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In connection with Fulkerson’s conjecture on cycle covers, Fan and Raspaud proposed a weaker conjecture: For every

bridgeless cubic graph G, there are three perfect matchings M1, M2, and M3 such that M1 ∩ M2 ∩ M3 = ∅. We

call the property specified in this conjecture the three matching intersection property (and 3PM property for short).

We study this property on matching covered graphs. The main results are a necessary and sufficient condition and its

applications to characterization of special graphs, such as the Halin graphs and 4-regular graphs.
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1 Introduction

Fulkerson’s conjecture asserts that every bridgeless cubic graph has six perfect matchings such that each

edge appears in exactly two of them (cf. [2, 4, 6]). If we take three of these six perfect matchings, then

each edge appears in at most two of them. This motivates the following weaker conjecture proposed by

Fan and Raspaud [5]: In every bridgeless cubic graph there exist three perfect matchings M1, M2, and M3

such that M1∩M2 ∩M3 = ∅. For brevity, this conjecture is referred to as the three matching intersection

conjecture or 3PM conjecture.

A graph is said to be matching covered if it is connected and each edge is contained in a perfect match-

ing. Note that every bridgeless cubic graph is matching covered (or 1-extendable in [7]). So we generally

discuss the matching covered graphs below. In a viewpoint of generalization to the 3PM conjecture, we

propose the following.

Definition 1.1. A matching covered graph G is called a 3PM-admissible graph (or G admits the 3PM

property) if there exist three perfect matchings M1, M2, and M3 of G such that M1 ∩M2 ∩M3 = ∅.

Our goal is to characterize 3PM-admissible graphs. Within the realm of cubic graphs, this amounts to

the 3PM conjecture. Many 3PM-admissible cubic graphs have been found to support this conjecture, such

as the 3-edge-colourable cubic graphs (including bipartite graphs, hamiltonian graphs), the cubic graphs

with independent perfect matching polytope P (G) or with low dimension perfect matching polytope (see

[8, 9]). Here, a cubic graph G is 3-edge-colorable if there are three perfect matchings of G which form a

partition of E(G). Some basic cubic graphs are shown in Figure 1, which are 3PM-admissible.
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(a) K4 (b) K3,3 (c) 3-prism B6 (d) B8 (e) Petersen graph

Figure 1. Some important cubic graphs

Furthermore, apart from those cubic graphs, there are more 3PM-admissible matching covered graphs.

For example, a wheel Wn is a cycle Cn with every vertex joining to a single vertex, the hub. When n is

odd, Wn is called an odd wheel, which is matching covered (see Figure 2(a)). The wheels form a basic

family of 3-connected graphs in the sense that every 3-connected graph can be constructed from a wheel

via some kind of operations (see Tutte’s theorem in [2]). When performing an ‘expansion’ at the hub of

a wheel, we can obtain another matching covered graph, called the double wheel. An example is shown

in Figure 2(b). Moreover, the tetrahedron K4, the cube Q3, the dodecahedron, the octahedron and the

icosahedron, which are well-known platonic graphs, are matching covered and the last two are not cubic

[2]. Here the octahedron is shown in Figure 2(c), and the icosahedron is shown in Figure 3. To see that

these graphs are 3PM-admissible, we define the perfect matchings Mi for 1 ≤ i ≤ 3 in Figures 2 and 3,

where Mi is represented by the edges with label i at the edges.
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Figure 2. Examples of 3PM-admissible graphs

We can see from the above examples that in addition to the cubic graphs, there would be many 3PM-

admissible matching covered graphs. In this paper, we consider the characterization of 3PM-admissibility

for matching covered graphs. Especially, we are concerned with several special classes of matching

covered graphs, such as the platonic graphs, wheels, Halin graphs, outerplanar graphs, 4-regular graphs

on small size.
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Figure 3. The icosahedron

The organization of the paper is as follows. In Section 2, we present a necessary and sufficient condition

and its consequences. Section 3 is dedicated to the 4-regular graphs. We give a short summary in Section

4. We shall follow the graph-theoretic terminology and notation of [2].

2 Basic theorems

Throughout the paper, we consider G as a matching covered graph. So G has a perfect matching and has

even number of vertices.

