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In connection with Fulkerson’s conjecture on cycle covers, Fan and Raspaud proposed a weaker conjecture: For every
bridgeless cubic graph G, there are three perfect matchings My, M2, and M3 such that My N Mz N M3 = (). We
call the property specified in this conjecture the three matching intersection property (and 3PM property for short).
We study this property on matching covered graphs. The main results are a necessary and sufficient condition and its
applications to characterization of special graphs, such as the Halin graphs and 4-regular graphs.
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1 Introduction

Fulkerson’s conjecture asserts that every bridgeless cubic graph has six perfect matchings such that each
edge appears in exactly two of them (cf. [2, 4, 6]). If we take three of these six perfect matchings, then
each edge appears in at most two of them. This motivates the following weaker conjecture proposed by
Fan and Raspaud [5]: In every bridgeless cubic graph there exist three perfect matchings M, My, and M3
such that My N Ms N M3 = (). For brevity, this conjecture is referred to as the three matching intersection
conjecture or 3PM conjecture.

A graph is said to be matching covered if it is connected and each edge is contained in a perfect match-
ing. Note that every bridgeless cubic graph is matching covered (or 1-extendable in [7]). So we generally
discuss the matching covered graphs below. In a viewpoint of generalization to the 3PM conjecture, we
propose the following.

Definition 1.1. A matching covered graph G is called a 3PM-admissible graph (or G admits the 3PM
property) if there exist three perfect matchings My, Ms, and M3 of G such that My N My N M3z = ().

Our goal is to characterize 3PM-admissible graphs. Within the realm of cubic graphs, this amounts to
the 3PM conjecture. Many 3PM-admissible cubic graphs have been found to support this conjecture, such
as the 3-edge-colourable cubic graphs (including bipartite graphs, hamiltonian graphs), the cubic graphs
with independent perfect matching polytope P(G) or with low dimension perfect matching polytope (see
[8, 9]). Here, a cubic graph G is 3-edge-colorable if there are three perfect matchings of G which form a
partition of E(G). Some basic cubic graphs are shown in Figure 1, which are 3PM-admissible.
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(a) K4 (b) K33 (c) 3-prism Bsg (d) Bs (e) Petersen graph

Figure 1. Some important cubic graphs

Furthermore, apart from those cubic graphs, there are more 3PM-admissible matching covered graphs.
For example, a wheel W, is a cycle C,, with every vertex joining to a single vertex, the hub. When n is
odd, W, is called an odd wheel, which is matching covered (see Figure 2(a)). The wheels form a basic
family of 3-connected graphs in the sense that every 3-connected graph can be constructed from a wheel
via some kind of operations (see Tutte’s theorem in [2]). When performing an ‘expansion’ at the hub of
a wheel, we can obtain another matching covered graph, called the double wheel. An example is shown
in Figure 2(b). Moreover, the tetrahedron K4, the cube @3, the dodecahedron, the octahedron and the
icosahedron, which are well-known platonic graphs, are matching covered and the last two are not cubic
[2]. Here the octahedron is shown in Figure 2(c), and the icosahedron is shown in Figure 3. To see that
these graphs are 3PM-admissible, we define the perfect matchings M; for 1 < ¢ < 3 in Figures 2 and 3,
where M; is represented by the edges with label ¢ at the edges.
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(a) Wheel (b) Double wheel (c) Octahedron

Figure 2. Examples of 3PM-admissible graphs

We can see from the above examples that in addition to the cubic graphs, there would be many 3PM-
admissible matching covered graphs. In this paper, we consider the characterization of 3PM-admissibility
for matching covered graphs. Especially, we are concerned with several special classes of matching
covered graphs, such as the platonic graphs, wheels, Halin graphs, outerplanar graphs, 4-regular graphs
on small size.
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Figure 3. The icosahedron

The organization of the paper is as follows. In Section 2, we present a necessary and sufficient condition
and its consequences. Section 3 is dedicated to the 4-regular graphs. We give a short summary in Section
4. We shall follow the graph-theoretic terminology and notation of [2].

2 Basic theorems

Throughout the paper, we consider GG as a matching covered graph. So G has a perfect matching and has
even number of vertices.

