y is gapless if the condition below is satisfied for h ∈ [r − 1]: Let b be the smallest value
in a column of length qh+1 that does not appear in a column of length qh. For j ∈ (λqh+2

, λqh+1
], let

i ∈ (0, qh+1] be the shared row index for the occurrences of b = Yj(i). Let m be the bottom (largest)
value in the columns of length qh. If b > m there are no requirements. Otherwise: For j ∈ (λqh+2

, λqh+1
],

let k ∈ (i, qh+1] be the shared row index for the occurrences of m = Yj(k). For j ∈ (λqh+2
, λqh+1

] one
must have Yj(i+ 1) = b+ 1, Yj(i+ 2) = b+ 2, ..., Yj(k − 1) = m− 1 holding between Yj(i) = b and
Yj(k) = m. (Hence necessarily m− b = k − i.)
Theorem 7.4. Let λ be a partition and set R := Rλ.

(i) An R-permutation π is R-312-avoiding if and only if its λ-key Yλ(π) is gapless.
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(ii) If anR-permutation π isR-312-avoiding, then the λ-row end max tableauMλ(γ) of its rankR-tuple
ΨR(π) =: γ is its λ-key Yλ(π).

In the full case, the converse of Part (ii) holds: If the row end max tableau of the rank tuple of a permutation
is the key of the permutation, then the permutation is 312-avoiding. In [PW3] it is further noted that an
R-tuple is R-gapless here if and only if it arises as the λ-row end list of a gapless λ-key.

We conclude with material needed from Sections 6 and 7 of [PW3]. Fix a λ-permutation π. To com-
pletely present our definition of the set Dλ(π) of Demazure tableaux, we would need to first specify how
to find the “scanning tableau” S(T ) for a given T ∈ Tλ. Since that one paragraph specification is not ex-
plicitly used in this paper, we only note that S(T ) ∈ Tλ and refer curious readers to [PW3]. It was shown
in [Wi1] that S(T ) is the “right key” of Lascoux and Schützenberger for T . As in [PW1], we use the λ-key
Yλ(π) of π and S(T ) to define the set of Demazure tableaux: Dλ(π) := {T ∈ Tλ : S(T ) ≤ Yλ(π)}.
We list some basic facts concerning keys, scanning tableaux, and sets of Demazure tableaux. Part (i) is
elementary; the other parts were justified in [PW3].

Fact 7.5. Let T ∈ Tλ and let Y ∈ Tλ be a key.

(i) If Θ(Y ) = Θ(U) for some U ∈ Tλ, then U = Y .
(ii) S(T ) is a key and hence S(T ) ∈ Tλ.

(iii) T ≤ S(T ) and S(Y ) = Y .
(iv) Yλ(π) ∈ Dλ(π) and Dλ(π) ⊆ [Yλ(π)].
(v) The unique maximal element of Dλ(π) is Yλ(π).

(vi) The Demazure sets Dλ(σ) of tableaux are nonempty subsets of Tλ that are precisely indexed by the
σ ∈ Sλn .

The main results of [PW3] were:

Theorem 7.6. Let λ be a partition and let π be a λ-permutation. The set Dλ(π) of Demazure tableaux of
shape λ is a convex polytope in Z|λ| if and only if π is λ-312-avoiding if and only if Dλ(π) = [Yλ(π)].

8 Sets of tableaux specified by row bounds
We use theR-tuples studied in Section 4 and 5 to develop precise indexing schemes for row bound tableau
sets.

Determine the subset Rλ ⊆ [n−1] for our fixed partition λ. We must temporarily suspend our notation
shortcuts regarding ‘Rλ’. Let β be an Rλ-tuple. We define the row bound set of tableaux to be Sλ(β) :=
{T ∈ Tλ : Tj(i) ≤ βi for j ∈ [0, λ1] and i ∈ [ζj ]}. The set Sλ(β) is non-empty if and only if β is upper:
This condition is clearly necessary. For sufficiency, set δ := ∆R(β) and note that δ is upper. Then since
δ ∈ UIRλ(n) we can re-use the T ∈ Tλ given in Section 6 to see that ∅ 6= Zλ(δ) ⊆ Sλ(β). Henceforth
we assume that β is upper: β ∈ URλ(n). To interface with the literature for flagged Schur functions, we
give special attention to the flag bound sets Sλ(ϕ) for upper flags ϕ ∈ UFRλ(n). We also want to name
the row bound sets Sλ(η) for η ∈ UGCRλ(n); we call these the gapless core bound sets.

We can focus on the row ends of the tableaux at hand because Sλ(β) = {T ∈ Tλ : Tλi(i) ≤ βi for i ∈
[n]}. Let α ∈ URλ(n). In Section 6 we noted that Zλ(α) 6= ∅ if and only if α ∈ UIRλ(n). These Zλ(α)
are disjoint for distinct α ∈ UIRλ(n). Clearly Sλ(β) =

⋃
Zλ(α), taking the union over the α in the

subset {β}Rλ ⊆ UIRλ(n) defined in Section 5. This observation and Lemma 5.1 allow us to study the
three kinds of row bound sets Sλ(β) by considering the principal ideals [∆Rλ(β)] = {β}Rλ of UIRλ(n)
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for β ∈ URλ(n) or β ∈ UGCRλ(n) or β ∈ UFRλ(n). The results of Sections 4 and 5 can be used to
show:

Proposition 8.1. Let β ∈ URλ(n). The row bound set Sλ(β) is a flag bound tableau set if and only if
β ∈ UGCRλ(n). For the “if” statement use Sλ(β) = Sλ(ϕ) for ϕ := ΦRλ [∆Rλ(β)].