Matching covered graphs have a basic property (see [7]): If G′ results from G by subdividing an

edge with two vertices, then G′ is matching covered if and only if G is matching covered. For this, the

subdivision from G to G′ is called a bisubdivision. A graph results from G by performing several times

of this kind of operations is also called a bisubdivision of G. On the other hand, the inverse operation,

namely, replacing a path of G′ whose length is three and whose internal vertices have degree two in G′

by an edge, is called a bicontraction. The resulting graph obtained from G′ by performing several times

of this kind of operations is also called a bicontraction of G′.

A spanning subgraph G′ of G is called a 2-factor if every vertex of G′ has degree two. We have the

following basic criterion.

Theorem 2.1 A graph G is 3PM-admissible if and only if (1) G has a 2-factor G′ with even components,

or (2) G has a spanning subgraph G′ which is a bisubdivision of a 3-edge-colorable cubic graph.

Proof: If G is 3PM-admissible, then there exist three perfect matchings M1, M2, and M3 such that

M1 ∩M2 ∩M3 = ∅. Consider the spanning subgraph G′ = G[M1 ∪M2 ∪M3]. Note that the maximum

degree of G′ is at most three. If every vertex of G′ has degree two, then G′ is a 2-factor and so each of

its components is a cycle. Since each Mi (1 ≤ i ≤ 3) is a perfect matching, these cycle components

must be (Mi,Mj)-alternating cycles, where 1 ≤ i, j ≤ 3 and i 6= j. Thus they have even number of

edges. Hence (1) holds. Otherwise, G′ has vertices of degree three. If every vertex of G′ has degree

three, then G′ is a cubic graph with edge set M1 ∪ M2 ∪ M3 and so is 3-edge-colorable. If this is not

the case, then G′ has vertices of degree two. Suppose that a vertex u has degree two and it is incident

with two edges xu and uv. Without loss of generality, assume that xu ∈ M1 and uv ∈ M2 ∩M3. Then

v must be incident with an edge vy ∈ M1. Thus xuvy is a path of G′ whose length is three and whose
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internal vertices have degree two in G′. Replacing this path by an edge xy, we get a bicontraction H ′ of

G′. Moreover, (M1 \ {ux, vy}) ∪ {xy}, M2 \ {uv} and M3 \ {uv} are three perfect matchings of H ′

with empty intersection. If there are more vertices of degree two, then we can repeatedly perform this

kind of bicontractions. As a result, we finally obtain a cubic graph H , and G′ is a bisubdivision of H .

Furthermore, H is 3-edge colorable. Hence (2) holds.

Conversely, if (1) holds, then G has a 2-factor G′ with even components. Here, each component of

G′ is an even cycle. So we can define perfect matchings M1 and M2 of G′ by making each even cycle

in G′ to be an (M1,M2)-alternating cycle. Further, let M3 := M2. In this way, we obtain three perfect

matchings M1, M2, and M3 with M1 ∩M2 ∩M3 = ∅.

On the other hand, if (2) holds, then G has a spanning subgraph G′ which is a bisubdivision of a 3-

edge-colorable cubic graph, say H . So H has three perfect matchings which cover E(H) and whose

intersection is empty. We can extend these three perfect matchings to G′ as follows. Suppose that H ′ is a

graph whose edge set is covered by three perfect matchings M1, M2, and M3 with M1 ∩M2 ∩M3 = ∅.

Initially, H ′ := H . Suppose that we have made a bisubdivision of H ′ on xy by subdividing it with two

vertices u and v. The resulting graph is also denoted by H ′. Since M1 ∩M2 ∩M3 = ∅, suppose, without

loss of generality, that xy ∈ M1 and xy /∈ M3. If xy ∈ M1 \ M2, then we delete xy from M1, add

xu, vy into M1, and add uv into M2 ∩ M3. If xy ∈ M1 ∩ M2, then we delete xy from M1 ∩M2, add

xu, vy into M1 ∩M2, and add uv into M3. Then M1 ∪M2 ∪M3 = E(H ′) and M1 ∩M2 ∩M3 = ∅.

By this procedure, we construct three perfect matchings M1, M2, and M3 in G′ (and thus in G) such that

M1 ∪M2 ∪M3 = E(G′) and M1 ∩M2 ∩M3 = ∅. This completes the proof. ✷

In condition (2) of this theorem, the cubic graph H is called the cubic skeleton of G. As we know,

a graph is a minor of G if it can be obtained from G by a sequence of deleting vertices or edges, and

contracting edges. So the cubic skeleton H is in fact a minor of G, a cubic minor.