Matching covered graphs have a basic property (see [7]): If G’ results from G by subdividing an
edge with two vertices, then G’ is matching covered if and only if G is matching covered. For this, the
subdivision from G to G’ is called a bisubdivision. A graph results from G by performing several times
of this kind of operations is also called a bisubdivision of G. On the other hand, the inverse operation,
namely, replacing a path of G’ whose length is three and whose internal vertices have degree two in G’
by an edge, is called a bicontraction. The resulting graph obtained from G’ by performing several times
of this kind of operations is also called a bicontraction of G.

A spanning subgraph G’ of G is called a 2-factor if every vertex of G’ has degree two. We have the
following basic criterion.

Theorem 2.1 A graph G is 3PM-admissible if and only if (1) G has a 2-factor G’ with even components,
or (2) G has a spanning subgraph G' which is a bisubdivision of a 3-edge-colorable cubic graph.

Proof: If GG is 3PM-admissible, then there exist three perfect matchings M;, My, and Mjs such that
My N My N M3 = (). Consider the spanning subgraph G’ = G[M; U M> U M3]. Note that the maximum
degree of G is at most three. If every vertex of G’ has degree two, then G’ is a 2-factor and so each of
its components is a cycle. Since each M; (1 < 7 < 3) is a perfect matching, these cycle components
must be (M;, M;)-alternating cycles, where 1 < ¢,j < 3 and ¢ # j. Thus they have even number of
edges. Hence (1) holds. Otherwise, G’ has vertices of degree three. If every vertex of G’ has degree
three, then G’ is a cubic graph with edge set M7 U My U M3 and so is 3-edge-colorable. If this is not
the case, then G’ has vertices of degree two. Suppose that a vertex u has degree two and it is incident
with two edges zu and uv. Without loss of generality, assume that xu € M; and uv € My N Ms. Then
v must be incident with an edge vy € M;. Thus zuvy is a path of G’ whose length is three and whose
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internal vertices have degree two in G’. Replacing this path by an edge xy, we get a bicontraction H' of
G'. Moreover, (M \ {uz,vy}) U {ay}, My \ {uv} and M3 \ {uv} are three perfect matchings of H’
with empty intersection. If there are more vertices of degree two, then we can repeatedly perform this
kind of bicontractions. As a result, we finally obtain a cubic graph H, and G’ is a bisubdivision of H.
Furthermore, H is 3-edge colorable. Hence (2) holds.

Conversely, if (1) holds, then G has a 2-factor G’ with even components. Here, each component of
G’ is an even cycle. So we can define perfect matchings M; and M> of G’ by making each even cycle
in G’ to be an (M7, Mo)-alternating cycle. Further, let M3 := M>. In this way, we obtain three perfect
matchings My, Ms, and M3 with My N My N M3z = (.

On the other hand, if (2) holds, then G has a spanning subgraph G’ which is a bisubdivision of a 3-
edge-colorable cubic graph, say H. So H has three perfect matchings which cover E(H) and whose
intersection is empty. We can extend these three perfect matchings to G’ as follows. Suppose that H' is a
graph whose edge set is covered by three perfect matchings My, Ms, and M3 with My N Me N M3 = ().
Initially, H' := H. Suppose that we have made a bisubdivision of H’ on xy by subdividing it with two
vertices v and v. The resulting graph is also denoted by H’. Since M; N My N M3 = (), suppose, without
loss of generality, that xy € M; and 2y ¢ Ms. If zy € M; \ Ms, then we delete xy from M, add
xu, vy into M7, and add uv into My N Ms. If xy € My N M, then we delete xy from My N Ms, add
xu, vy into My N Ms, and add v into M3. Then M; U My U M3 = E(H') and My N My N M3 = ().
By this procedure, we construct three perfect matchings My, Mo, and M3 in G’ (and thus in G) such that
My U My U M3 = E(G') and My N My N M3 = (. This completes the proof. O

In condition (2) of this theorem, the cubic graph H is called the cubic skeleton of G. As we know,
a graph is a minor of G if it can be obtained from G by a sequence of deleting vertices or edges, and
contracting edges. So the cubic skeleton H is in fact a minor of G, a cubic minor.

