
ar
X

iv
:1

70
5.

04
80

1v
3 

 [
m

at
h.

C
O

] 
 8

 D
ec

 2
01

7

Discrete Mathematics and Theoretical Computer Science DMTCS vol. 19:2, 2017, #5

Asymptotic distribution of fixed points of

pattern-avoiding involutions ∗

Sam Miner1 Douglas Rizzolo2 Erik Slivken3†

1 Pomona College, Claremont CA, USA
2 University of Delaware, Newark DE, USA
3 University of Paris Diderot, Paris, France

received 16th May 2017, revised 28th Nov. 2017, accepted 3rd Dec. 2017.

For a variety of pattern-avoiding classes, we describe the limiting distribution for the number of fixed points for

involutions chosen uniformly at random from that class. In particular we consider monotone patterns of arbitrary

length as well as all patterns of length 3. For monotone patterns we utilize the connection with standard Young

tableaux with at most k rows and involutions avoiding a monotone pattern of length k. For every pattern of length 3

we give the bivariate generating function with respect to fixed points for the involutions that avoid that pattern, and

where applicable apply tools from analytic combinatorics to extract information about the limiting distribution from

the generating function. Many well-known distributions appear.

Keywords: pattern-avoidance, involutions, fixed points, asymptotic distributions, Young tableaux, generating func-

tions

1 Introduction

Identifying the asymptotic distribution of the number of fixed points in a uniformly random permutation

is a classic problem in probability whose resolution dates back to Montmort in the early 1700’s [5],

where it is shown that the limiting distribution is Poisson. Since then, the fixed points of various types

of permutations have been intensely studied. Recently there has been a growing interest in the statistical

properties of random pattern-avoiding permutations. Many of the results concern the overall shape and

structure of these permutations [1, 12, 17, 16, 19], some explore pattern containment [15], while others

consider pattern-avoidance under non uniform distributions such as the Mallows distribution [4]. In [11,

13] the limiting distribution on the number and location of fixed points is given for a variety of pattern-

avoiding classes. Enumeration for involutions was explored in [22] for patterns length 3 and [3] for longer

patterns. In [6] the number of involutions with a specified number of fixed points was given for each

pattern of length 3. Excellent introductions to the general subject area of pattern avoidance can be found

in [2] or [25].
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started.
†Partially supported by the ERC Starting Grant 680275 MALIG
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In this paper, we focus on the limiting distribution of the total number of fixed points for random

pattern-avoiding involutions. First we use the machinery of standard Young tableaux to give limiting

distributions for involutions with longest increasing or decreasing sequence of length at most k. We then

complete the picture for all that avoid a fixed pattern of length 3. Taken together, this work suggests

that pattern-avoiding permutations are strongly connected to many classical limit theorems in probability.

Indeed, depending on the pattern the (appropriately normalized) limiting distribution of fixed points can

be anything from a point mass to a normal distribution to a distribution given in terms of the eigenvalues

of the Gaussian Orthogonal Ensemble (conditioned to have trace 0).

In some cases, we are able to use straightforward generating function arguments coupled with classical

analytic combinatorics to compute the asymptotic distribution of fixed points. For the sake of the reader,

we include an appendix containing the results from analytic combinatorics that we will need. To our

knowledge methods from analytic combinatorics have not been widely used to study asymptotic properties

of pattern-avoiding permutations and our results suggest that these methods may be broadly useful for

deriving asymptotic permutation statistics. Some cases, however, cannot be easily done using off-the-

shelf results from analytic combinatorics and require different methods.

We now introduce some necessary notation and summarize our results. For a permutation π, let fp(π)
be the number of fixed points of π. For a permutation τ ∈ Sk, we say π contains the pattern τ if a

there exists a subsequence i1 < · · · ik such that (πi1 , · · · , πik) has the same relative order of τ and π
avoids τ , or is τ -avoiding, if it does not contain τ . Let Avn(τ) be the set of τ -avoiding permutations

of [n] := {1, . . . , n}. We are particularly interested in involutions, which are permutations π such that

π−1 = π, and denote the set of τ -avoiding involutions of [n] by Ivn(τ). Let (ξij)1≤i≤j≤k be independent,

centered, normal random variables such that ξii has variance 1 and ξij has variance 1/2 if i < j. For

j < i, define ξij = ξji. A k × k random matrix X is said to be drawn from the k × k Gaussian