At times for indexing reasons we will prefer the “gapless core” viewpoint.
When λ is not strict, it is possible to have Sλ(β) = Sλ(β′) for distinct β, β′ ∈ URλ(n). We want to

study how much such labelling ambiguity is present for Sλ(.), and we want to develop unique labelling
systems for the tableau sets Sλ(β), Sλ(η), and Sλ(ϕ). For β, β′ ∈ URλ(n), define β ≈λ β′ if Sλ(β) =
Sλ(β′). Sometimes we restrict≈λ to UGCRλ(n) or further to UFRλ(n). We denote the equivalence class
of β ∈ URλ(n), η ∈ UGCRλ(n), and ϕ ∈ UFRλ(n) by 〈β〉λ, 〈η〉Gλ , and 〈ϕ〉Fλ . By the Sλ(β) =

⋃
Zλ(α)

observation and the fact that the Zλ(α) are non-empty and disjoint, it can be seen that this relation ≈λ on
URλ(n) or UGCRλ(n) or UFRλ(n) is the same as the relation ∼Rλ defined on these sets in Section 5:
Each relation can be expressed in terms of principal ideals of UIRλ(n).

Proposition 8.2. On the sets URλ(n), UGCRλ(n), and UFRλ(n), the relation ≈λ coincides with the
relation ∼Rλ .

Now that we know that these relations coincide, we can safely return to replacing ‘Rλ’ with ‘λ’ in sub-
scripts and prefixes. Definitions and results from Sections 4 and 5 will be used by always takingR := Rλ.
In particular, the unique labelling systems listed in Corollary 5.3 for the equivalence classes of ∼λ can
now be used for the equivalence classes of ≈λ. Henceforth we more simply write ‘∼’ for ‘≈λ’.

We state some applications of the work in Sections 4 and 5 to the current context:

Proposition 8.3. Below we take β, β′ ∈ Uλ(n) and η, η′ ∈ UGCλ(n) and ϕ,ϕ′ ∈ UFλ(n):

(i) The row bound sets Sλ(β) are precisely indexed by the λ-increasing upper tuples α ∈ UIλ(n), which
are the minimal representatives in Uλ(n) for the equivalence classes 〈β〉λ. One has Sλ(β) = Sλ(β′)
if and only if β ∼ β′ if and only if ∆λ(β) = ∆λ(β′).

(ii) The gapless core bound sets Sλ(η) are precisely indexed by the gapless λ-tuples γ ∈ UGλ(n),
which are the minimal representatives in UGCλ(n) for the equivalence classes 〈η〉Gλ = 〈η〉λ. One
has Sλ(η) = Sλ(η′) if and only if η ∼ η′ if and only if ∆λ(η) = ∆λ(η′).

(iii) The flag bound sets Sλ(ϕ) are precisely indexed by the λ-floor flags τ ∈ UFlrλ(n), which are the
minimal representatives in UFλ(n) for the equivalence classes 〈ϕ〉Fλ . One has Sλ(ϕ) = Sλ(ϕ′) if
and only if ϕ ∼ ϕ′ if and only if Φλ[∆λ(ϕ)] = Φλ[∆λ(ϕ′)]. The flag bound sets Sλ(ϕ) can also be
faithfully depicted as the sets Sλ(γ) for γ ∈ UGλ(n) by taking γ := ∆λ(ϕ).

Let β ∈ Uλ(n). Following Theorem 23 of [RS], we define the λ-row bound max tableau Qλ(β) to be
the least upper bound in Tλ of the tableaux in Sλ(β). It can be seen that Qλ(β) ∈ Sλ(β).

Proposition 8.4. Let β, β′ ∈ Uλ(n) and set ∆λ(β) =: δ ∈ UIλ(n).

(i) Here Sλ(β) = [Qλ(β)] and so Sλ(β) = Sλ(β′) if and only if Qλ(β) = Qλ(β′).
(ii) Here Mλ(δ) = Qλ(β) and so Sλ(β) = [Mλ(δ)].

So if one wants to view Sλ(β) as a principal ideal, the λ-row end list of its generator Qλ(β) is ∆λ(β).
Here the critical entries of β are exactly those that agree with the corresponding entries of ∆λ(β); the
other entries of β have been replaced with the smallest possible entries.
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Proof: Only the first claim in (ii) is not already evident: Recall that Sλ(β) =
⋃

Zλ(α), union over α ∈
{β}λ ⊆ UIλ(n). By Proposition 8.2 and Lemma 5.1(i) we have {β}λ = [δ]. So Sλ(β) =

⋃
Zλ(α) =

Sλ(δ), union over α ≤ δ in UIλ(n). Here δ ∈ UIλ(n) implies Zλ(δ) 6= ∅. Let U ∈ Zλ(δ) and
T ∈ Zλ(α) for some α ∈ UIλ(n). Here α < δ would imply T ≯ U . Hence Qλ(β) ∈ Zλ(δ). So both
Qλ(β) and Mλ(δ) are the maximum tableau of Zλ(δ).

9 Coincidences of row or flag bound sets with
Demazure tableau sets

When can one set of tableaux arise both as a row bound set Sλ(β) for some upper λ-tuple β and as a
Demazure set Dλ(π) for some λ-permutation π? Since we will seek coincidences between flag Schur
polynomials sλ(ϕ;x) and Demazure polynomials dλ(π;x), we should also pose this question for the flag
bound set Sλ(ϕ) for some upper flag ϕ. Our deepest result of [PW3] gave a necessary condition for a
Demazure tableau set to be convex. Initially we refer to it here for guiding motivation. Then we use it
to prove the hardest part, Part (iii) for necessity, of the theorem below. Our next deepest result of [PW3]
implied a sufficient condition for a Demazure tableau set to be convex. We use it here to prove Part (ii),
for sufficiency, of the theorem below.

For motivation, note that any set Sλ(β) is convex in Z|λ|: Proposition 8.4(i) says that it is the principal
ideal [Qλ(β)] of Tλ, where Qλ(β) is the λ-row bound max tableau for β. And Theorem 7.6 says that
Dλ(π) is convex only if the λ-permutation π is λ-312-avoiding. So, to begin the proof of Part (ii) below,
fix π ∈ Sλ-312

n . Find the key Yλ(π) of π. Theorem 7.6 says that Dλ(π) = [Yλ(π)]. (Since [Yλ(π)] is
convex, we now know that the sets Dλ(π) for such π are exactly the convex candidates to arise in the
form Sλ(β).) Form the rank λ-tuple Ψλ(π) =: γ of π. By Proposition 7.2(ii) we know that γ is a gapless
λ-tuple: γ ∈ UGλ(n). Theorem 7.4(ii) says that Yλ(π) = Mλ(γ), the λ-row end max tableau for γ.
Proposition 8.4(ii) gives Mλ(γ) = Qλ(γ), since UGλ(n) ⊆ UIλ(n) by definition and ∆λ(γ) = γ by
Fact 4.1. So Dλ(π) = [Qλ(γ)]. Hence by Proposition 8.4(i) it arises as Sλ(γ) = [Qλ(γ)].

