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We consider subshifts of the full shift of all binary bi-infinite sequences. On the one hand, the topological entropy
of any subshift with computably co-enumerable language is aright-computable real number between0 and1. We
show that, on the other hand, any right-computable real number between0 and1, whether computable or not, is the
entropy of some subshift with even polynomial time decidable language. In addition, we show that computability of
the entropy of a subshift does not imply any kind of computability of the language of the subshift.
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1 Introduction
An important numerical quantity associated with a dynamical system is its topological entropy. A natural
question is then: under what circumstances can one compute the topological entropy of a dynamical
systems? While for specific types of dynamical systems, one can often give an algorithm, for examples
see, e.g., Milnor (2002), there are also a number of negativeresults, e.g., for cellular automata by Hurd
et al. (1992), for piecewise affine maps by Koiran (2001), andfor shift spaces by Simonsen (2006) as
well as by the second author, Spandl (2007). Shift spaces arean important, standard class of dynamical
systems. For an introduction the reader is referred to Lind and Marcus (1995). They are closed, shift
invariant subspaces of the space of bi-infinite sequences over some alphabet, usually assumed to be finite.
For simplicity we will consider only subshifts of the space of all bi-infinite binary sequences. Whenever
we speak about ashift spaceor simply ashift in this paper, we will always mean a closed, shift invariant
subspace of the space of bi-infinite binary sequences.

As is well known, for simple types of shifts one can compute the entropy, for example for shifts that
can be defined by a finite set of forbidden words, and also for the larger class of so-called sofic shifts;
see Simonsen (2006); Spandl (2007). Furthermore, Simonsen(2005) obtained computability results for
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the entropy ofβ-shifts, Spandl (2007), as well as Hertling and Spandl (2008), for the entropy ofS-gap
shifts, and Spandl (2007) also for the entropy of shifts having the specification property. Hochman and
Meyerovitch (2007) gave a computability-theoretic characterization similar to our main result of the set
of real numbers that are the entropy of a two-dimensional shift of finite type.

A natural way of describing a general shift is via its language, that is the set of all finite strings that
appear as substrings of elements of the shift space. Simonsen (2006) and Spandl (2007) have shown
that the entropy is not uniformly computable with respect tothe language of the shift. To be precise,
Simonsen (2006) has shown that there is no Turing machine which, given a decision algorithm for the
language of some shift with decidable language, is able to compute the entropy of the shift with arbitrary
precision. Spandl (2007) has shown that there is no oracle Turing machine which, given the language of
some shift via an oracle, is able to compute the entropy of theshift with arbitrary precision. Simonsen
(2006) posed the question whether there exists a shift with decidable language whose entropy is a non-
computable number, and noted that “then the results in this paper related to uncomputability would follow
immediately”. In this paper, we construct such a shift. In fact we will show more. The second author,
Spandl (2007), showed that, given an enumeration of the complement of the language of some shift space,
one can approximate the entropy effectively from the right.Hence, if the complement of the language
of a nonempty shift is computably enumerable then the entropy of the shift is a right-computable real
number (between0 and1). In particular, the entropy of any nonempty shift with decidable language is a
right-computable real number between0 and1. We will show that conversely any right-computable real
number between0 and1 is the entropy of a shift with decidable language. In fact, itis even the entropy of
an irreducible shift with a polynomial time decidable language. Since the class of right-computable real
numbers between0 and1 is known to be strictly larger than the class of computable real numbers between
0 and1, this shows that there exist irreducible shifts with polynomial time decidable language that have
non-computable entropy.

In the following section, we give some basic definitions about shifts, forbidden words, and the language
of a shift. Note that another natural way of representing a shift space is by giving a so-called set of
forbidden words for it. In view of the question whether, given some information about a shift, one can
compute its entropy, it is of course interesting to have a clear picture of the relation between different kinds
of information about a shift. Here, we analyze the relation between two different kinds of information
about a general shift, namely: language or set of forbidden words, and strengthen the observation by
Simonsen (2006) that knowing the language of a shift is better than knowing only a set of forbidden
words for the shift. Then we define the topological entropy. We observe that the obstacle to computing
the topological entropy of a shift from its language is a topological one. Then we state the main result
of the paper. We finish the section by considering the inversequestion: if the topological entropy of
a shift is computable, does this imply that the language is decidable, at least if the complement of the
language is known to be c.e.? We show that this is not the case.On the contrary, we show that there exist
shifts with topological entropy zero whose language is of any desired degree of computability-theoretic
complexity. In the penultimate section, we prove the main result. We conclude with a summary and some
open problems.

2 Shifts, Sets of Forbidden Words, and Languages of Shifts
We writeN = {0, 1, 2, . . .} for the set of natural numbers, i.e., of non-negative integers,Σ = {0, 1} for
thebinary alphabet, Σ∗ for the set of all finite binary strings,λ for the empty string,Σn for the set of all
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binary strings of lengthn, for anyn ∈ N. A subset ofΣ∗ is called (binary)language. A subset ofΣ∗

or of N is calledcomputably co-enumerable(co-c.e.) if its complement is computably enumerable (c.e.).
Furthermore, we writeΣω := {p | p : N → Σ} for the set of all one-way infinite binary sequences, and
ΣZ := {p | p : Z → Σ} for the set of all bi-infinite binary sequences. Forp ∈ ΣZ andn ∈ Z, we write
p[n] for the value ofp on inputn, andp[m . . . n] := p[m] . . . p[n], if m ≤ n, andp[m . . . n] := λ, if
m > n. Forw ∈ Σ∗ we setwΣω := {p ∈ Σω | w is a prefix ofp} and denote by|w| the length ofw.
A string w ∈ Σ∗ is asubstringof somep ∈ ΣZ if there is ann ∈ Z with w = p[n + 1 . . . n + |w|]. For
any setsX andY , we writef :⊆ X → Y for a function whose domaindom(f) is a subset ofX and
whose range is a subset ofY . In casedom(f) = X we may writef : X → Y . Endowed with the product
topology of the discrete topology onΣ, bothΣω andΣZ are compact topological spaces. The function
σ : ΣZ → ΣZ defined by

σ(p)[n] := p[n + 1] for p ∈ ΣZ andn ∈ Z

is called theshift map. It is a homeomorphism.