Orthogonal Ensemble if it is equal in distribution to (ξij)
k
i,j=1. We will need to condition X to have trace

0. Since the (ξij)1≤i≤j≤k are independent normal random variables and the diagonal elements all have

the same variance, conditioning the matrix to have trace 0 is equivalent to projecting X onto the subspace

of matrices with trace 0. This is part of a larger connection between conditioning normal random variables

and projections, see e.g. [14, Chapter IX], and is essentially due to the fact that if I is the identity matrix

then X − k−1tr(X)I and k−1tr(X)I are independent. Thus X conditioned to have trace 0 is equal in

distribution to

M = X − tr(X)

k
I, (1)

where I is the identity matrix. We say that M is a random matrix drawn from the k × k Gaussian

Orthogonal Ensemble conditioned to have trace 0.

Our results consider the asymptotic distribution as n increases, and we let→d denote convergence in

distribution as n tends to∞.

Theorem 1. Fix k ∈ {2, 3, . . .} and let Πn be a uniformly random element of Ivn((k + 1)k · · · 321). Let

M be a random matrix drawn from the k × k Gaussian Orthogonal Ensemble conditioned to have trace

0 and let Λ1 ≥ · · · ≥ Λk be the ranked eigenvalues of M .

(a) If k is even then
√

k

n
fp(Πn)→d

k
∑

j=1

(−1)j+1Λj .
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(b) If k is odd then
√

k

n

(

fp(Πn)−
n

k

)

→d

k
∑

j=1

(−1)j+1Λj .

We remark that when k+1 = 3, we have a simpler description of the limiting distribution. In this case,

we let B1 and B2 be two independent N(0, 1/2) random variables (where N(µ, σ2) denotes a normal

random variable with mean µ and and variance σ2), using Equation (1), we see that

M =d

[

B1 B2

B2 −B1

]

is distributed like a 2× 2 GOE matrix conditioned to have trace equal to 0. The eigenvalues of this matrix

can be computed explicitly, giving

(Λ1,Λ2) =

(

√

B2
1 +B2

2 ,−
√

B2
1 +B2

2

)

,

so that if Πn is a uniformly random element of Ivn(321) then

√

2

n
fp(Πn)→d 2

√

B2
1 +B2

2 =
√

(2B1)2 + (2B2)2.

Equivalently,
√

1

n
fp(Πn)→d

√

(
√
2B1)2 + (

√
2B2)2.

Furthermore, it is well known that

√

(
√
2B1)2 + (

√
2B2)2 follows a Rayleigh(1) distribution, whose

density is given by

f(x) = xe−x2/21(x ≥ 0).

Theorem 2. If Πn is a uniformly random element in Ivn(123 · · ·k(k + 1)) then

fp(Π2n)→d Xeven

and

fp(Π2n−1)→d Xodd ,

where Xeven has density function given by

P(Xeven = i) =

{

(ki)
2k−1 i is even ,

0 i is odd ,

and Xodd has density function given by

P(Xodd = i) =

{

(ki)
2k−1 i is odd ,

0 i is even .
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Theorem 3. Fix τ ∈ {231, 312}. If Πn is a uniformly random element of Ivn(τ) then E(fp(Πn)) =
n
3 +O(1), Var(fp(Πn)) =

8
27n+O(1) and

fp(Πn)− 1
3n

√

8n/27
→d Z,

where Z is a standard normal random variable.

To the best of our knowledge, the above theorems are new. The following theorem was first established

in [11] using the theory of local limits for Galton-Watson trees as a corollary of a stronger result that

also described the location of the fixed points. We include a simple proof establishing the asymptotic

distribution of the total number of fixed points using analytic combinatorics.

Theorem 4 (Corollary 6 [11]). Fix τ ∈ {321, 213, 132}. If Πn is a uniformly random element of Avn(τ),
then

fp(Πn)→d N

where N has a negative-binomial distribution with parameters r = 2 and p = 1/3 ( P(N = k) =
4(k+1)

9 (1/3)k).