Corollary 2.2 If G is an odd wheel, a double wheel with even number of vertices, or the octahedron, then
G is 3PM-admissible.

Proof: First, an odd wheel W, has K as its cubic skeleton, that is, it has a spanning subgraph G’ which
is a bisubdivision of K. Second, a double wheel G has the 3-prism Bg = K3 x K> as its cubic skeleton.
Moreover, the octahedron contains a 3-prism By as spanning subgraphs (see Figure 2(c)). And it is known
that K4 and Bg in Figure 1 are 3-edge-colorable. The result follows from Theorem 2.1. |

Theorem 2.1 also implies the following.
Corollary 2.3 A hamiltonian graph is 3PM-admissible.

The well-known Tutte’s theorem says that every 4-connected planar graph is hamiltonian (see [1]). So
we have the following.

Corollary 2.4 Every 4-connected planar graph is 3PM-admissible.

A graph G is called a Halin graph if it can be drawn in the plane as a tree 7', with all non-end-vertices
having minimum degree 3, together with a cycle C' passing through the end-vertices of 7. Since Halin
graphs are hamiltonian (see Exercise 10.2.4 of [2]), we have the following.

Corollary 2.5 Every Halin graph is 3PM-admissible.
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As we know, the dodecahedral is hamiltonian. Moreover, the icosahedron is hamiltonian. In fact, the
edges with labels 1 and 2 in Figure 3 constitute a Hamilton cycle. An outerplanar graph (it has a planar
embedding in which all vertices lie on the boundary of its outer face) is also hamiltonian. So they are
3PM-admissible.

Let us see one more example taken from [8] whose perfect matching polytope is independent, as shown
in Figure 4. It is hamiltonian (the edges with labels 1 and 2 in Figure 4 constitute a Hamilton cycle). Also,
it contains a 3-prism Bg as its cubic skeleton.

Figure 4. A 3-connected graph with independent polytope

3 4-regular graphs

Corollary 3.4.3 in [7] says that if a graph is (k — 1)-edge-connected, k-regular, and has even number
of vertices, then it is matching covered. A 3-connected 4-regular graph is 3-edge-connected and so is
matching covered. Recall Jackson’s theorem: Every 2-connected k-regular graph on at most 3k vertices
is hamiltonian (see [3]). From this, we have an observation as follows.

Proposition 3.1 Every 3-connected 4-regular graph G on at most 12 even number of vertices is 3PM-
admissible.

For example, the octahedron in Figure 2(c) is 4-regular and has 6 vertices. So it is 3PM-admissible.
The following is a stronger result.

Theorem 3.2 Every 3-connected 4-regular simple graph G on at most 18 even number of vertices is
3PM-admissible.

Proof: Let M; be a perfect matching of G and let G’ = G — M. Then G’ is a cubic subgraph of G.
If G’ has a perfect matching Mo, then G has two disjoint perfect matchings M; and M,. Thus G is
3PM-admissible. In the following, assume that G’ has no perfect matchings.

We shall apply Gallai-Edmonds structure theorem (see [7]) to G’. Denote by D the set of all vertices
not covered by at least one maximum matching of G’, by A the set of neighbours of D in V(G’) \ D, and
by C the set of all other vertices of G’. Then

(a) each component of G'[D] is factor critical;

(b) G'[C] has a perfect matching;

(¢) any maximum matching in G’ contains a perfect matching in G’[C] and near-perfect matchings of
components of G’[ D], and matches all vertices of A to distinct components of G’'[D].

Here, a graph H is factor critical if H — v has a perfect matching for each v € V(H), and a matching
of H is near perfect if it covers all but one vertex in H.
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Let D’ be the vertex set of a component of G’[D], and let ¢ be the number of edges in G’ connecting
A and D’. Then G'[D'] is factor critical, and so |D’| is odd. Recall that G’ is a cubic graph. We have
3|D’'| = 2|E(G’'[D’])| + t. This implies that ¢ is odd. Since G is simple, if ¢ = 1, then |D’| > 5. Let
w1 denote the number of components of G’[D] each of which is connected by only one edge to A. Let
w denote the number of components of G'[D]. Since G’ has no perfect matchings, by Gallai-Edmonds
structure theorem, we have w > |A|. Since the number of vertices of G’ is even, w and | A| have the same
parity, and so w > |A| + 2.