Parts (i) and (ii) of the following theorem give sufficient conditions for a coincidence from two per-
spectives, Part (iii) gives necessary conditions for a coincidence, and Part (iv) presents a neutral precise
indexing. But the theorem statement begins with a less technical summary:

Theorem 9.1. Let λ be a partition. A row bound set Sλ(β) of tableaux for an upper λ-tuple β arises as a
Demazure set if and only if the λ-core ∆λ(β) of β is a gapless λ-tuple. Therefore every flag bound set of
tableaux arises as a Demazure set, and a row bound set arises as a Demazure set if and only if it arises
as a flag bound set. A Demazure set Dλ(π) of tableaux for a λ-permutation π arises as a row bound set
if and only if π is λ-312-avoiding. Specifically:

(i) Let β ∈ Uλ(n). If β ∈ UGCλ(n), set π := Πλ[∆λ(β)]. Then Sλ(β) = Dλ(π), and π is the unique
λ-permutation for which this is true. Here π ∈ Sλ-312

n .
(ii) Let π ∈ Sλn . If π ∈ Sλ-312

n , set γ := Ψλ(π). Then Dλ(π) = Sλ(γ), and Dλ(π) = Sλ(β) for some
β ∈ Uλ(n) implies ∆λ(β) = γ. Here γ ∈ UGλ(n) and so β ∈ UGCλ(n).

(iii) Suppose some β ∈ Uλ(n) and some π ∈ Sλn exist such that Sλ(β) = Dλ(π). Then one has
Qλ(β) = Yλ(π) and ∆λ(β) = Ψλ(π). Here β ∈ UGCλ(n) and π ∈ Sλ-312

n .
(iv) The collection of the sets Sλ(ϕ) for ϕ ∈ UFλ(n) is the same as the collection of sets Dλ(π) for

π ∈ Sλ-312
n . These collections can be simultaneously precisely indexed by γ ∈ UGλ(n) as follows:

Given such a γ, produce Φλ(γ) =: ϕ ∈ UFlrλ(n) and Πλ(γ) =: π ∈ Sλ-312
n .
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Proof: First confirm (i) - (iv): The first and last two claims in (ii) were deduced above. For (i), use
Proposition 7.2(ii) to see π ∈ Sλ-312

n and to express ∆λ(β) as Ψλ(π). The first claim in (ii) then tells
us that Sλ[∆λ(β)] = Dλ(π). But Proposition 8.3(i) gives Sλ[∆λ(β)] = Sλ(β). We return to the second
claims in (i) and (ii) after we confirm (iii). So suppose we have Sλ(β) = Dλ(π). Since Sλ(β) is a principal
ideal in Tλ, Theorem 7.6 tells us that we must have π ∈ Sλ-312

n . The unique maximal elements of Sλ(β)
and of Dλ(π) (see Proposition 8.4(i) and Fact 7.5(v)) must coincide: Qλ(β) = Yλ(π). Via consideration
of Mλ[∆λ(β)], Proposition 8.4(ii) implies that the row end list of Qλ(β) is ∆λ(β). Section 6 noted that
the row end list of Yλ(π) is Ψλ(π). Hence ∆λ(β) = Ψλ(π) ∈ UGλ(n). The uniqueness in (i) is obtained
by applying the inverse Πλ of Ψλ to the requirements in (iii) that π ∈ Sλ-312

n and that Ψλ(π) = ∆λ(β).
The uniqueness-up-to-∆λ-equivalence in (ii) restates the second claim of (iii). For (iv): Proposition
8.3(iii) says that the collection of the sets Sλ(ϕ) is precisely indexed by the λ-floor flags. By restricting
Fact 7.5(vi), these sets Dλ(π) are already precisely indexed by their λ-312-avoiding permutations. By
Proposition 5.4 and Proposition 7.2(ii), apply the bijections ∆λ and Ψλ to re-index these collections with
gapless λ-tuples. Use (ii) and Proposition 8.3(ii) to see that the same set Sλ(ϕ) = Dλ(π) will arise from
a given gapless λ-tuple γ when these re-indexings are undone via ϕ := Φλ(γ) and π := Πλ(γ). Three of
the four initial summary statements of this theorem should now be apparent. The third statement follows
from Proposition 8.1.

10 Flagged Schur functions and key polynomials
We use Theorem 9.1 to improve upon the results in [RS] and [PS] concerning coincidences between flag
Schur polynomials and Demazure polynomials.

Let x1, . . . , xn be indeterminants. Let T ∈ Tλ. The weight xΘ(T ) of T is xθ11 . . . xθnn , where θ is the
content Θ(T ).

Let β be an upper λ-tuple: β ∈ Uλ(n). We introduce the row bound sum sλ(β;x) :=
∑
xΘ(T ), sum

over T ∈ Sλ(β). In particular, to relate to the literature [RS] [PS], at times we restrict our attention to flag
row bounds. Here for ϕ ∈ UFλ(n) we define the flag Schur polynomial to be sλ(ϕ;x). (Often ‘upper’
is not required at the outset; if ϕ is not upper then the empty sum would yield 0 for the polynomial.
Following Stanley we write ‘flag’ instead of ‘flagged’ [St2], and following Postnikov and Stanley we
write ‘polynomial’ for ‘function’ [PS].) More generally, for η ∈ UGCλ(n) we define the gapless core
Schur polynomial to be sλ(η;x).