Proof of Theorem 4:

We begin with a bivariate generating function from Elizalde [8] for τ = 321, 213, 132,

FAv(τ)(x, t) =
∑

σ∈Av(τ)

xfp(σ)t|σ| =
2

1 + 2t(1− x) +
√
1− 4t

. (2)

Note that for fixed x, with say |x| < 2, we have that

lim
t→1/4

1√
1− 4t

(

2

1 + 2t(1− x) +
√
1− 4t

− 4

3− x
+

8

(3− x)2
√
1− 4t

)

= 0.

It follows from Corollary 16, which is [10, Corollary VI.1], that

[tn]FAv(τ)(x, t) ∼ −[tn]
8

(3− x)2
√
1− 4t ∼ 4n+1

(3− x)2
√
πn3

.

If σn ∈ Avn(τ) is uniformly random, we have that

fn(x) =

∞
∑

k=0

P(fp(σn) = k)xk =
[tn]FAv(τ)(x, t)

[tn]FAv(τ)(1, t)
→ 4

(3− x)2
=

∞
∑

k=0

4

9
(k + 1)

(

1

3

)k

xk.

The result now follows from the standard continuity result for probability generating functions, see e.g.

Theorem 13, which is [10, Theorem IX.1].

The next two theorems, which have already been established in [13], have significantly more compli-

cated proofs than the previous theorems we have stated. In fact, [13, Theorem 1.1] gives full information

not only about the total number of fixed points, but also their locations. We do not give proofs of them,

but include them here in order to give a complete catalogue of results for avoidance of patterns of length

3.
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Theorem 5 (Theorem 1.1 [13]). Let (et, 0 ≤ t ≤ 1) be a standard Brownian excursion and let Πn be a

uniformly random element of Avn(231) or Avn(312). Then

1

n1/4
fp(Πn)→d

1

27/4
√
π

∫ 1

0

1

e

3/2
t

dt.

Theorem 6 (Theorem 1.1 [13]). Let Πn be a uniformly random element of Avn(123) and let A and B be

independent Bernoulli(1/4) random variables. Then

fp(Πn)→d A+B.

2 Involutions avoiding large monotone patterns

Before we proceed we give a few basic definitions concerning Young diagrams and Young tableaux. A

Young diagram is a collection of rows of boxes left justified so that the number of boxes in each row is

weakly decreasing. A Young tableau is a Young diagram with each box filled with a number from N such

that the numbers are weakly increasing along rows and columns. A standard Young tableau of size n is a

Young tableau of size n where each element in [n] appears exactly once. Given a Young tableau, T , we

call the corresponding Young diagram the shape of T and denote it λ(T ). We denote the conjugate of a

Young diagram λ by λ′, where the row counts of λ′ are given by the column counts of λ. The number of

boxes in the ith row is denoted by λi, and hence the number of boxes in the ith column is denoted by λ′
i.

The conjugate of T , denoted T ′, is also a standard Young tableaux with shape λ(T ′) = λ′(T ).
Denote the set of Young diagrams of size n with at most k rows by Dn,k and the set of Young tableaux

of size n with at most k rows by Tn,k. For a fixed ν ∈ Dn,k we let Tn,k(ν) denote the subset of Tn,k with

shape ν. For T ∈ Tn,k, and m ≤ n, we let Tm denote the standard Young tableau contained in T with

entries 1, · · · ,m. For γ ∈ Dm,k we let Tn,k(γ) denote the subset of Tn,k such that λ(Tm) = γ. Similarly

we let Dn,k(γ) the subset of Dn,k that contain γ. Finally we let Tn,k(ν, γ) = Tn,k(ν) ∩ Tn,k(γ).
For ν ∈ Dn,k(γ) we let ν/γ denote the skew Young diagram obtained by removing the boxes of γ from

ν. If T ∈ Tn,k(γ, ν) we construct the skew standard Young tableaux of shape ν/γ by removing from T
the boxes associated with Tm. We denote this skew standard Young tableau by Tmրn, the set of skew

standard Young tableaux of shape ν/γ by Sn,k(ν/γ), and the union over ν of these sets by Sn,k(γ). The

set Tn,k(γ) is in bijection with the direct sum Tm,k(γ)⊕ Sn,k(γ).
The Robinson-Schensted-Knuth (RSK) algorithm gives a bijection between pairs of standard Young

tableaux (P,Q) and permutations of length n. If π is an involution then the corresponding pair satisfies