Definition 1 We call a subsetX ⊆ ΣZ ashiftor ashift spaceor asubshiftof ΣZ if it is closed and satisfies
σ(X) = X .

Examples of shift spaces are easily obtained.

Lemma 2 For an arbitrary setF ⊆ Σ∗ the setXF ⊆ ΣZ defined by

XF := {p ∈ ΣZ | no string inF is a substring ofp}

is a shift space.

Proof: See (Lind and Marcus, 1995, Definition 1.2.1 and Theorem 6.1.21). ✷

Definition 3 If F ⊆ Σ∗ is a set withX = XF , thenF is called aset of forbidden words forX .

This poses the question whether every shift space can be defined via a set of forbidden words, i.e.,
whether for every shift spaceX there is a setF with X = XF . The answer is yes, as can be seen via the
“language” of the shift space.

Definition 4 For any setX ⊆ ΣZ the set

L(X) := {w ∈ Σ∗ | w is a substring of somep ∈ X}

is thelanguageof X .

For any shift spaceX , the complementL(X)c of L(X) is a set of forbidden words forX , i.e.,X =
XL(X)c (indeed,X ⊆ XL(X)c is clear, andXL(X)c ⊆ X follows from the assumption thatX is closed).
In fact, it is the largest forbidden set of words forX since any other set of forbidden words forX is
obviously a subset ofL(X)c.

Example 5 For the shift spaceX := {0Z} containing only the bi-infinite sequence containing only0’s,
one seesL(X) = {0}∗, hence,L(X)c = {0, 1}∗ \ {0}∗. Any setF with {1} ⊆ F ⊆ {0, 1}∗ \ {0}∗ is a
set of forbidden words forX . Also the sets{10, 11} and{01, 11} and so on are sets of forbidden words
for X .
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A particularly simple class of shifts are those that possessa finite set of forbidden words. But in
general, a shift does not need to have a finite set of forbiddenwords. So, if one wishes to compute
something associated with a shift, e.g., its entropy, one needs some kind of description of the shift as input
for the algorithm. What is a natural description of a generalshift X? One might assume that one knows
the characteristic sequence of either a set of forbidden words forX or of L(X). Here thecharacteristic
sequenceχS of a setS ⊆ Σ∗ is the binary sequenceχS ∈ Σω defined by

χS(n) :=

{

1 if ν(n) ∈ S,

0 if ν(n) 6∈ S

where the bijectionν : N → Σ∗ is defined by the length-lexicographical ordering: order all strings inΣ∗

according to their length (short strings first), and stringsof the same length in alphabetical order.
We have just seen that, given the language of a shift, one can easily compute a set of forbidden words

for the shift: just take the complement of the language of theshift. But (Simonsen, 2006, Remark 17)
showed that there is no Turing machine which, given a decision algorithm for some decidable setF ⊆ Σ∗,
computes a decision algorithm for the languageL(XF ). The argument used by Simonsen in order to
prove this statement is actually a topological one: the function mapping the characteristic sequence of an
arbitrary forbidden set of a shift to the characteristic sequence of its language is not continuous and can
therefore not be computable. Note that any functionH :⊆ Σω → Σω that can be computed by a (Type-2)
Turing machine is continuous; see, e.g., Weihrauch (2000).

Proposition 6 The functionG : Σω → Σω, defined byG(χF ) := χL(XF ) is not continuous.

Proof: A point of discontinuity is for example the sequence0ω = χ∅. Note thatG(0ω) = 1ω because
L(X∅) = L(ΣZ) is the whole setΣ∗. If G were continuous in0ω, there should be a finite prefix0n of 0ω

such thatG(0nΣω) ⊆ 1Σω. But if F is the set of all binary strings of length greater thanlog2(n) thenχF

also starts with0n, butXF = ∅, henceL(X) = ∅, henceχL(X) = 0ω. ✷

We will strengthen Simonsen’s remark (Simonsen, 2006, Remark 17) in the following way: in Corol-
lary 11 we will see that there exists a decidable setF such thatL(XF ) is not decidable. That means
that there exists computable input for the functionG in Proposition 6 which is mapped by this function
to non-computable output. Note that any computable function H :⊆ Σω → Σω maps any computable
binary sequencep ∈ domH to a computable binary sequence; see, e.g., Weihrauch (2000). Before we
construct such a computable input, let us clarify what one can compute when one knows (an oracle for)
some setF , i.e., if χF for some setF is given. We will see that one can still enumerateL(XF )c. In fact
in order to be able to do that, it is sufficient to be able to enumerateF . We formulate only a non-uniform
(not involving oracle Turing machines) version of this statement.

Proposition 7 If F ⊆ Σ∗ is a computably enumerable set, thenL(XF )c is computably enumerable as
well.

Proof: If a setF is computably enumerable, then also the set of all strings inΣ∗ that have a substring in
F is computably enumerable. The assertion follows now from the following lemma. ✷

Lemma 8 Fix some setF ⊆ Σ∗. A stringv is in L(XF )c if, and only if, there exists somen ∈ N such
that each of the22n stringsuvw with u, w ∈ Σn has a substring inF .
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Proof: For a stringv we setKv := {p ∈ ΣZ | v = p[0 . . . |v| − 1]}. A string v is in L(XF )c if, and
only if, everyp ∈ Kv contains an element ofF as a substring. And this is the case if, and only if, for any
p ∈ Kv there is somen ∈ N such thatp[−n . . . |v|−1+n] contains an element ofF as a substring. Now,
the claim follows easily from the compactness of the setKv, for anyv. ✷

Especially, if a shiftX has a decidable set of forbidden words, thenL(X)c must be a c.e. set. The
converse is true as well.

Theorem 9 If X is a shift such thatL(X)c is c.e., then there exists a polynomial time decidable set
F ⊆ Σ∗ with X = XF .

Proof: This is proved by a padding argument. LetX be a shift such thatL(X)c is computably enumer-
able. LetM be a Turing machine that halts on inputv ∈ Σ∗ after finitely many steps if, and only if,
v ∈ L(X)c. Let h :⊆ Σ∗ → N be defined by

h(v) :=

{

number of steps untilM halts on inputv if v ∈ L(X)c,

undefined ifv ∈ L(X).