Let π be a λ-permutation: π ∈ Sλn . Here we define the Demazure polynomial dλ(π;x) to be
∑
xΘ(T ),

sum over T ∈ Dλ(π). For Lie theorists, we make two remarks: Using the Appendix and Sections 2 and 3
of [PW1], via the right key scanning method and the divided difference recursion these polynomials can be
identified as the Demazure characters for GL(n) and as the specializations of the key polynomials κα of
[RS] to a finite number of variables. In the axis basis, the highest and lowest weights for the corresponding
Demazure module are λ and Θ[Yλ(π)]. (Postnikov and Stanley chose ‘Demazure character’ over ‘key
polynomial’ [PS]. By using ‘Demazure polynomial’ for the GL(n) case, which should be recognizable
to Lie theorists, we leave ‘Demazure character’ available for general Lie type.)

We say that two polynomials that are defined as sums of the weights over sets of tableaux are identical
as generating functions if the two tableau sets coincide. So for row bound sums we write sλ(β;x) ≡
sλ′(β

′;x) if and only if λ = λ′ and then β ∼ β′. It is conceivable that the polynomial equality sλ(β;x) =
sλ′(β

′;x) could “accidentally” hold between two non-identical row bound sums, that is when λ 6= λ′

and/or β � β′.
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It is likely that Part (ii) of the following preliminary result can be deduced from the sophisticated
Corollary 7 of [RS], which states that the Demazure polynomials form a basis of the polynomial ring.
One would need to show that specializing xn+1 = xn+2 = ... = 0 there does not create problematic
linear dependences.

Proposition 10.1. Let λ and λ′ be partitions.

(i) Let β ∈ Uλ(n) and β′ ∈ Uλ′(n). If sλ(β;x) = sλ′(β
′;x), then λ = λ′.

(ii) Let π ∈ Sλn and let π′ ∈ Sλ′n . If dλ(π;x) = dλ′(π
′;x), then λ = λ′ and π = π′.

Hence dλ(π;x) ≡ dλ′(π′;x).

Proof: Let T 0
λ denote the unique minimal element of Tλ. Note that Θ(T 0

λ) = λ. Clearly T 0
λ ∈ Sλ(β) and

T 0
λ ≤ Yλ(π). Note that if T, T ′ ∈ Tλ are such that T < T ′, then when P (n) is ordered lexicographically

from the left we have Θ(T ) > Θ(T ′). So when T 0
λ is in a subset of Tλ, it is the unique tableau in that

subset that attains the lexicographic maximum of the contents in P (n) for that subset. Since T 0
λ is a key,

Fact 7.5(iii) gives S(T 0
λ) = T 0

λ . So S(T 0
λ) ≤ Yλ(π), and we have T 0

λ ∈ Dλ(π). We can now see that
sλ(β;x) = sλ′(β

′;x) and dλ(π;x) = dλ′(π
′;x) each imply that λ = λ′. By Fact 7.5(v), we know that

Yλ(π) is the unique maximal element of Dλ(π). So Yλ(π) is the unique tableau in Dλ(π) that attains the
lexicographic minimum of the contents for Dλ(π). By Fact 7.5(i), since Yλ(π) is a key it is the unique
tableau in Tλ with its content. So dλ(π;x) = dλ(π′;x) implies Yλ(π) ∈ Dλ(π′) and Yλ(π′) ∈ Dλ(π).
Hence Yλ(π) = Yλ(π′), which implies π = π′.

We now compare row bound sums to Demazure polynomials. The first two parts of the following
“sufficient” theorem quickly restate most of Parts (i) and (ii) of Theorem 9.1 in the current context, and
the third similarly recasts Part (iv).

Theorem 10.2. Let λ be a partition.

(i) If η ∈ UGCλ(n), then Πλ[∆λ(η)] =: π ∈ Sλ-312
n and sλ(η;x) ≡ dλ(π;x).

(ii) If π ∈ Sλ-312
n , then Ψλ(π) =: γ ∈ UGλ(n) and dλ(π;x) ≡ sλ(γ;x).

(iii) Every flag Schur polynomial is identical to a uniquely determined Demazure polynomial and every
λ-312-avoiding Demazure polynomial is identical to a uniquely determined flag Schur polynomial.

Next we obtain necessary conditions for having equality between a row bound sum and a Demazure
polynomial: we see that using the weaker notion of equality between mere polynomials does not lead to
any new coincidences.

Theorem 10.3. Let λ and λ′ be partitions. Let β be an upper λ-tuple and let π be a λ′-permutation.
Suppose sλ(β;x) = dλ′(π;x). Then Qλ(β) = Yλ′(π). Hence λ = λ′ and ∆λ(β) = Ψλ(π). Here π is
λ-312-avoiding and ∆λ(β) is a gapless λ-tuple (and so β ∈ UGCλ(n)). Hence the only row bound sums
that arise as Demazure polynomials are the flag Schur polynomials. We have sλ(β;x) ≡ dλ′(π;x). The
row bound sum sλ(β;x) is identical to the flag Schur polynomial sλ(Φλ[∆λ(β)];x).

Proof: Reasoning as in the first part of the proof of Proposition 10.1 implies λ = λ′. Since Sλ(β) =
[Qλ(β)] by Proposition 8.4(i), the tableau Qλ(β) is the unique tableau in Sλ(β) that attains the lexi-
cographic minimum of the contents for Sλ(β). Since the analogous remark was made in the proof of
Proposition 10.1 for Yλ(π) ∈ Dλ(π), we must have Θ[Qλ(β)] = Θ[Yλ(π)]. But Yλ(π) is the unique
tableau in Tλ with its content. So we must have Qλ(β) = Yλ(π). As for Theorem 9.1, this implies
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∆λ(β) = Ψλ(π). Since Dλ(π) ⊆ [Yλ(π)], we have Dλ(π) ⊆ [Qλ(β)] = Sλ(β). Suppose that π is
λ-312-containing. Then Theorem 7.6 says Dλ(π) 6= [Qλ(β)]. So Dλ(π) ⊂ Sλ(β). This implies that
dλ(π;x) 6= sλ(β;x), a contradiction. So π must be λ-312-avoiding. Therefore Ψλ(π) =: γ ∈ UGλ(n).
Use Proposition 8.1 for the “only row bound sums that can arise” statement. Theorem 9.1(ii) now says
that Dλ(π) = Sλ(γ). And γ = ∆λ(β) gives Sλ(γ) = Sλ(β). Since γ ∈ UGλ(n), we can form the
λ-floor flag Φλ[∆λ(β)] ∼ β.