P = Q. For an involution π we let T = T (π) denote the unique standard Young tableaux obtained by

RSK. The number of rows in T is giving by the longest decreasing sequence in π. Similarly the number

columns of T is given by given by the longest increasing sequence [20]. Let τk denote the monotone

decreasing pattern (k + 1)k, · · · , 321 and ρk the reverse of τk. RSK gives a bijection between Tn,k and

Ivn(τk). By conjugation Tn,k is also in bijection with Ivn(ρk). For a modern reference of the RSK

algorithm see [24]

The number of fixed points of an involution is equal to the number of odd columns of the corresponding

tableau [21]. The following proposition follows from results found in [18] and in [23] that consider Young

tableaux with bounded number of rows or columns.

Proposition 7. Let τk denote the monotone decreasing pattern (k + 1)k, · · · , 321 and let (Λi)1≤i≤k be

the ranked eigenvalues of a traceless GOE matrix. For Πn chosen uniformly from Ivn(τk),
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(
√

k

n

(

λi(Πn)−
n

k

)

)

1≤i≤k

−→d (Λi)1≤i≤k.

Moreover, for any fixed d > 0,

P

(

min
2≤i≤k

{λi−1(Πn)− λi(Πn)} < d

)

→ 0.

Proof: Letting Πn be a uniformly random element of Iv(τk) it follows from the proof of [23, Theorem

3] by taking the square root of Equation (10) there or by [18, Theorem 5.1] by the implied local limit

theorem that
(
√

k

n

(

λi(Πn)−
n

k

)

)

1≤i≤k

converge in joint distribution to the vector (Λi)1≤i≤k of ranked eigenvalues of a traceless GOE matrix. If

we let

Hk =
{

(x1, . . . , xk) ∈ R
k
∣

∣x1 ≥ · · · ≥ xk, x1 + · · ·+ xk = 0
}

,

then the probability density function of (Λi)1≤i≤k with respect to the (k − 1)-dimensional Hausdorff

measure on Hk is

g(x1, · · · , xk) =
1

Zk
e−

1

2

∑k
j=1

x2

j

∏

1≤i<j≤k

(xi − xj),

where Zk is a normalizing constant. For each 2 ≤ i ≤ k, the function hi = g/(xi−1 − xi) is integrable

on hk and satisfies g < ǫhi on the subset {xi−1 − xi < ǫ}. By the integrability of h over hk , there exists

M > 0 such that, along with the union bound

P

(

min
2≤i≤k

{Λi−1 − Λi} < ǫ

)

≤
∑

i

∫

hk

ǫhi ≤ ǫkM.

For any ǫ > 0 and large enough n, d
√

k
n < ǫ finishing the proof.

Proof of Theorem 1:

If π ∈ Iv(τk) then λj(π) = 0 for j > k and the number of odd columns (hence the number of fixed

points [21]) is given by

fp(π) =
k
∑

j=1

(−1)j+1λj(π) =
k
∑

j=1

j odd

λj(π) −
k
∑

j=1

j even

λj(π).

Consequently by Proposition 7, if k + 1 is odd, so k is even, we have

√

k

n
fp(Πn) =

√

k

n



fp(Πn)−
k
∑

j=1

(−1)j n
k



 =

k
∑

j=1

(−1)j+1

√

k

n

(

λj(Πn)−
n

k

)

→d

k
∑

j=1

(−1)j+1Λj ,



Fixed points of pattern-avoiding involutions 7

while if k + 1 is even, so k is odd, then

√

k

n

(

fp(Πn)−
n

k

)

=

√

k

n



fp(Πn)−
k
∑

j=1

(−1)j n
k



 =

k
∑

j=1

(−1)j+1

√

k

n

(

λj(Πn)−
n

k

)

→d

k
∑

j=1

(−1)j+1Λj .

Before we begin the proof of Theorem 2, we define a Markov chain whose stationary distribution will

precisely describe the limiting distribution of the number of fixed points.

Consider the Markov chain C with state space S = {0, 1, . . . , k}, and transition matrix P with proba-

bilities

Pi,j =











i
k j = i− 1

1− i
k j = i+ 1

0 otherwise.