When |A| = 1, we have w > 3. Since G’ is cubic, we have w = w; = 3. Let u be the vertex in A,
G1, G2, G3 the three components in G'[D], and z € V(G1),y € V(G2), z € V(G3) three neighbours of
u. Then |V(G;)| > 5,4 = 1,2, 3. Moreover, by the definition of C, in this case G’ is the disjoint union of
G'[C] and G'[A U D], both of which are cubic.

If C = (), then @ — u = G'[D] (see an example in Figure 5). Since G is 3-connected, G — u
is connected. Thus there exist at least two edges of Mj, say e and f, which connect the components
G1, G2, Gs. Suppose, without loss of generality, that e connects G; and G and f connects (G; and Gi.
Let G* = G’ + e + f. Since Gy, Go, G3 are factor-critical, there exists a perfect matching M, of G*
containing {e, uz}, and a perfect matching M3 of G* containing { f, uy}. Then M7, M>, and M3 are three
perfect matchings of G such that M; N My = {e}, M1 N M3 = {f}, and M> N M3 may be nonempty.
However, M1 N My N Mz = (). Therefore, G is 3PM-admissible.

If G is not 3PM-admissible, then either |A| = 1 and C' # 0 or |A| > 2. For the former case, noting
that G’[C] is cubic and G is simple, there are at least four vertices in C. Thus |V(G)| = |V(G')| =
|C] + |Al + 2?21 |V (G;)| > 20. For the latter case, when |A| = 2, we have w > 4. Combining the fact
that the number of edges in G’ connecting A and a component of G'[D] is odd and G’ is a cubic graph,
we have wy > 3. If w; = 3, then w = 4 and there is a component D" of G’[D] such that there are three
edges in G’ connecting A and D”. Since G’ is simple and | D”'| is odd, we have |D"| > 3. So |V (G)| >
|A| + |D”| + 5wy > 20. If wy > 4, then |V(G)| > |A| 4+ 5wi > 22. When |A| > 3, we have w > 5.
By counting the number of edges which connect A and D in two ways, we have w1 + 3(w — wy) < 3| AJ.
Thus wy > 3(w — |A]) > 3,and so |V (G)| > |A] + (w — w1) + 5wy = |A] + w + 4w > 20. Therefore,

a graph with at most 18 vertices admits the 3PM property. O
G1
Y z
G2 Gs

Figure 5. Cubic graph without perfect matching

4 Concluding remarks

To look for 3PM-admissible graphs, traversing from cubic graphs to matching covered graphs, we can see
some connections and some new features. Many problems remain to be investigated.
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e The concept of 3PM-admissible graphs is a generalization (relaxation) of that of the hamiltonian
graphs. At the beginning we introduce five polyhedral graphs, the platonic graphs. They are all hamilto-
nian. In general, a graph is polyhedral if and only if it is planar and 3-connected (see [1]). Tutte presented
a counterexample to show that a polyhedral graph is not necessarily hamiltonian. However, this coun-
terexample is cubic and is 3PM-admissible. So it is not a counterexample for the statement that every
polyhedral graph is 3PM-admissible. We can ask if this statement holds true.

e Jackson’s theorem asserts that every 2-connected 4-regular graph on at most 12 vertices is hamil-
tonian. Further, Jackson conjectured that every 3-connected 4-regular graph on at most 16 vertices is
hamiltonian (see [3]). Now, we obtain an easier assertion that every 3-connected 4-regular graph on at
most 18 vertices is 3PM-admissible. Can we further improve this upper bound?

e For a cubic graph (G, we have proved that if the perfect matching polytope is independent, then G
is 3PM-admissible. In Figure 4, we show a 3-connected graph with independent polytope to be 3PM-
admissible. Can we prove this for every 3-connected graph?
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