Corollary 2.2 If G is an odd wheel, a double wheel with even number of vertices, or the octahedron, then

G is 3PM-admissible.

Proof: First, an odd wheel Wn has K4 as its cubic skeleton, that is, it has a spanning subgraph G′ which

is a bisubdivision of K4. Second, a double wheel G has the 3-prism B6 = K3 ×K2 as its cubic skeleton.

Moreover, the octahedron contains a 3-prism B6 as spanning subgraphs (see Figure 2(c)). And it is known

that K4 and B6 in Figure 1 are 3-edge-colorable. The result follows from Theorem 2.1. ✷

Theorem 2.1 also implies the following.

Corollary 2.3 A hamiltonian graph is 3PM-admissible.

The well-known Tutte’s theorem says that every 4-connected planar graph is hamiltonian (see [1]). So

we have the following.

Corollary 2.4 Every 4-connected planar graph is 3PM-admissible.

A graph G is called a Halin graph if it can be drawn in the plane as a tree T , with all non-end-vertices

having minimum degree 3, together with a cycle C passing through the end-vertices of T . Since Halin

graphs are hamiltonian (see Exercise 10.2.4 of [2]), we have the following.

Corollary 2.5 Every Halin graph is 3PM-admissible.
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As we know, the dodecahedral is hamiltonian. Moreover, the icosahedron is hamiltonian. In fact, the

edges with labels 1 and 2 in Figure 3 constitute a Hamilton cycle. An outerplanar graph (it has a planar

embedding in which all vertices lie on the boundary of its outer face) is also hamiltonian. So they are

3PM-admissible.

Let us see one more example taken from [8] whose perfect matching polytope is independent, as shown

in Figure 4. It is hamiltonian (the edges with labels 1 and 2 in Figure 4 constitute a Hamilton cycle). Also,

it contains a 3-prism B6 as its cubic skeleton.
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Figure 4. A 3-connected graph with independent polytope

3 4-regular graphs

Corollary 3.4.3 in [7] says that if a graph is (k − 1)-edge-connected, k-regular, and has even number

of vertices, then it is matching covered. A 3-connected 4-regular graph is 3-edge-connected and so is

matching covered. Recall Jackson’s theorem: Every 2-connected k-regular graph on at most 3k vertices

is hamiltonian (see [3]). From this, we have an observation as follows.

Proposition 3.1 Every 3-connected 4-regular graph G on at most 12 even number of vertices is 3PM-

admissible.

For example, the octahedron in Figure 2(c) is 4-regular and has 6 vertices. So it is 3PM-admissible.

The following is a stronger result.

Theorem 3.2 Every 3-connected 4-regular simple graph G on at most 18 even number of vertices is

3PM-admissible.

Proof: Let M1 be a perfect matching of G and let G′ = G − M1. Then G′ is a cubic subgraph of G.

If G′ has a perfect matching M2, then G has two disjoint perfect matchings M1 and M2. Thus G is

3PM-admissible. In the following, assume that G′ has no perfect matchings.

We shall apply Gallai-Edmonds structure theorem (see [7]) to G′. Denote by D the set of all vertices

not covered by at least one maximum matching of G′, by A the set of neighbours of D in V (G′) \D, and

by C the set of all other vertices of G′. Then

(a) each component of G′[D] is factor critical;

(b) G′[C] has a perfect matching;

(c) any maximum matching in G′ contains a perfect matching in G′[C] and near-perfect matchings of

components of G′[D], and matches all vertices of A to distinct components of G′[D].
Here, a graph H is factor critical if H − v has a perfect matching for each v ∈ V (H), and a matching

of H is near perfect if it covers all but one vertex in H .
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Let D′ be the vertex set of a component of G′[D], and let t be the number of edges in G′ connecting

A and D′. Then G′[D′] is factor critical, and so |D′| is odd. Recall that G′ is a cubic graph. We have

3|D′| = 2|E(G′[D′])| + t. This implies that t is odd. Since G is simple, if t = 1, then |D′| ≥ 5. Let

ω1 denote the number of components of G′[D] each of which is connected by only one edge to A. Let

ω denote the number of components of G′[D]. Since G′ has no perfect matchings, by Gallai-Edmonds

structure theorem, we have ω > |A|. Since the number of vertices of G′ is even, ω and |A| have the same

parity, and so ω ≥ |A|+ 2.