We define a setF ⊆ Σ∗ as follows:

F :=
⋃

v∈L(X)c

{vw | w ∈ {0, 1}h(v)}.

We claim that this setF has the desired properties.
“X = XF ”: This is clear.
“F is decidable in polynomial time”: A Turing machine that decides for a given stringx ∈ Σ∗ in time

polynomial in|x| whetherx belongs toF or not can work for example as follows. For every prefixv of x
it startsM with inputv, letsM run for at most|x| − |v| + 1 steps and acceptsx if, and only if, there is a
prefixv of x such thatM stops on inputv after exactly|x| − |v| steps. ✷

Corollary 10 For a shiftX the following conditions are equivalent:

1. L(X)c is computably enumerable.

2. X has a c.e. set of forbidden words.

3. X has a polynomial time decidable set of forbidden words.

Proof: “3 ⇒ 2”: This is trivial.
“2 ⇒ 1”: This is Proposition 7.
“1 ⇒ 3”: This is Theorem 9. ✷

Now we easily conclude that there is computable input for thefunctionG in Proposition 6 which is
mapped byG to non-computable output.

Corollary 11 There exists a polynomial time decidable setF ⊆ Σ∗ such thatL(XF ) is not decidable.
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Proof: In order to derive this from Theorem 9 it is sufficient to observe that there exist shifts whose
language is co-c.e., but not decidable. For an infinite setS ⊆ N, define

F (S) := {10n1 | n ∈ N \ S}.

Fix some co-c.e., but not decidable setS ⊆ N (such a set must be infinite). ThenN \ S andF (S) are c.e.
and not decidable. By Proposition 7 alsoL(XF (S))

c is computably enumerable. ButL(XF (S))
c is not

decidable because a string of the form10n1 is inL(XF (S))
c if, and only if,n ∈ N \ S. ✷

Remark 12 For an infinite setS ⊆ N, the shiftXF (S) defined in the proof is calledS-gap shift(Lind and
Marcus, 1995, Example 1.2.6). For a finite, nonempty setS ⊆ N, the shiftXF (S) is calledS-gap shift
where

F (S) := {10n1 | n ∈ N \ S} ∪ {01+max(S)};

see (Lind and Marcus, 1995, Example 1.2.6).

Corollary 11 strengthens Simonsen’s observation (Simonsen, 2006, Remark 17) that there can be no
Turing machine which, given a decision algorithm for any decidable setF ⊆ Σ∗, computes a decision
algorithm forL(XF ).

3 The Entropy of Shifts with Decidable or with Computably Co-
Enumerable Language

The following statement is Proposition 4.1.8 in Lind and Marcus (1995).

Proposition 13 If X is a shift, then

lim
n→∞

log2 |L(X) ∩ Σn|

n

exists, and equals

inf
n≥1

log2 |L(X) ∩ Σn|

n

Here we uselog2(0) := −∞.

Definition 14 For a shiftX , the valuehtop(X) := limn→∞
log2 |L(X)∩Σn|

n
is called the(topological)

entropyof X .

The entropy of the empty shift is−∞. In the rest of the paper we will only consider nonempty shifts.
It is clear that the entropy of a nonempty subshift of{0, 1}Z is always a real number between0 and1, i.e.,
a real number in the closed interval[0, 1]. The converse is true as well; one can even restrict oneself to
irreducible shifts.

Definition 15 A shift X is calledirreducible if for any two stringsu, w ∈ L(X) there is a stringv ∈ Σ∗

with uvw ∈ L(X).

The irreducible shifts form an important subclass of shifts; compare Lind and Marcus (1995).
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Proposition 16 1. The entropy of a nonempty shift is a real number in the interval [0, 1].

2. Any real number in[0, 1] is the entropy of a nonempty, irreducible shift.

Proof: The first assertion is clear. The second assertion follows immediately from (Lind and Marcus,
1995, Exercise 4.3.7(d)) where it is stated that every real number in[0, 1] is the entropy of anS-gap shift,
as defined in Remark 12, following (Lind and Marcus, 1995, Example 1.2.6). It is clear that anyS-gap
shift is irreducible. ✷

A different proof of the second statement will be given in thefollowing section. In fact, the proof of
our main result (see below) will show how, given a non-increasing sequence of rational numbers in[0, 1],
one can construct an irreducible shift whose entropy equalsthe limit of this sequence.

Can one compute the entropy of a shift? What kind of information does one need to have about the
shift in order to compute its entropy? By (Spandl, 2007, Theorem 6.3) one can effectively approximate
the entropy from the right if one has an enumeration ofL(X)c. We state a non-uniform version of this
precisely. Therefore, we need the notion of a right-computable real number. We directly define also the
(more basic) notion of a computable real number.

Definition 17 1. A sequence(qn)n∈N of rational numbers iscomputableif there exist three total com-
putable functionss, a, b : N → N with b(n) 6= 0 andqn = (−1)s(n) · a(n)/b(n), for all n.

2. A real numberx is computableif there exists a computable sequence(qn)n∈N of rational numbers
with |x − qn| ≤ 2−n, for all n ∈ N.

3. A real numberx is right-computableif there exists a computable sequence(qn)n∈N of rational
numbers withqn ≥ qn+1 for all n ∈ N (a sequence satisfying this condition will be callednon-
increasing) andx = limn→∞ qn.

Remark 18 Similarly, a real number is calledleft-computableif it is the limit of a computable non-
decreasing sequence of rational numbers. Obviously, a realnumberx is right-computable if, and only if,
−x is left-computable. And a real number is computable if, and only if, it is left-computable and right-
computable. But it is well known that the class of left-computable real numbers is strictly larger than
the class of computable real numbers; the same applies to theclass of right-computable real numbers. If,
e.g.,K ⊆ N is a c.e., but undecidable set, then the number1 −

∑

n∈K 2−(n+1) is a right-computable but
not computable real number between0 and1; see, e.g., Weihrauch (2000). For an overview concerning
left-computable real numbers and other classes of real numbers defined by computability properties, see
Zheng (2002).

Proposition 19 If X is a nonempty shift such thatL(X)c is c.e., then the entropy ofX is a right-
computable real number.