By using the relating of row bound sums to Demazure polynomials in this theorem, we can extend
what was said in Proposition 10.1(i) concerning accidental equalities between row bound sums. There we
learned that sλ(β;x) = sλ(β′;x) forced λ = λ′. So here we need consider only one partition:

Corollary 10.4. Let λ be a partition.

(i) Let β ∈ Uλ(n) and η ∈ UGCλ(n). If sλ(β;x) = sλ(η;x) then β ∼ η. Hence β ∈ UGCλ(n) and
sλ(β;x) ≡ sλ(η;x).

(ii) The partitionings of UGCλ(n) into the equivalence class intervals in Proposition 5.2(ii) give a com-
plete description of the indexing ambiguity and of non-equality for gapless core Schur polynomials.

(iii) More specifically, the analogous statement for UFλ(n) and flag Schur polynomials follows from
Proposition 5.2(iii).

Parts (ii) and (iii) could have been derived from Theorem 10.2.

Proof: Create Πλ[∆λ(η)] =: π ∈ Sλ-312
n from ∆λ(η) ∈ UGλ(n). Apply Theorem 10.2(ii) to obtain

dλ(π;x) ≡ sλ(∆λ(η);x) ≡ sλ(η;x). Then apply Theorem 10.3 to sλ(β;x) = dλ(π;x) to obtain
sλ(β;x) ≡ dλ(π;x). So sλ(β;x) ≡ sλ(η;x), which implies β ∼ η and β ∈ UGCλ(n).

We do not know if it is possible to rule out accidental coincidences between all pairs of row bound
sums:

Problem 10.5. Find n ≥ 1, a partition λ, and β, β′ ∈ Uλ(n)\UGCλ(n) such that sλ(β;x) = sλ(β′;x)
but ∆λ(β) 6= ∆λ(β′).

Improving upon Equation 13.1 and Corollary 14.6 of [PS], in [PW4] we will give a “maximum effi-
ciency” determinant expression for the Demazure polynomials dλ(π;x) with π ∈ Sλ-312

n .

11 Projecting and lifting the notion of 312-avoidance
In Propositions 11.2 and 11.5 we use the six maps Ψ,Π,ΨR,ΠR,∆R, and ΦR that we developed for
other purposes to relate the notion of R-312-avoidance to that of 312-avoidance. Some of the applications
of these maps “sort” the entries of the R-tuples within their carrels. The proofs of the propositions in this
section appeared in Section 7 of [PW2].

If σ ∈ Sn is 312-avoiding, it is easy to see that itsR-projection σ̄ ∈ SRn isR-312-avoiding. Let π ∈ SRn
be R-312-avoiding. Is it the R-projection σ̄ of some 312-avoiding permutation σ ∈ Sn? The following
procedure for constructing an answer to this question can be naively developed, keeping in mind Fact
7.1(iii): Form the R-rightmost clump deleting chain B associated to π. Set σi := πi on the first carrel
(0, q1]. Let h ∈ [r]. Let s ≥ 0 be the number of elements of Bh+1\Bh that are less than max(Bh) =: m.
List these elements in decreasing order to fill the left side (qh, qh + s] of the (h + 1)st carrel (qh, qh+1]
of σ. Fill the right side (qh + s, qh+1] of this carrel of σ by listing the other t := ph+1 − s elements of
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Bh+1\Bh in increasing order. Part (ii) of the following result refers to the “length” of a permutation in
the sense of Proposition 1.5.2 of [BB].

Proposition 11.1. Suppose π ∈ SRn is R-312-avoiding.

(i) The permutation σ ∈ Sn constructed here is 312-avoiding and σ̄ = π.
(ii) This σ is the unique minimum length 312-avoiding lift of π.

This lifting process can also be described using three existing maps. To pass from the “degenerate”
R-world to the full R = [n− 1] world of ordinary permutations, for the second equality below we use the
map Π. This produces a final output of a permutation from the given R-permutation input. We will use
the following result to derive a weaker version of our Theorem 10.2(ii) from Theorem 14.1 of [PS]:

Proposition 11.2. Suppose π ∈ SRn is R-312-avoiding. Let σ ∈ Sn be the minimum length 312-avoiding
lift of π. Then ∆R[Ψ(σ)] = ΨR(π) and so σ = Π[ΦR(ΨR(π))].

We further consider an R-312-avoiding permutation π and its associated R-rightmost clump deleting
chain, again keeping in mind the picture provided by Fact 7.1(iii). We want to describe all 312-avoiding
lifts σ′ of π. Let h ∈ [r]. As in Section 7, let Bh+1 =: L1 ∪ L2 ∪ ... ∪ Lf decompose Bh+1 into clumps
for some f ≥ 1. Restating the clump deleting condition in Section 7, we take e ∈ [f ] to be maximal
such that Le ∩ Bh 6= ∅ and Bh+1\Bh ⊇ Le+1 ∪ ... ∪ Lf . The s elements of Bh+1\Bh that are smaller
than m are in the clump Le. It is possible that some elements m + 1,m + 2, ... from Bh+1\Bh are
also in Le. Set m′ := max(Le) and s′ := |Le\Bh|. Since π is R-increasing, when s′ > s we have
πqh+s+1 = m + 1, ..., πqh+s′ = m′ with m′ −m = s′ − s. So then π contains this staircase within the
subinterval (qh + s, qh + s′] of (qh, qh+1]. In any case we refer to the cohort Le\Bh on (qh, qh + s′] as
the (possibly empty) subclump L′e of Le.

Fact 11.3. With respect to the entities introduced above for h ∈ [r]: Corresponding to the clumps
Le+1, ..., Lf of Bh+1 there are respective staircases of π within (qh, qh+1]. When s′ > s there is also
a staircase of π within (qh + s, qh + s′]. The supports of these staircases “pave” (qh + s, qh+1]. An
analogous statement with no subclump holds for π on the first carrel (0, q1].