This is a discrete version of the Ehrenfest urn model [7], which can be interpreted as having k balls divided

between two urns, and at each step choosing a ball uniformly, and moving it to the other urn. The number

of rows of odd length in a Young diagram with at most k rows will have the same state space as this

Markov chain. Adding a box to a row will change its parity and therefore is equivalent to moving a ball

from one urn to the other. The difficulty with Young diagrams is that they do not grow by choosing a row

uniformly at random and adding a box to it, since the rows must be decreasing in order. Dealing with this

complication is the main difficulty in the proof of Theorem 2.

Known results about the Ehrenfest model give us the following lemma.

Lemma 8. The chain C is periodic of period 2. If the initial position of the chain is deterministic then as

d→∞, Cd approaches alternation between vectors p and q ∈ S, where

pi =

{

(ki)
2k−1 i is even

0 otherwise,

and

qi =

{

(ki)
2k−1 i is odd

0 otherwise.

Proof of Lemma 8: First, C is irreducible since every state can reach every other state, and therefore

positive recurrent (since the state space is finite). The periodicity of C is clearly 2, since at each transition

the parity of our state changes. Claim: the invariant probability density function of C is given by

f(i) =

(

k

i

)(

1

2

)k

, i ∈ S .
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This is true since applying one transition to f yields

fP (i) = f(i− 1)pi−1,i + f(i+ 1)pi+1,i

=

(

k

i− 1

)(

1

2

)k (

1− i− 1

k

)

+

(

k

i+ 1

)(

1

2

)k
i+ 1

k

=

(

1

2

)k [(
k − 1

i− 1

)

+

(

k − 1

i

)]

=

(

1

2

)k (
k

i

)

= f(i) .

Applying the periodicity of C to this invariant density function completes the proof.

Proof of Theorem 2:

For π ∈ Ivn(ρk) the number of fixed points of π is at most k and the parity of the number of fixed

points must match the parity of n. The number of fixed points will be given by the number of rows of odd

length in the conjugate of T (π).

For λ ∈ Dn,k let fλ denote the size of Tn,k(λ). For m ≤ n and γ ∈ Dm,k let sγ denote the size of

Sn,k(γ). The decomposition of T ∈ Tn,k into a direct sum implies

|Tn,k(γ)| = fγsγ .

For distinct γ, µ ∈ Dm,k the sets Tn,k(γ) and Tn,k(µ) are disjoint, so

|Tn,k| =
∑

γ∈Dm,k

fγsγ .

We wish to consider a random standard Young tableau chosen uniformly from Tn,k. We construct the

following probability measure w1 on Dm,k where

w1(γ) :=
fγsγ

∑

µ∈Dm,k
fµsµ

.

Conditioned on γ, choosing Tm ∈ Tm,k(γ) uniformly with probability f−1
γ and Tmրn ∈ Sn,k(γ)

with probability s−1
γ gives a uniform random standard Young tableau T = Tm ⊕ Tmրn in Tn,k(γ). By

choosing γ with probability w1(γ) this process gives a uniformly random element of Tn,k.

Fix d > 0 and let m = n − d. Let δ(γ) = min2≤i≤k(γi−1 − γi) denote the minimum difference in

the lengths of consecutive rows. If δ(γ) > d then every skew standard Young tableaux in Sn,k(γ) will

consist of up to k non-overlapping horizontal strips. For every such γ, we have sγ = kd. For γ such that

δ(γ) < d we have sγ < kd.
We define another measure on Dn,k,

w2(γ) :=
kdfγ

∑

γ k
dfγ

=
fγ

∑

γ fγ
.
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The measure w2 is equivalent to choosing Tm uniformly from Tm,k and letting γ = λ(Tm). Then

w1(δ(γ) < d) ≤ w2(δ(γ) < d).

By Proposition 7, as m increases, Pw2
(δ(γ)) < d)→ 0, and therefore Pw1

(δ(γ) < d)→ 0.

Let Y denote the number of odd rows of γ chosen with probability w1(γ). Both m and Y have the

same parity. With probability tending to 1 as m increases, δ(γ) > d. Conditioned on δ(γ) > d, we may

construct Tmրn ∈ Sn,k(γ) by choosing uniformly from each of the k rows and a adding box to that row,

repeating this process d times. The conditional distribution of the number of odd rows of T = Tm⊕Tmրn

on is given exactly by the Markov chain in Lemma 8. If m and d have the same parity (hence n = m+ d
is even), then Cd(Y )→d Xeven. Otherwise Cd(Y )→d Xodd.