When |A| = 1, we have ω ≥ 3. Since G′ is cubic, we have ω = ω1 = 3. Let u be the vertex in A,

G1, G2, G3 the three components in G′[D], and x ∈ V (G1), y ∈ V (G2), z ∈ V (G3) three neighbours of

u. Then |V (Gi)| ≥ 5, i = 1, 2, 3. Moreover, by the definition of C, in this case G′ is the disjoint union of

G′[C] and G′[A ∪D], both of which are cubic.

If C = ∅, then G′ − u = G′[D] (see an example in Figure 5). Since G is 3-connected, G − u
is connected. Thus there exist at least two edges of M1, say e and f , which connect the components

G1, G2, G3. Suppose, without loss of generality, that e connects G1 and G2 and f connects G1 and G3.

Let G∗ = G′ + e + f . Since G1, G2, G3 are factor-critical, there exists a perfect matching M2 of G∗

containing {e, uz}, and a perfect matchingM3 of G∗ containing {f, uy}. Then M1, M2, and M3 are three

perfect matchings of G such that M1 ∩M2 = {e}, M1 ∩M3 = {f}, and M2 ∩M3 may be nonempty.

However, M1 ∩M2 ∩M3 = ∅. Therefore, G is 3PM-admissible.

If G is not 3PM-admissible, then either |A| = 1 and C 6= ∅ or |A| ≥ 2. For the former case, noting

that G′[C] is cubic and G is simple, there are at least four vertices in C. Thus |V (G)| = |V (G′)| =

|C|+ |A|+
∑

3

i=1
|V (Gi)| ≥ 20. For the latter case, when |A| = 2, we have ω ≥ 4. Combining the fact

that the number of edges in G′ connecting A and a component of G′[D] is odd and G′ is a cubic graph,

we have ω1 ≥ 3. If ω1 = 3, then ω = 4 and there is a component D′′ of G′[D] such that there are three

edges in G′ connecting A and D′′. Since G′ is simple and |D′′| is odd, we have |D′′| ≥ 3. So |V (G)| ≥
|A| + |D′′| + 5ω1 ≥ 20. If ω1 ≥ 4, then |V (G)| ≥ |A| + 5ω1 ≥ 22. When |A| ≥ 3, we have ω ≥ 5.

By counting the number of edges which connect A and D in two ways, we have ω1 + 3(ω − ω1) ≤ 3|A|.
Thus ω1 ≥ 3

2
(ω − |A|) ≥ 3, and so |V (G)| ≥ |A|+ (ω − ω1) + 5ω1 = |A|+ ω + 4ω1 ≥ 20. Therefore,

a graph with at most 18 vertices admits the 3PM property. ✷
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Figure 5. Cubic graph without perfect matching

4 Concluding remarks

To look for 3PM-admissible graphs, traversing from cubic graphs to matching covered graphs, we can see

some connections and some new features. Many problems remain to be investigated.
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• The concept of 3PM-admissible graphs is a generalization (relaxation) of that of the hamiltonian

graphs. At the beginning we introduce five polyhedral graphs, the platonic graphs. They are all hamilto-

nian. In general, a graph is polyhedral if and only if it is planar and 3-connected (see [1]). Tutte presented

a counterexample to show that a polyhedral graph is not necessarily hamiltonian. However, this coun-

terexample is cubic and is 3PM-admissible. So it is not a counterexample for the statement that every

polyhedral graph is 3PM-admissible. We can ask if this statement holds true.

• Jackson’s theorem asserts that every 2-connected 4-regular graph on at most 12 vertices is hamil-

tonian. Further, Jackson conjectured that every 3-connected 4-regular graph on at most 16 vertices is

hamiltonian (see [3]). Now, we obtain an easier assertion that every 3-connected 4-regular graph on at

most 18 vertices is 3PM-admissible. Can we further improve this upper bound?

• For a cubic graph G, we have proved that if the perfect matching polytope is independent, then G
is 3PM-admissible. In Figure 4, we show a 3-connected graph with independent polytope to be 3PM-

admissible. Can we prove this for every 3-connected graph?
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