Proposition 11.4. Suppose π ∈ SRn is R-312-avoiding. Let σ′ be a 312-avoiding lift of π. In terms of the
entities above, this lift σ′ may be obtained from the minimum length 312-avoiding lift σ of π as follows:
Let h ∈ [r]. For each of the clumps Le+1, ..., Lf of Bh+1, its entries in σ may be locally rearranged on
its support in any 312-avoiding fashion when forming σ′. The entries for the subclump L′e may be locally
rearranged on (qh, qh + s′] in any 312-avoiding fashion provided that its entries less than m remain in
decreasing order. The entries for each of the clumps of B1 may be locally rearranged as for Le+1, ..., Lf .
Conversely, any such rearrangement of the entries of σ produces a 312-avoiding lift of π.

We will use the following result to derive Theorem 14.1 of [PS] from our Theorem 10.2(ii):

Proposition 11.5. Suppose π ∈ SRn is R-312-avoiding. Let σ′ ∈ Sn be a 312-avoiding lift of π. Then
∆R[Ψ(σ′)] = ΨR(π) and so π = ΠR[∆R[Ψ(σ′)]].

12 Further remarks
Table 16.1 of [PW2] summarizes our results concerning the equality of the polynomials and the iden-
ticality of the generating functions associated to our tableau sets; there λ and λ′ are partitions. The
justifications for the entries in that table appear in the first paragraph of Section 16.
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Let λ be a partition. The equivalence classes 〈β〉≈λ of tableau sets Sλ(β) for β ∈ Uλ(n) can be indexed
by the elements of UIλ(n) according to Proposition 8.3(i). We know that |UIλ(n)| =

(
n
Rλ

)
=:
(
n
λ

)
. The

Demazure tableau sets Dλ(π) are indexed by π ∈ Sλn by Fact 7.5(vi), and we know |Sλn | =
(
n
Rλ

)
=
(
n
λ

)
.

By Theorem 10.3 and Fact 7.5(vi), we see that there are
(
n
λ

)
−Cλn row bound sum generating functions (and

at most this many row bound sum polynomials) that cannot equal any Demazure polynomial. These two
statements also imply that there are

(
n
λ

)
− Cλn Demazure polynomials that cannot be equal to row bound

sums as polynomials. Can this mysterious coincidence be explained by an underlying phenomenon?

Problem 12.1. Let λ be a partition. Set J := [n−1]\Rλ. Is there a non-T -equivariant deformation of the
Schubert varieties in the GL(n) flag manifold G/PJ that bijectively moves the torus characters dλ(π;x)
to the sλ(α;x) for π ∈ Sλn and α ∈ UIλ(n) with exactly CRn fixed points, namely dλ(σ;x) = sλ(γ;x)
for σ ∈ Sλ-312

n , γ ∈ UGλ(n), and Ψλ(σ) = γ?

Finding such a bijection would give a negative answer to Problem 10.5, since it would rule out accidental
polynomial equalities among all row bound sums. To get started, first compute the dimensions |Dλ(π)|
and |Sλ(α)| for all π ∈ Sλn and α ∈ UIλ(n) for some small partition λ. Use this data to propose a guiding
bijection from UIλ(n) to Sλn that extends our bijection Πλ : UGλ(n)→ Sλ-312

n .
Working with an infinite number of variables x1, x2, ..., Reiner and Shimozono studied [RS] coinci-

dences between “skew” flag Schur polynomials and Demazure polynomials in their Theorems 23 and 25.
To indicate how those statements are related to our results, we consider only their “non-skew” flag Schur
polynomials and specialize those results to having just n variables x1, ..., xn. Then their key polynomials
κα(x) are indexed by “(weak) compositions α (into n parts)”. The bijection from our pairs (λ, π) with
λ a partition and π ∈ Sλn to their compositions α that was noted in Section 3 of [PW1] is indicated in
the sixth paragraph of the Appendix to that paper: Let π ∈ Sλn . After creating α via απi := λi for
i ∈ [n], here we write π.λ := α. Under this bijection the Demazure polynomial dλ(π;x) of [PW1] and
their key polynomial κα(x) are defined by the same recursion. Reiner and Shimozono characterized the
coincidences between the sλ(φ;x) for φ ∈ UFλ(n) and the dλ′(π;x) for π ∈ Sλ′n from the perspectives
of both the flag Schur polynomials and the Demazure polynomials. To relate the index φ to the index
π ∈ Sλ′n , their theorems refer to the tableau we denote Qλ(φ). Part (i) of the following fact extends the
sixth paragraph of the Appendix of [PW1]. Part (ii) can be confirmed with Proposition 8.4(ii), Proposition
4.2(i) and Lemma 7.3.

Fact 12.2. Let π ∈ Sλn . Let φ ∈ UFλ(n).

(i) The content Θ[Yλ(π)] of the key of π is the composition that has the unique
decomposition π.λ.

(ii) The tableau Qλ(φ) is a λ-key Yλ(σ) for a uniquely determined σ ∈ Sλn .

From the perspective of flag Schur polynomials, in our language their Theorem 23 first said that every
sλ(φ;x) arises as a dλ′(π;x) for at least one pair (λ′, π) with λ′ a partition and π ∈ Sλ′n . Second, that
dλ′(π;x) must be the Demazure polynomial for which π.λ′ = Θ[Qλ(φ)]. Their first statement appears
here as a weaker form of the first part of Theorem 10.2(iii). The fact above can be used to show that their
second (uniqueness) claim is equivalent to the first (and central) “necessary” claim Qλ(φ) = Yλ′(π) in
our Theorem 10.3 that is produced by taking β := φ.