Proof: This follows fromhtop(X) = infn≥1
log2 |L(X)∩Σn|

n
(Proposition 13). It is also a direct conse-

quence of (Spandl, 2007, Theorem 6.3). ✷

Corollary 20 If a nonempty shiftX has a c.e. set of forbidden words, then its entropy is a right-computable
real number.



82 Peter Hertling and Christoph Spandl

Proof: By the previous proposition and Proposition 7. ✷

Of course, one would like not only to approximate the entropyfrom the right, but to compute it with
any precision.

Simonsen (2006) and the second author, Spandl (2007), have shown that the entropy is not uniformly
computable with respect to the language of the shift. To be precise, Simonsen (2006) has shown that there
is no Turing machine which, given a decision algorithm for the language of some shift with decidable
language, is able to compute the entropy of the shift with arbitrary precision. In fact, Simonsen (2006)
showed that this negative result is true even if one restricts oneself to the class of irreducible shifts. The
second author, Spandl (2007), showed that there is no oracleTuring machine which, given the language
of some shift via an oracle, is able to compute the entropy of the shift with arbitrary precision. In fact,
as was noted by Spandl (2007) and by Simonsen (2006) as well, these negative statements are true for
topological reasons, similarly as the negative statement of Proposition 6 in the previous section was true
for topological reasons.

Proposition 21 The functionH :⊆ Σω → R with

domH = {χL(X) | X is a nonempty, irreducible shift},

H(χL(X)) = htop(X) for any such shiftX.

is discontinuous. It is even discontinuous if onR the weaker topology is considered whose open sets are
the sets(a,∞), with a ∈ R, and the sets∅, R.

The proof will be given in the following section. The proposition says essentially that there is no
algorithm, in fact not even a continuous function, which, given the characteristic function of the language
of a shift, would deliver arbitrarily good lower bounds to the entropy of the shift.

Simonsen (Simonsen, 2006, Page 94) then asked the question whether there exists a shift with decidable
language but non-computable entropy. We shall show that this is indeed the case. Note that this strength-
ens the negative results by Simonsen (2006) and Spandl (2007) about the noncomputability of the entropy
when the language of a shift is known. In fact, we shall show more. We have already seen that the entropy
of any nonempty shiftX with decidable language (even with co-c.e. language) is a right-computable real
number between0 and1. We shall show that any such number is the entropy of a shift with decidable
language. It is even the entropy of an irreducible shift witha polynomial time decidable language. The
following theorem is the main result of this paper.

Theorem 22 For every right-computable real numberα ∈ [0, 1] there exists a nonempty, irreducible shift
X with htop(X) = α and with polynomial time decidable languageL(X).

The proof will be given in the following section.

Corollary 23 For a real numberα the following conditions are equivalent.

1. α ∈ [0, 1] andα is right-computable.

2. There exists a shiftX with co-c.e. languageL(X) and entropyα.

3. There exists an irreducible shiftX with polynomial time decidable languageL(X) and entropyα.



Shifts with Decidable Language and Non-Computable Entropy 83

Proof: “3 ⇒ 2”: Trivial.
“2 ⇒ 1”: By Proposition 19 and Proposition 16.1.
“1 ⇒ 3”: By Theorem 22. ✷

Corollary 24 There exists an irreducible shiftX with polynomial time decidable languageL(X) such
that its entropyhtop(X) is not a computable real number.

Proof: In Remark 18 we already mentioned that there exist right-computable real numbers between0 and
1 that are not computable. ✷

Remark 25 Our main result, Theorem 22, can be considered as an effective version of Proposition 16.2.
We will see that by simplifying the proof (by forgetting about effectivity properties) one obtains a second
proof of Proposition 16.2.

One may now also ask the other way around whether it might not be possible to prove our main result by
effectivizing the proof given above for Proposition 16.2, i.e., by effectivizing the statement of (Lind and
Marcus, 1995, Exercise 4.3.7(d)) that any real number in[0, 1] is the entropy of anS-gap shift (compare
Remark 12). Thus, the question arises whether for an arbitrary right-computable real numberα ∈ [0, 1]
there is anS-gap shift with entropyα and decidable language. The answer to this question is no, as
was observed already by the second author in (Spandl, 2007, Section 7): for a nonempty setS ⊆ N, the
language of theS-gap shiftXF (S) is decidable if, and only if,S is decidable, and in that case the entropy
htop(XF (S)) is a computable real number.

We have seen that decidability of the language of a shift implies right-computability of the entropy,
but not computability of the entropy. One might ask also the inverse question: does computability of the
entropy of a shift imply any computability property of the language of the shift, e.g., that is is decidable,
perhaps at least if the language is already known to be co-c.e.? The next result shows that this is not the
case. In order to formulate it we remind the reader of some notions from computability theory. A language
L ⊆ Σ∗ is many-one reducibleto a setS ⊆ N if there is a total computable functionh : Σ∗ → N with
x ∈ L ⇐⇒ h(x) ∈ S, for anyx ∈ Σ∗. Conversely, a setS ⊆ N is many-one reducibleto L ⊆ Σ∗

if there is a total computable functiong : N → Σ∗ with x ∈ S ⇐⇒ g(x) ∈ L, for any x ∈ N.
Finally, L ⊆ Σ∗ andS ⊆ N are calledmany-one equivalentto each other ifL is many-one reducible to
S andS is many-one reducible toL. If two sets are many-one equivalent to each other then they have the
same computability-theoretic degree of difficulty. For example, if one of them is decidable resp. c.e. resp.
co-c.e., then the other one has the same property.

Theorem 26 For any setS ⊆ N with S 6= ∅ andS 6= N there exists a shift over the binary alphabet
whose topological entropy is equal to zero and whose language is many-one equivalent toS.

Proof: Fors ∈ N we define

Xper(s) := {c ∈ {0, 1}Z | c contains infinitely many1’s, and,
for anyk ∈ N, the string10k1 is a substring ofc if, and only if,k = s}.

