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We consider subshifts of the full shift of all binary bi-infi@ sequences. On the one hand, the topological entropy
of any subshift with computably co-enumerable languageright-computable real number betweerand1. We
show that, on the other hand, any right-computable real murnbtweerd and1, whether computable or not, is the
entropy of some subshift with even polynomial time deciddhhguage. In addition, we show that computability of
the entropy of a subshift does not imply any kind of compuitybof the language of the subshift.
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1 Introduction

An important numerical quantity associated with a dynairégatem is its topological entropy. A natural
question is then: under what circumstances can one combpeteopological entropy of a dynamical
systems? While for specific types of dynamical systems, aneoften give an algorithm, for examples
see, e.g., Milnor (2002), there are also a nhumber of negegsts, e.g., for cellular automata by Hurd
et al. (1992), for piecewise affine maps by Koiran (2001), forcshift spaces by Simonsen (2006) as
well as by the second author, Spandl (2007). Shift spacearamaportant, standard class of dynamical
systems. For an introduction the reader is referred to Limd slarcus (1995). They are closed, shift
invariant subspaces of the space of bi-infinite sequencarssovne alphabet, usually assumed to be finite.
For simplicity we will consider only subshifts of the spadeat) bi-infinite binary sequences. Whenever
we speak about shift spaceor simply ashiftin this paper, we will always mean a closed, shift invariant
subspace of the space of bi-infinite binary sequences.

As is well known, for simple types of shifts one can compute ¢intropy, for example for shifts that
can be defined by a finite set of forbidden words, and also ®idlger class of so-called sofic shifts;
see Simonsen (2006); Spandl (2007). Furthermore, Simg28€5%) obtained computability results for
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the entropy of3-shifts, Spandl (2007), as well as Hertling and Spand| (20f28 the entropy ofS-gap
shifts, and Spandl (2007) also for the entropy of shifts hguthe specification property. Hochman and
Meyerovitch (2007) gave a computability-theoretic ch&ggzation similar to our main result of the set
of real numbers that are the entropy of a two-dimensionét shfinite type.

A natural way of describing a general shift is via its langeiatipat is the set of all finite strings that
appear as substrings of elements of the shift space. Simd26€6) and Spandl (2007) have shown
that the entropy is not uniformly computable with respecthe language of the shift. To be precise,
Simonsen (2006) has shown that there is no Turing machinehylgiven a decision algorithm for the
language of some shift with decidable language, is able tgpede the entropy of the shift with arbitrary
precision. Spandl (2007) has shown that there is no oragi@gmachine which, given the language of
some shift via an oracle, is able to compute the entropy ofltti with arbitrary precision. Simonsen
(2006) posed the gquestion whether there exists a shift véthdable language whose entropy is a non-
computable number, and noted that “then the results in #peprelated to uncomputability would follow
immediately”. In this paper, we construct such a shift. lotfae will show more. The second author,
Spandl (2007), showed that, given an enumeration of the tEmgnt of the language of some shift space,
one can approximate the entropy effectively from the righence, if the complement of the language
of a nonempty shift is computably enumerable then the ewtadghe shift is a right-computable real
number (betweefi and1). In particular, the entropy of any nonempty shift with déadble language is a
right-computable real number betwegand1. We will show that conversely any right-computable real
number betweef and1 is the entropy of a shift with decidable language. In fadg @éven the entropy of
an irreducible shift with a polynomial time decidable laage. Since the class of right-computable real
numbers betweetand1 is known to be strictly larger than the class of computaldémembers between
0 and1, this shows that there exist irreducible shifts with polgmial time decidable language that have
non-computable entropy.

In the following section, we give some basic definitions alshifts, forbidden words, and the language
of a shift. Note that another natural way of representing it space is by giving a so-called set of
forbidden words for it. In view of the question whether, giveome information about a shift, one can
compute its entropy, it is of course interesting to have argiécture of the relation between different kinds
of information about a shift. Here, we analyze the relatietween two different kinds of information
about a general shift, namely: language or set of forbidderds; and strengthen the observation by
Simonsen (2006) that knowing the language of a shift is béitien knowing only a set of forbidden
words for the shift. Then we define the topological entropye d¥serve that the obstacle to computing
the topological entropy of a shift from its language is a fogaal one. Then we state the main result
of the paper. We finish the section by considering the inversestion: if the topological entropy of
a shift is computable, does this imply that the language cddble, at least if the complement of the
language is known to be c.e.? We show that this is not the €aséhe contrary, we show that there exist
shifts with topological entropy zero whose language is of desired degree of computability-theoretic
complexity. In the penultimate section, we prove the masulie We conclude with a summary and some
open problems.