From the other perspective, their Theorem 25 put forward a characterization for a Demazure polynomial
dλ(π;x) that arises as a flag Schur polynomial sλ′(φ;x) for some φ ∈ UFλ′(n). This characterization
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is stated in terms of a flag φ(α) that is specified by a recipe to be applied to a composition α; this is
given before the statement of Theorem 25. Let (λ, π) be the pair corresponding to α. It appears that
the recipe for φ(α) should have ended with ‘having size λi’ instead of ‘having size αi’; we take this fix
for granted for the remainder of the discussion. But no recipe of this form can be completely useful for
general partitions λ since any λ-tuple φ(α) produced will be constant on the carrels of [n] determined by
λ. So first we consider only strict λ. Here it can be seen that their φ(α) becomes our Ψ(π) =: ψ. Thus
their Tλ(α),φ(α) is our Q(ψ), and so the condition Key(α) = Tλ(α),φ(α) translates to Y (π) = Q(ψ).
Following the statement of Theorem 7.4, we noted that the converse of its Part (ii) held when λ is strict.
Using Proposition 8.4(ii), Theorem 7.4(ii), and that fact we see that this Y (π) = Q(ψ) condition is
equivalent to requiring π ∈ S312

n . So when λ is strict the two directions of Theorem 25 appear in this
paper as parts of Theorem 10.2(ii) and Theorem 10.3.

Now consider Theorem 25 for general λ. Its hypothesis κ(α) = Sλ/µ(Xφ) translates to dλ(π;x) =
sλ′(φ;x). In the necessary direction a counterexample to their condition Key(α) = Tλ(α),φ(α), which
translates to Yλ(π) = Qλ(φ(α)), is given by α = (1, 2, 0, 1). Their condition can be “loosened up”
by replacing ‘Tλ(α),φ(α)’ with ‘Tλ′,φ’, which translates to Qλ′(φ). This repaired version now gives the
necessary condition Yλ(π) = Qλ′(φ), which is the central claim of Theorem 10.3. Turning to the suffi-
cient direction: From looking at the λ-row end list of Yλ(π), it can be seen that the nn-tuple φ(α) =: φ
is in UFλ(n) ⊆ UGCλ(n) as well as being constant on the carrels of λ. Suppose that their condition
Yλ(π) = Qλ(φ) is satisfied, and set ∆λ(φ) =: γ ∈ UGλ(n). Then Yλ(π) = Qλ(γ), and Theorem 7.4
gives π ∈ Sλ-312

n . Then Theorem 10.2(ii) implies that dλ(π;x) = sλ(φ;x), which confirms this part of
Theorem 25. However, the set of cases (λ, π) that are produced by this sufficient condition is smaller
than that produced by the λ-312-avoiding sufficient condition: It can be seen that each index γ produced
above has only a single critical entry in each carrel of λ, while the general indexes γ′ that can arise for
such coincidences range over all of the larger set UGλ(n). Further remarks appear in the fifth paragraph
of Section 15 of [PW2].

We prepare to discuss a related result [PS] of Postnikov and Stanley. Let π ∈ Sλn . Our definitions of
the λ-chain B and the λ-key Yλ(π) can be extended to all of Sn so that Yλ(σ′) = Yλ(π) exactly for the
σ′ ∈ Sn such that σ̄′ = π. Then our definition of Demazure polynomial can be extended from Sλn to Sn
such that dλ(σ′;x) = dλ(π;x) for exactly the same σ′. Their paper used this “looser” indexing for the
Demazure polynomials.

In their Theorem 14.1, Postnikov and Stanley stated a sufficient condition for a coincidence to occur
from the perspective of Demazure polynomials: If π ∈ Sn is 312-avoiding, then dλ(π;x) = sλ(φ;x) for
a certain φ ∈ UFλ(n). After noting that this theorem followed from Theorem 20 of [RS], they provided
their own proof of it. Their bijective recipe for forming φ from π was complicated. Their inverse for
this bijection is our inverse map Π of Proposition 6.3(ii) of [PW2], which is the full R = [n − 1] case
of Proposition 7.2(7.2) here. This map takes upper flags to 312-avoiding permutations. Since the inverse
of the inverse of a bijection must be the bijection, from that proposition it follows that their recipe for φ
must be the restriction of our Ψ to S312

n . The following result uses the machinery provided by our maps
of n-tuples in Propositions 11.2 and 11.5 to prove that their theorem is equivalent to a weaker version of
one of ours:

Theorem 12.3. Theorem 14.1 of [PS] is equivalent to our Theorem 10.2(ii), once ‘≡’ in the latter result
has been replaced by ‘=’.

The proof is in Section 15 of [PW2]. To convert their index σ′ ∈ S312
n for a Demazure polynomial to an
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index for a flag Schur polynomial, Postnikov and Stanley set ϕ′ := Ψ(σ′). For one such σ′, our unique
corresponding element of Sλ-312

n is π := σ̄′. Let σ be the minimum length λ-312-avoiding lift of π, and
let σ′′ be any other such lift. We work with Ψλ(π) =: γ ∈ UGλ(n) and sλ(γ;x). As they apply Ψ to
various σ′′, they produce various upper flags ϕ′′. By Proposition 11.5 we see ϕ′′ ∼ γ. By Proposition
11.2 it can be seen that our “favored” Ψ(σ) is the λ-floor flag Φλ[γ] =: τ that is the unique minimal upper
flag such that sλ(τ ;x) = sλ(ϕ′′;x) = dλ(σ′′;x).