In other words,Xper(s) contains exactly thes + 1 bi-infinite binary periodic sequences of the form

. . . 10s10s10s1 . . . .
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For finiteS ⊆ N with S 6= ∅, we define

Xper(S) :=
⋃

s∈S

Xper(s),

and for infiniteS ⊆ N, we define

Xper(S) := {0Z} ∪ {p ∈ ΣZ | p contains exactly one1} ∪
⋃

s∈S

Xper(s).

Let us fix a setS ⊆ N with S 6= ∅.
First, we show thatXper(S) is a shift space. The setXper(S) is obviously invariant under the shift

mapσ, i.e.,σ(Xper(S)) = Xper(S). Furthermore, it is closed. In the case of infiniteS, we ensured that
Xper(S) is closed by adding the sequence0Z and the sequences inΣZ containing exactly one1.

Now, we show thathtop(Xper(S)) = 0. SinceXper(S) is nonempty and a subset ofXper(N), it is
sufficient to show thathtop(Xper(N)) = 0. Consider somen > 0. Let us give an upper bound on the
number of strings inL(Xper(N)) ∩ Σn. Clearly,

L(Xper(N)) ∩ Σn = {0n} ∪
n−1
⋃

s=0

(L(Xper(s)) ∩ Σn)

and, for anys ∈ N,
|L(Xper(s)) ∩ Σn| ≤ s + 1,

thus,

|L(Xper(N)) ∩ Σn| ≤ 1 +
n(n + 1)

2
,

hence,

0 ≤ htop(Xper(N)) ≤ lim
n→∞

log2(1 + n(n + 1)/2)

n
= 0.

In the rest of the proof we assume not onlyS 6= ∅, but alsoS 6= N. We still have to show that
L(Xper(S)) is many-one equivalent toS. The setS is many-one reducible toL(Xper(S)) because, for
s ∈ N,

s ∈ S ⇐⇒ 10s1 ∈ L(Xper(S)).

For the inverse claim (thatL(Xper(S)) is many-one reducible toS) we distinguish two cases.

1. S is finite. ThenL(Xper(S)) is obviously decidable. Thus, both sets are decidable. Since further-
more∅ $ S $ N and∅ $ L(Xper(S)) $ Σ∗, they are many-one equivalent.

2. S is infinite. ThenL(Xper(S)) contains all strings that contain at most one1. And a stringw with
two or more1’s is inL(Xper(S)) if, and only if, it satisfies the following two conditions:

(A) w contains at least two1’s, and there is somes ≤ |w| such thatw is a substring of the periodic
bi-infinite sequence

. . . 10s10s10s1 . . . ,
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(B) this numbers (if is exists, it is obviously uniquely determined) is an element ofS.

Condition (A) can be checked directly, and Condition (B) canbe checked by a many-one reduction
to S. To complete the proof formally, we define a computable reduction functionhL(Xper(S)),S :
Σ∗ → N fromL(Xper(S)) to S. Fix somesyes ∈ S and somesno 6∈ S (remember our assumptions
S 6= ∅ andS 6= N). We define

hL(Xper(S)),S(w) :=



















syes if w contains at most one1,

sno if w contains at least two1’s, but does not satisfy Condition (A),

s if w satisfies Condition (A), ands is the number of0’s between

any two1’s in w between which there is no other1.

It is clear that this function is computable and reducesL(Xper(S)) to S.

We have shown thatXper(S) has all the desired properties. ✷

Corollary 27 There exists a shift over the binary alphabet whose entropy is zero and whose language is
co-c.e., but not decidable.

Proof: By taking forS in Theorem 26 any co-c.e., but undecidable set, one obtains such a shift. ✷

4 Proofs
In this section, we prove Proposition 21 and Theorem 22. In addition, we give a new proof of Proposi-
tion 16.2. Certainsoficshifts (compare Lind and Marcus (1995)) will play an important role.

Definition 28 1. A finiteΣ-labeled graphis a pair(V, E) consisting of a finite setV (the set ofnodes)
and a finite setE ⊆ V × V × Σ (the set ofedges labeled with elements ofΣ).

2. For a finiteΣ-labeled graph(V, E), we define three functionsstart : E → V , end : E → V , and
label : E → Σ giving the three components of a labeled edge as follows:

e = (start(e), end(e), label(e)),

for anye ∈ E.

3. A bi-infinite path through a finiteΣ-labeled graph(V, E) is a functionq : Z → E such that
end(q(i)) = start(q(i + 1)), for all i ∈ Z.

Lemma 29 If (V, E) is a finiteΣ-labeled graph, then the following set is a shift and called thesofic shift
defined by the graph: {p ∈ ΣZ | there exists a bi-infinite pathq : Z → E through the graph such that
p[i] = label(q(i)), for all i ∈ N}.

For the proof see (Lind and Marcus, 1995, Section 3.1).
By {0, ∗}+ we denote the set of all nonempty strings over the alphabet{0, ∗}.
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Fig. 1: Graph for the sofic shiftX(00 ∗ 0 ∗ ∗00).

Definition 30 For anyw ∈ {0, ∗}+, let X(w) be the sofic shift defined by the graph defined as follows.
The graph has|w| nodesv0, . . . , v|w|−1. For eachi ∈ {0, . . . , |w| − 1}, it has an edge labeled with0
from vi to vi+1 mod |w|. Additionally, for i ∈ {0, . . . , |w| − 1}, it has an edge labeled with1 from vi to
vi+1 mod |w| if, and only if,w[i] = ∗ (wherew = w[0]w[1] . . . w[|w| − 1]).

Example 31 The graph ofX(w) for w = 00 ∗ 0 ∗ ∗00 is depicted in Figure 1.

The shiftX(w) can be described as follows: its elements are exactly all bi-infinite binary sequences of
the form. . . v−2v−1v0v1v2 . . . where, for everyi ∈ Z, vi is a binary string of length|w| thatmatchesw
in the following sense: at every position wherevi has a1, w must have a∗. It is equivalent to say thatvi

can be obtained fromw by replacing every∗ in w either by a0 or a1. In the following we will call any
element of{0, ∗}∗ a pattern. In the next lemma we collect several useful properties of the shiftsX(w).

Lemma 32 1. For anyw ∈ {0, ∗}+, 0Z ∈ X(w). Hence,X(w) is nonempty.