3 Bivariate Generating Functions

Bivariate generating functions are valuable tools in understanding limiting statistics of combinatorial

classes. For a fixed τ ∈ S3 we define the following bivariate generating function with respect to fixed

points fp:

FIv(τ)(x, t) =
∑

σ∈Iv(τ)

xfp(σ)t|σ|. (3)

There are three distinct generating functions. One for τ ∈ {231, 312}, one for τ ∈ {321, 132, 213}, and

another for τ = 123. For our purposes we will only use FIv(231)(x, t), though we include the others for

completeness.

Proposition 9. For Iv(231) = Iv(312) we have

FIvn(231)(x, t) =
∑

σ∈Iv(231)

xfp(σ)t|σ| =
1− t2

1− 2t2 − xt
.

Proof:

If a permutation π avoids the pattern τ then π−1 avoids the pattern τ−1. Therefore involutions that

avoid the pattern 231 must also avoid 312. This allows for a bijection between Iv(231) and the set of

compositions of integers into positive parts [22, Proposition 6]. For example

3 2 1 5 4 8 7 6←→ (3, 2, 3). (4)

If (a1, · · · , ak) is a composition, b1 = 0, and bi =
∑i−1

j=1 iaj , then the corresponding permutation, π,

under the bijection is defined point-wise for bi < t ≤ bi+1 by

π(t) := bi + ai − (t− bi) + 1.

A fixed point occurs if and only if t = (ai + 1)/2 + bi which can only occur if ai is odd and can only

occur once for each odd ai. Hence, there is one fixed point for every part of odd size. In Example 4 both

2 and 7 are fixed points and occur in the middle of an odd decreasing sequence.

Let A(n, k) denote the set of compositions of n into exactly k positive parts and Aodd(n, k) be the set

of compositions of n into exactly k positive odd parts. For each ρ ∈ A(n, k) with exactly k − j odd parts
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there is a unique ν ∈ Aodd(n−j, k) obtained by reducing each even part by one. For each ν ∈ Aodd(n, k)
and each 0 ≤ j ≤ k there are precisely

(

k
j

)

permutations in A(n+ j, k) with exactly k − j odd parts that

reduce to ν.
We then have the following:

∑

σ∈Iv(231)

xfp(σ)t|σ| =
∑

n,k

∑

ρ∈A(n,k)

tnx#{ odd parts of ρ }

=
∑

n,k,j

∑

ν∈Aodd(n,k)

(

k

j

)

tn+jxk−j

=
∑

j,k

∑

s1,··· ,sk

(

k

j

)

(t2)s1+···+sk tk+jxk−j

=
1− t2

1− 2t2 − xt

Proof of Theorem 3:

We now set up the notation to apply Theorem 14, which [10, Theorem IX.9]. Let B(x, t) = 1− t2 and

C(x, t) = 1 − 2t2 − xt, so that FIv(231)(x, t) = B(x, t)/C(x, t), with B and C being analytic. Since

C(1, t) = 1− 2t2 − t = −2(t+ 1)(t− 1/2) we see that that FIv(231)(1, t) is meromorphic on the ball of

radius r = 3/4 with only a simple pole at ρ = 1/2 < 3/4. Moreover, B(1, ρ) 6= 0. Additionally,

Ct(1, ρ)Cx(1, ρ) = (−4ρ− 1)(−ρ) = 3/2 6= 0,

and if we let ρ(x) = (−x +
√
x2 + 8)/4 then ρ(1) = ρ and C(x, ρ(x)) = 0 and ρ is analytic at 1. Let

f(x) = ρ(1)/ρ(x) = 1/(2ρ(x)). Note that

v

(

ρ(1)

ρ(x)

)

= v (f(x)) :=
f ′′(1)

f(1)
+

f ′(1)

f(1)
−
(

f ′(1)

f(1)

)2

=
2

27
+

1

3
− 1

9
= 8/27,

where we have used that f(1) = 1, f ′(1) = 1/3, and f ′′(1) = 2/27. Similarly, we see that

m

(

ρ(1)

ρ(x)

)

= m(f(x)) :=
f ′(1)

f(1)
=

1

3
.