Gelfand-Zetlin (GZ) patterns are alternate forms of tableaux. Kogan used certain subsets of these,
which formed integral convex polytopes, to describe some Demazure polynomials. In our predecessor
paper [PW3] that obtained the convexity Theorem 7.6, while making some geometric remarks we noted
that in Corollary 15.2 of [PS] Postnikov and Stanley had shown that the Demazure polynomials described
by Kogan are the 312-avoiding Demazure polynomials. For strict λ, Kiritchenko, Smirnov, and Timorin
vastly generalize that result in Theorem 1.2 of [KST] by expressing any Demazure polynomial as the sum
of the generating functions for the integral points lying on certain faces of the GZ polytope for λ. In their
introduction those authors note that only one face is used for this exactly when the indexing permutation
is 132-avoiding; this is their equivalent to our 312-avoiding after taking into account their conjugation
by w0. This observation led the referee for this paper to ask if the integral convexity phenomenon of
our Theorem 7.6 is paralleled by an integral convexity phenomenon for GZ patterns. We do not know
of any relationship between integral convexity for a general set of semistandard tableaux and the integral
convexity of the set of the corresponding GZ patterns. Once one has descriptions of the set of tableaux
for a flag Schur polynomials and of Kogan’s set of patterns for a 312-avoiding permutation, it is easy
to directly see that both form integral convex polytopes. As for the converse convexity question for the
sets of patterns used for general permutations, note that it is possible for a nontrivial union of faces of a
“small” GZ polytope to be integrally convex: Consider the GZ polytope for λ = (1, 2, 3) shown in Figure
1 of [KST]. The Demazure polynomial for w := s2 is obtained by summing over the integral points in the
faces for y = 2 and x = z. This permutation is 132, which is not 132-avoiding. The integral convex hull
of the union of these two faces is the union itself. So here the set of GZ patterns employed to compute a
Demazure polynomial for a permutation is convex even though the permutation is not 132-avoiding. But
the desired converse is obtained by considering λ′ = mλ form sufficiently large, which is common in this
area in algebraic geometry. One can also conclude for large m that the only candidates for coincidences
with flag Schur polynomials are the 132-avoiding Demazure polynomials.

In Theorem 2.7.1 of [St1], Stanley used the Gessel-Viennot technique to give a determinant expression
for a generating function for certain sets of n-tuples of non-intersecting lattice paths. Then in his proof
of Theorem 7.16.1 of [St2], he recast that generating function for some cases by viewing such n-tuples
of lattice paths as tableaux. After restricting to non-skew shapes and to a finite number of variables,
his generating function becomes our row bound sum sλ(β;x) for certain β ∈ Uλ(n). Theorem 2.7.1
required that the pair (λ, β) satisfies the requirement that Gessel and Viennot call [GV] “nonpermutable”.
There he noted that (λ, φ) is nonpermutable for every φ ∈ UFλ(n); this implicitly posed the problem of
characterizing all β ∈ Uλ(n) for which (λ, β) is nonpermutable. The ceiling map Ξλ : UGλ(n) −→
UFλ(n) defined in Sections 5 and 4 can be extended to all of Uλ(n). For a given partition λ, the main
result of [PW4] says that β ∈ Uλ(n) gives a nonpermutable (λ, β) if and only if β ∈ UGCλ(n) and
β ≤ Ξλ(β). Hence we will again see that restricting consideration from all upper λ-tuples β ∈ Uλ(n)
down to at least the gapless core λ-tuples η ∈ UGCλ(n) enables saying something nice about the row
bound sums sλ(η;x). To compute sλ(η;x) for a given η ∈ UGCλ(n), the possible inputs for the Gessel-
Viennot determinant are the η′ ∈ UGCλ(n) such that η′ ∼ η and η′ ≤ Ξλ(η′). We will say that
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a particular such λ-tuple attains maximum efficiency if the corresponding determinant has fewer total
monomials among its entries than does the determinant for any other application of Theorem 2.7.1 to a
β ∈ Uλ(n) that produces sλ(η;x). In [PW4] we show that the gapless λ-tuple ∆λ(η) attains maximum
efficiency.

13 Parabolic Catalan counts
In the last section of our predecessor paper [PW3] we listed a half-dozen ways in which the parabolic
Catalan numbers CRn arose in that paper, including as the number of gapless R-tuples. Then we described
how these numbers had recently independently arisen in the literature and in the Online Encyclopedia
of Integer Sequences. The following result lists several further occurrences of these numbers here; the
section (or paper) cited at the beginning of each item points to the definition of the concept:

Theorem 13.1. Let R ⊆ [n − 1]. Write the elements of R as q1 < q2 < ... < qr. Set q0 := 0 and
qr+1 := n. Let λ be a partition λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0 whose shape has the distinct column lengths
qr, qr−1, ..., q1. Set ph := qh − qh−1 for 1 ≤ h ≤ r + 1. The number CRn =: Cλn of R-312-avoiding
permutations is also equal to the number of:

(i) Section 3: flag R-critical lists.
(ii) Section 3: R-canopy tuples κ, R-floor flags τ ∈ UFlrR(n), R-ceiling flags ξ ∈ UCeilR(n).

(iii) Sections 5 and 8: the four collections of equivalence classes inUGCR(n) ⊇ UFR(n) (orUGCλ(n)
⊇ UFλ(n)) that are defined by the equivalence relations ∼R (or ≈λ) respectively.

(iv) Section 10: Demazure polynomials dλ(π;x) indexed by π ∈ Sλ-312
n , gapless core Schur polynomials

sλ(η;x) for η ∈ UGCλ(n) that are distinct as polynomials, and flag Schur polynomials sλ(φ;x)
for φ ∈ UFλ(n) that are distinct as polynomials.

(v) Sections 8, 10: Coincident pairs (Sλ(β),Dλ(π)) of sets of tableaux of shape λ and coincident
pairs (sλ(β;x), dλ(π;x)) of polynomials indexed by upper λ-tuples β ∈ Uλ(n) and λ-permutations
π ∈ Sλn .

(vi) Section 12: valid upper λ-tuple inputs to the Gessel-Viennot determinant expressions for flag Schur
polynomials on the shape λ that attain maximum efficiency.

Proof: By Proposition 7.2(ii), the number of gaplessR-tuples is CRn . Use Corollary 4.4 to confirm (i) and
(ii). Then use Corollary 5.3 and Proposition 8.2 for (iii). Use Proposition 10.1(ii) and Corollary 10.4 to
confirm (iv) and Theorems 9.1 and 10.3 for (v). Part (vi) is Proposition 8.3 of [PW4].

In [PW3] we defined the total parabolic Catalan number CΣ
n to be

∑
CRn , sum over R ⊆ [n− 1].

Corollary 13.2. For each m ≥ 1, the total parabolic Catalan number CΣ
n is the number of flag Schur

polynomials in n variables on shapes with at most n − 1 rows in which there are m columns of each
column length that is present.
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