2. For anyw ∈ {0, ∗}+, X(w) is irreducible.

3. For anyw ∈ {0, ∗}+, htop(X(w)) = #∗(w)
|w| (where#∗(w) is the number of∗’s in w).

4. For anyw ∈ {0, ∗}+ and any integerk ≥ 1, X(wk) = X(w).

5. For anyv, w ∈ {0, ∗}+, if |v| = |w| and ifv can be obtained fromw by replacing some∗’s in w by
0’s, thenX(v) ⊆ X(w).
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6. For anyw ∈ {0, ∗}+, any integersa, b with a ≥ 2 andb ≥ 0, and anyv ∈ Σ∗ with |v| ≤ |w|, one
has

v ∈ L(X(w)) ⇐⇒ v ∈ L(X(wa0|w|·b).

Proof:

1. Clear.

2. Clear.

3. Left to the reader (compare, e.g., Lemma 20 and Theorem 21 in Simonsen (2006)).

4. Clear.

5. Clear.

6. Since by Statements 4 and 5 of this lemma, the setL(X(wa0|w|·b)) is a subset ofL(X(w)), the
direction from right to left is clear. For the other direction, assume thatv ∈ L(X(w)) and|v| ≤ |w|.
Thenv matches a subpattern ofww. Sincea ≥ 2, we obtainv ∈ L(X(wa0|w|·b).

✷

Proof of Proposition 21: The functionH defined in Proposition 21 is discontinuous for example in1ω,
even with respect to the weaker topology onR, mentioned in Proposition 21. Note that1ω = χΣ∗ =
χL(ΣZ), and that the full shiftΣZ = X(∗) has entropy1 and is irreducible. IfH were continuous in1ω

with respect to the weaker topology onR, then there would be a finite prefix1n of 1ω with n ≥ 2 such
that the entropy of any shiftX with the property thatχL(X) starts with1n would be strictly larger than
1/2. In that case, we setl := ⌈log2(n)⌉, and observe that by Lemma 32.3 the shiftX(∗l0l) has entropy
1/2, but, obviously, all strings of length≤ l are in the language of this shift, hence, the characteristic
sequence of its language starts with1n as well. ✷

Before we come to the proof of Theorem 22, we need some more preparations. We had defined right-
computable real numbers as the limits of computable, non-increasing sequences of rational numbers.
In fact, one can restrict oneself to dyadic rational numbers, and one can ask that the sequence can be
computed quite fast. A sequence(zn)n∈N of natural numbers iscomputable in time polynomial inn if
there is a Turing machine which, given a binary name of somen ∈ N, computes a binary name ofzn in
time bounded by a polynomial inn.

Lemma 33 A real numberα ∈ [0, 1] is right-computable if, and only if, there is a sequence(zn)n∈N of
natural numbers computable in time polynomial inn such thatzn ∈ {1, . . . , 2n}, for all n, and such that
the sequence(zn/2n)n∈N is non-increasing and converges toα.

For reasons which will become clear in the proof of Theorem 22, we do not allowzn = 0.

Proof: The direction from right to left is clear: for a sequence(zn)n∈N with the properties formulated in
Lemma 33 the limitlimn→∞ zn/2n is a right-computable real number in[0, 1].
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We come to the direction from left to right. Letα ∈ [0, 1] be right-computable. Let us assume that a
computable, non-increasing sequence(qn)n∈N of rational numbers withlimn→∞ qn = α is known. The
sequence(yn)n∈N defined by

yn := min{i ∈ {1, . . . , 2n} | i/2n ≥ min{1, qn}}

is a computable sequence of integersyn ∈ {1, . . . , 2n} such that the sequence(yn/2n)n∈N is non-
increasing and converges toα. The only problem why we cannot takeyn for zn is that the sequence
(yn)n∈N might not be computable in time polynomial inn. Let M be a Turing machine which, without
ever stopping, writes the one-way infinite sequence

bin(y0)#bin(y1)#bin(y2)# . . .

onto a one-way output tape, where, for an integerx, we denote its binary name bybin(x). We define the
desired sequence(zn)n∈N as follows.

For zn, perform the firstn steps of the computation ofM . Let m be the number of#’s written byM
during these steps. In casem = 0, definezn := 2n. In casem > 0, definezn := ym−1 · 2n+1−m.

Note thaty0 = 1 and that for anyx, l ∈ N with x > 0 it is clear thatbin(x · 2l) = bin(x)0l. It is clear
that the sequence(zn)n∈N is computable in time polynomial inn. Furthermore,zn ∈ {1, . . . , 2n} for all
n, and the sequence(zn/2n)n∈N is non-increasing and converges toα. ✷

The strategy of the proof of Theorem 22 is to consider a computable sequence of integers(zn)n∈N as
in the previous lemma and to construct a decreasing sequenceof (sofic) shiftsXn with entropy equal to
zn/2n. Then the desired shiftX will be defined as the limit of the shiftsXn, as in the following lemma.

Lemma 34 Let (Xn)n∈N be a sequence of nonempty subshifts ofΣZ with Xn+1 ⊆ Xn for all n. Set
X :=

⋂

n∈N
Xn. Then

1. X is a nonempty subshift ofΣZ as well,

2. L(X) =
⋂

n∈N
L(Xn),

3. htop(X) = limn→∞ htop(Xn).

Proof: The first statement, thatX is a subshift ofΣZ, is shown once we have shown thatX is nonempty
and closed and thatσ(X) = X .

“X is nonempty”: Consider an arbitrary sequence(xn)n∈N of elementsxn ∈ Xn, for eachn. Since
ΣZ is compact, this sequence has an accumulation point inΣZ. Let us call itx. Since for alln ∈ N and all
m ≥ n we havexm ∈ Xm ⊆ Xn, we conclude thatx is contained in the closure ofXn for all n, hence
in Xn itself for all n, hencex ∈ X . Thus,X is nonempty.

“X is closed”: For everyn, Xn is closed, and the intersection of arbitrarily many closed sets is closed
again.

“σ(X) ⊆ X”: From σ(Xn) ⊆ Xn for all n we obtainσ(
⋂

n∈N
Xn) ⊆

⋂

n∈N
Xn, i.e.,σ(X) ⊆ X .