If we let Xn be the number of fixed points of a uniformly random 231-avoiding involution of [n], then

P(Xn = k) = [xktn]FIv(231)(x, t)/[t
n]FIv(231)(1, t), and it follows from Theorem IX.9 of [10] that

E(Xn) = (n/3) + O(1), V ar(Xn) = (8n/27) +O(1), and that

P

(

Xn − E(Xn)
√

V ar(Xn)
≤ x

)

= P(Z ≤ x) +O(1/
√
n),

where Z is a standard normal random variable. It follows immediately that

Xn − 1
3n

√

8n/27
→d Z.
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Proposition 10. Fix τ ∈ {321, 132, 213}.For Iv(τ) we have

FIv(τ)(x, t) =
2

1− 2xt+
√
1− 4t2

.

Proof:

We first considerFIv(321)(x, t). Permutations in Ivn(321) are in bijection with symmetric Dyck paths of

length 2n and under this bijection the centered tunnels correspond to fixed points [9]. Let D(n, k) denote

the set of symmetric Dyck paths of length 2n with exactly k centered tunnels. Any path in D(n, k) is

uniquely determined by its first n steps. Let u and d denote the number of up and down steps respectively

in the first half of Dyck path. For paths in D(n, k) we have u+ d = n and u− d = k. By standard ballot

counting arguments we have

|D(2d+ k, k)| =
(

2d+ k

d

)

−
(

2d+ k

d− 1

)

so that
∑

π∈Iv(321)

tnxfp(x) =
∑

d,k≥0

((

2d+ k

d

)

−
(

2d+ k

d− 1

))

t2d+kxk. (5)

Using the identity
∑

m≥0

(

2n+m
n

)

sn = 1√
1−4s

(

1−
√
1−4s
2s

)m

we have

∑

d≥0

(

2d+ k

d

)

t2d+kxk =
(xt)k√
1− 4t2

(

(1 −
√
1− 4t2)

2t2

)k

(6)

and

∑

d≥0

(

2(d− 1) + k + 2

d− 1

)

t2(d−1)+k+2xk =
(xt)kt2√
1− 4t2

(

(1−
√
1− 4t2)

2t2

)k+2

(7)

Combining (6) and (7) with the appropriate factors and summing over k ≥ 0 gives

∑

d,k≥0

((

2d+ k

d

)

−
(

2d+ k

d− 1

))

t2d+kxk =
1− t2

(

1−
√
1−4t2

2t2

)2

√
1− 4t2





∑

k≥0

(xt)k

(

1−
√
1− 4t2

2t2

)k




which allows us to simplify (5) to

∑

π∈Iv(321)

tnxfp(x) =
2

1− 2xt+
√
1− 4t2

with some straightforward manipulations.

Rotation by 180 degrees sends Ivn(132) to Ivn(213) and preserves the number of fixed points. From

[9, Theorem 8], or [6, Theorem 2.3] there is bijection from Avn(321) to Avn(132) which preserves the
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number of fixed points and also commutes with taking inverses, so induces a bijection between Ivn(321)
and Ivn(132). Therefore

FIv(321)(x, t) = FIv(132)(x, t) = FIv(213)(x, t).

Corollary 11. Fix τ ∈ {321, 132, 213}. If Πn is a uniformly random element of Ivn(τ), then

√

1

n
fp(Πn)→d X,

where X follows a Rayleigh(1) distribution.

Proof: This follows from Theorem 1 and [9, Theorem 8] or [6, Theorem 2.3].

For completeness we also give the bivariate generating function for Iv(123) with respect to fixed points.

Proposition 12. For Iv(123) we have

FIv(123)(x, t) =
∑

ρ∈Iv123

xfp(ρ)t|ρ| = 1+ (tx+ t2(1 + x2))

(

1−
√
1− 4t2

2t2
√
1− 4t2

)

.

Proof: By the RSK correspondence, permutations in Ivn(123) are in one-to-one correspondence with

standard Young tableaux of size n with at most two columns. The number of fixed points in such a

permutation is equal to the number of columns of odd length in the standard Young tableaux. If n is odd,

there is exactly one odd column in the Young tableaux. If n is even (so n = 2k), there are either zero

or two columns. Every tableaux of size 2k can be created by placing the element 2k in either the first or

second column of a tableaux of size 2k − 1. Conversely, each tableaux of size 2k − 1 yields exactly two

tableaux of size 2k, one where both columns have even length and one where both have odd length.