“σ(X) ⊇ X”: Let us fix somey ∈ X . We have to show that there is somex ∈ X with σ(x) = y.
Sincey ∈ Xn andσ(Xn) ⊇ Xn, for all n, for everyn ∈ N there is somexn ∈ Xn with σ(xn) = y. As
in the proof of “X is nonempty” we can conclude that the sequence(xn)n∈N has an accumulation point
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x, and thatx is an element ofX . The sequence(xn)n∈N has a subsequence that converges tox. Since
σ(xn) = y for all n and sinceσ is continuous, we conclude thatσ(x) = y.

“L(X) ⊆
⋂

n∈N
L(Xn)”: For any subshiftsY, Z of ΣZ with Y ⊆ Z one hasL(Y ) ⊆ L(Z). The

assertion follows.
“L(X) ⊇

⋂

n∈N
L(Xn)”: Let us fix somew ∈

⋂

n∈N
L(Xn). For everyn ∈ N there is somexn ∈ Xn

such thatxn[0 . . . |w| − 1] = w. As in the proof of “X is nonempty” we can conclude that the sequence
(xn)n∈N has an accumulation pointx, and thatx is an element ofX . It is also clear thatx[0, . . . , |w|−1] =
w. This impliesw ∈ L(X).

“htop(X) = limn→∞ htop(Xn)”: Since for any subshiftsY, Z of ΣZ with Y ⊆ Z one hashtop(Y ) ≤
htop(Z), the sequencehtop(Xn) is non-increasing. Since it is bounded from below by0, the limit
limn→∞ htop(Xn) exists. Furthermore,htop(X) ≤ htop(Xn), for all n, follows as well, hencehtop(X) ≤
limn→∞ htop(Xn). We still have to show thathtop(X) cannot be strictly smaller thanlimn→∞ htop(Xn).
In order to show this, let us fix someε > 0. We show thathtop(Xn) ≤ htop(X) + ε for almost alln.
Remember that for an arbitrary subshiftY of ΣZ,

htop(Y ) = lim
k→∞

log2 |L(Y ) ∩ Σk|

k
= inf

k≥1

log2 |L(Y ) ∩ Σk|

k
.

Therefore, there exists somek ≥ 1 with log2 |L(X)∩Σk|
k

≤ htop(X) + ε. Above we have seenL(X) =
⋂

n∈N
L(Xn). Especially,L(X) ∩ Σk =

⋂

n∈N
(L(Xn) ∩ Σk). Since the setsL(Xn) ∩ Σk are finite and

L(Xm) ∩ Σk ⊇ L(Xn) ∩ Σk for anym, n ∈ N with m ≤ n, we conclude that there is somel ∈ N such
that for alln ≥ l we haveL(Xn) ∩ Σk = L(X) ∩ Σk. We conclude that for alln ≥ l

htop(Xn) ≤
log2 |L(Xn) ∩ Σk|

k
=

log2 |L(X) ∩ Σk|

k
≤ htop(X) + ε.

This ends the proof. ✷

Proof of Theorem 22: Let α ∈ [0, 1] be a right-computable real number. By Lemma 33 there exists a
sequence(zn)n∈N of integers computable in time polynomial inn with zn ∈ {1, . . . , 2n} such that the
sequence(qn)n∈N defined byqn := zn/2n is non-increasing and converges toα. We define a sequence
(wn)n∈N of patternswn ∈ {0, ∗}+ recursively by

w0 := ∗,

wn+1 := w2zn+1

n 0|wn|·(4zn−2zn+1).

Note thatzn 6= 0 for all n and that the assumption that the sequence(qn)n∈N is non-increasing implies
that4zn ≥ 2zn+1 for all n. We define a sequence(Xn)n∈N of sofic shifts by

Xn := X(wn).

By Lemma 32.1,Xn is nonempty, for eachn. Sincewn+1 can be obtained fromw4zn

n by replacing some
∗’s in w4zn

n by 0’s, Lemma 32.4 and 32.5 tell us thatX(wn+1) ⊆ X(wn), for all n. We define

X :=
⋂

n∈N

Xn.
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By Lemma 34.1,X is a nonempty subshift ofΣZ. We claim that it has all desired properties.
“htop(X) = α”: This is true by Lemma 34.3 because we have constructedXn so thathtop(Xn) = qn

for all n. We show this by induction. Forn = 0 it is true becausez0 = 1, henceq0 = 1, andX0 =
X(w0) = X(∗) = ΣZ is the full shift, and the entropy of the full shift is equal to1. Forn + 1 we obtain
by Lemma 32.3 and by the induction hypothesis

htop(Xn+1) =
#∗(wn+1)

|wn+1|

=
#∗(wn) · 2zn+1

|wn| · 4zn

= htop(Xn) ·
2zn+1

4zn

= qn ·
zn+1

2zn

=
zn

2n
·
zn+1

2zn

=
zn+1

2n+1

= qn+1.

Thus, the subshiftX has the desired entropy.
We still have to show thatX is irreducible and that its languageL(X) is decidable in polynomial time.
First, we observe that|w0| = 1 and|wn+1| = |wn| · 4 · zn ≥ |wn| · 4 for all n, hence|wn| ≥ 4n for all

n.
Secondly, we claim that for anyn ∈ N and anyv ∈ Σ∗ with |v| ≤ |wn|

v ∈ L(X(wn)) ⇐⇒ v ∈ L(X). (1)

Indeed, by Lemma 34.2L(X) =
⋂

m∈N
L(X(wm)). Thus, the direction from right to left in (1) is clear.

For the direction from left to right, fix somen ∈ N and somev ∈ L(X(wn)) with |v| ≤ |wn|. By
Lemma 32.6,v ∈ L(X(wn+1)). Since|v| ≤ |wn| ≤ |wn+1|, we can repeat this argument and obtain
v ∈ L(X(wn+2)), and so on. Thus,v ∈ L(X(wm)) for all m ≥ n. Sincev ∈ L(X(wm)) for all m < n
is clear anyway (due toL(X(wk)) ⊇ L(X(wk+1)) for all k ∈ N), we obtainv ∈ L(X). This ends the
proof of (1).