By [22, Proposition 3], for any n we have

|Ivn(123)| =
(

n

⌊n2 ⌋

)

.

Since
1√

1− 4t2
=
∑

n=0

(

2n

n

)

t2n ,

we have
1

2t2
√
1− 4t2

=
∑

n=0

(

2n+ 1

n

)

t2n +
1

2t2
,

and
1−
√
1− 4t2

2t2
√
1− 4t2

=
∑

n=0

(

2n+ 1

n

)

t2n .

Multiplying this term by the factor (xt+(1+x2)t2), and adding 1, gives the desired generating function.
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Appendix

In this appendix we restate various results from Flajolet and Sedgewick so they are more readily available

for the reader.

Theorem 13 (Theorem IX.1 [10]). Let Ω be an arbitrary set contained in the unit disc and having at

least one accumulation point in the interior of the disc. Assume that the probability generating function

pn(u) =
∑

k≥0 pn,ku
k and q(u) =

∑

k≥0 qku
k are such that there is convergence,

lim
n→∞

pn(u) = q(u),

pointwise for each u in Ω. Then a discrete limit law holds in the sense that, for each k,

lim
n→∞

pn,k = qk and lim
n→∞

∑

j≤k

pn,j =
∑

j≤k

qj .

The following is essentially [10, Theorem IX.9], rephrased to be more easily applied in the present

context and including some of the intermediate results from the proof. If f is twice differentiable near 1
we define

m(f) =
f ′(1)

f(1)
and v(f) =

f ′′(1)

f(1)
+

f ′(1)

f(1)
−
(

f ′(1)

f(1)

)2

.

Theorem 14 (Theorem IX.9 [10]). Let F (u, z) be a function that is bivariate analytic at (u, z) = (0, 0)
and has non-negative coefficients. Assume that F (1, z) is meromorphic in z ≤ r with only a simple pole

at z = ρ for some positive ρ < r. Assume also the following conditions.

(a) Meromorphic perturbation: there exists some ǫ > 0 and r > ρ such that in the domain D =
{|u− 1| < ǫ} × {|z| ≤ r} the function F (u, z) admits the representation

F (u, z) =
B(u, z)

C(u, z)
,

where B(u, z) and C(u, z) are analytic for (u, z) ∈ D, with B(1, ρ) 6= 0. (Thus ρ is a simple zero

of C(1, z).)

(b) Non-degeneracy: one has ∂zC(1, ρ) · ∂u(1, ρ) 6= 0, ensuring the existence of a non-constant ρ(u)
analytic at u = 1, such that C(u, ρ(u)) = 0 and ρ(1) = ρ.

(c) Variability: one has

v

(

ρ(1)

ρ(u)

)

6= 0.

Let Xn be a random variable with probability generating function

pn(u) =
[zn]F (u, z)

[zn]F (1, z)
,

and let Z be a standard normal random variable. Then, for all x ∈ R,

P

(

Xn − E(Xn)
√

V ar(Xn)
≤ x

)

= P(Z ≤ x) +O

(

1√
n

)

.



14 Sam Miner, Douglas Rizzolo, Erik Slivken

Furthermore,

E(Xn) = m

(

ρ(1)

ρ(u)

)

n+O(1) and V ar(Xn) = v

(

ρ(1)

ρ(u)

)

n+O(1).

For the next result, we need the following definition.

Definition 15 (Definition VI.I [10]). Given two number φ and R with R > 1 and 0 < φ < π/2, the open

domain ∆(φ,R) is defined as

∆(φ,R) = {z | |z| < R, z 6= 1, | arg(z − 1)| > φ}.

For a complex number ζ a domain D is a ∆-domain at ζ if there exist φ and R such that D = ζ∆(φ,R).
A function is ∆-analytic if it is analytic on a ∆-domain.

Corollary 16 (Corollary VI.1 [10]). Assume that f(z) is ∆-analytic and

f(z) ∼ (1 − z)−α, as z → 1, z ∈ ∆,

with α /∈ {0,−1,−2, . . .}. Then the coefficients of f satisfy

[zn]f(z) ∼ nα−1

Γ(α)
.
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