“X is irreducible”: Assume thatx, z ∈ Σ∗ are two strings inL(X). Choosen large enough so that
|wn| ≥ max{|x|, |z|}. By Lemma 34.2, we observex, z ∈ L(X(wn)). This implies thatx matches a
subpattern ofwnwn in the sense explained above, i.e., in the sense that it can beobtained from a subpattern
of wnwn if the ∗’s in the subpattern are replaced appropriately by0’s or 1’s. The same as forx is true for
z. But then, sincewn+1 containswnwn as a subpattern, there is a stringy ∈ Σ∗ such thatxyz matches
a subpattern ofwn+1wn+1 in the same sense, and, hence, by the same argument, matches asubpattern of
wn+2. By (1), this implies thatxyz is an element ofL(X). Hence,X is irreducible.

“L(X) is decidable in polynomial time”: We claim that the following algorithm decides for an arbitrary
input stringv ∈ Σ∗ whetherv belongs toL(X) or not. Furthermore, the algorithm can be implemented
on a Turing machine that works in time polynomial in|v|. In the algorithm we use a Turing machineM
which, given a binary name of anyn ∈ N, computes in time polynomial inn the binary name ofzn.



Shifts with Decidable Language and Non-Computable Entropy 91

Algorithm: Assume that somev ∈ Σ∗ is the input.
First part: For i = 0, 1, 2, . . . compute the binary name ofzi (useM for this task) and the stringwi until
a numberi has been found such that|wi| ≥ |v|.
Second part:For thisi, check whetherv is an element ofL(X(wi)) by checking whetherv matches a
subpattern ofwiwi.
(End of the description of the algorithm)

Due to|wn| ≥ 4n, the search in the first part of the algorithm will be successful, and by (1) it is clear
that this algorithm decides whetherv is an element ofL(X) or not. We show now that the algorithm
(when implemented properly on a Turing machine) works in time polynomial in|v|.

Let i be the smallest numberi with |wi| ≥ |v|. Since|wn| ≥ 4n for all n, we obtaini = 0 for |v| ≤ 1
andi ≤ ⌈log4(|v|)⌉ ≤ 1 + log4(|v|) for |v| > 1. The computation of the numbersz0, . . . , zi in the first
part of the algorithm can be done in time polynomial ini, hence, certainly in time polynomial in|v|. If,
for somek < i, the stringwk and the numberszk, zk+1 are known, one can in time polynomial in the
length ofwk+1 compute the stringwk+1. Note thatw0 = ∗. Hence, if|v| ≤ 1, the algorithm will already
stop withi = 0. Assume now that|v| > 1. Then|w0| = | ∗ | = 1 < |v|, hencei ≥ 1 and|wi−1| < |v|,
hence,

|wi| = |wi−1| · 4 · zi−1 ≤ |wi−1| · 4 · 2i−1 < |v| · 4 · 2log4(|v|) = 4 · |v| ·
√

|v|.

This and|wk| ≤ |wi| for k ≤ i imply that the stringsw0, . . . , wi can be computed in time polynomial
in |v| (in the first part of the algorithm). Thus, the first part of thealgorithm works in time polynomial
in |v|. The checking in the second part can be done in detail as follow: for each position inwiwi, one
checks whetherv matches the subpattern ofwiwi starting at this position with length|v| (of course, at
the last|v| − 1 positions ofwiwi no subpattern of length|v| can start). For each position, this checking
can be done in time linear in|v|. Since there are only2 · |wi| positions, the second part takes only time
polynomial in |v|. Thus, the whole algorithm works in time polynomial in|v|. This ends the proof of
Theorem 22. ✷

Proof of Proposition 16.2, 2nd variant:For any real numberα ∈ [0, 1] there exists a sequence(zn)n∈N

of numberszn with zn ∈ {1, . . . , 2n}, for eachn, such that the sequence(zn/2n)n∈N is non-increasing
and converges toα. By defining patternswn and shiftsX(wn) and, finally, a shiftX in exactly the same
way as in the proof of Theorem 22, one obtains a nonempty, irreducible shiftX with topological entropy
α. ✷

5 Summary and Open Problems
We have answered positively the question by Simonsen (2006)whether there exists a shift with decid-
able language whose topological entropy is non-computable. In fact, the shift constructed by us is even
irreducible and its language is polynomial time decidable.Simonsen (2006) also suggested to study the
class of shifts with primitive recursive language, a subclass of the shifts with decidable language. Since
any polynomial time language is primitive recursive, our result shows that restriction to shifts with primi-
tive recursive language does not help with respect to the topological entropy: there are even shifts in this
smaller class whose topological entropy is non-computable.

In the second paragraph of the introduction we mentioned several positive results concerning the com-
putability of the entropy for certain types of shift spaces.But there is still a gap between those positive



92 Peter Hertling and Christoph Spandl

results and the negative result of this paper. It remains an interesting task to narrow this gap and to identify
more known classes of shifts such that the entropy is computable for the shifts in the class.

On the other hand, we have also shown that computability of the entropy of a shift does not imply
any kind of computability of the language of the shift. Especially, it does not imply that the language is
decidable, not even if the language happens to be computablyco-enumerable. Thus, in a computability
theoretic sense the language of a shift and the entropy of theshift are not closely related: decidability
of the language does not imply computability of the entropy,and computability of the entropy does not
imply decidability of the language.

We have not only shown that there exist shifts with (polynomial time) decidable language and non-
computable entropy. Actually, we have classified exactly the real numbers that can appear as the topologi-
cal entropy of a subshift of the full shift of all binary bi-infinite sequences with co-c.e. resp. with decidable
resp. with polynomial decidable language (the answer is in each case: exactly the right-computable real
numbers between0 and1). Note that Hochman and Meyerovitch (2007) showed an analogous result
for multi-dimensional shifts of finite type: they showed that the real numbers that are the entropy of
a multi-dimensional shift of finite type are exactly the non-negative right-computable real numbers. It
would be interesting to ask the same question for other typesof dynamical systems, modifying slightly
two questions raised by Koiran (2001): which real numbers can be the entropy of a one-dimensional
cellular automaton (note that Hurd et al. (1992) have shown that there is no algorithm which, given a
one-dimensional cellular automaton, computes its entropywith any desired precision) or of a piecewise
affine map as studied by Koiran (2001)?
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