2 Shifts, Sets of Forbidden Words, and Languages of Shifts

We writeN = {0, 1,2, ...} for the set of natural numbers, i.e., of non-negative intege = {0, 1} for
thebinary alphabetX* for the set of all finite binary stringsy for the empty stringX" for the set of all
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binary strings of lengt, for anyn € N. A subset of¥* is called (binary)anguage A subset of:*
or of N is calledcomputably co-enumerabfeo-c.e) if its complement is computably enumerabdes().
Furthermore, we writ&2“ := {p | p : N — X} for the set of all one-way infinite binary sequences, and
»Z :={p| p:7Z — X} for the set of all bi-infinite binary sequences. koe ©Z andn € Z, we write
p[n] for the value ofp on inputn, andp[m ...n] := p[m]...p[n], if m < n, andp[m...n] := A if
m > n. Forw € ¥* we setw¥® := {p € £ | w is a prefix ofp} and denote byw| the length ofw.
A stringw € ©* is asubstringof somep € X7 if there is ann € Z with w = p[n + 1...n + |w|]. For
any setsX andY, we write f :C X — Y for a function whose domaidom(f) is a subset ofX and
whose range is a subset¥f In caselom(f) = X we may writef : X — Y. Endowed with the product
topology of the discrete topology dn, both > and~% are compact topological spaces. The function
o : %% — 7 defined by

o(p)[n] :==pn+1] forp e X% andn € Z

is called theshift map Itis a homeomorphism.

Definition 1 We call a subseX C ©Z ashiftor ashift spacer asubshifiof 7 if it is closed and satisfies
o(X)=X.

Examples of shift spaces are easily obtained.

Lemma 2 For an arbitrary setF’ C ¥* the setX C %% defined by
Xp = {p € ©% | no string inF is a substring op}
is a shift space.
Proof: See (Lind and Marcus, 1995, Definition 1.2.1 and Theoren2)1. O

Definition 3 If ' C ¥* is a set withX = X, thenF is called aset of forbidden words fak .

This poses the question whether every shift space can besdefin a set of forbidden words, i.e.,
whether for every shift spac¥ there is a sef’ with X = X . The answer is yes, as can be seen via the
“language” of the shift space.

Definition 4 For any setX C 7 the set
L(X):={w € X" | wis asubstring of somg € X}

is thelanguageof X.

For any shift spaceX, the complement (X )¢ of £L(X) is a set of forbidden words faK, i.e., X =
Xrixye (indeed, X C X, (x). is clear, andX,(x). € X follows from the assumption tha is closed).
In fact, it is the largest forbidden set of words f&r since any other set of forbidden words far is
obviously a subset of (X)°.

Example 5 For the shift space&X := {0%} containing only the bi-infinite sequence containing obily
one see€(X) = {0}*, henceL(X)¢ = {0,1}* \ {0}*. Any setF" with {1} C F' C {0,1}*\ {0}*isa
set of forbidden words foX . Also the set10,11} and{01,11} and so on are sets of forbidden words
for X.



78 Peter Hertling and Christoph Spandl

A particularly simple class of shifts are those that possefisite set of forbidden words. But in
general, a shift does not need to have a finite set of forbiddenls. So, if one wishes to compute
something associated with a shift, e.g., its entropy, orelseome kind of description of the shift as input
for the algorithm. What is a natural description of a genshaft X? One might assume that one knows
the characteristic sequence of either a set of forbiddemlsviur X or of £(X). Here thecharacteristic
sequenceg s of a setS C ¥* is the binary sequencgs € > defined by

_J1 ifu(n) €S,
xs(n) = {0 if u(n) ¢ S

where the bijection : N — X* is defined by the length-lexicographical ordering: ordéstiings in>*
according to their length (short strings first), and strin§the same length in alphabetical order.

We have just seen that, given the language of a shift, oneasily eompute a set of forbidden words
for the shift: just take the complement of the language ofghif. But (Simonsen, 2006, Remark 17)
showed that there is no Turing machine which, given a detsigorithm for some decidable sEtC ¥*,
computes a decision algorithm for the languaié{»). The argument used by Simonsen in order to
prove this statement is actually a topological one: thetionanapping the characteristic sequence of an
arbitrary forbidden set of a shift to the characteristicugarre of its language is not continuous and can
therefore not be computable. Note that any funcitbnC X« — X that can be computed by a (Type-2)
Turing machine is continuous; see, e.g., Weihrauch (2000).

Proposition 6 The function7 : X — ¢, defined byG'(xr) := x(x,) IS not continuous.

Proof: A point of discontinuity is for example the sequerité= yy. Note thatG(0¥) = 1« because
L(Xp) = L(X?) is the whole seE*. If G were continuous i, there should be a finite prefix* of 0~
such thatG(0"Xx*) C 13«. But if F is the set of all binary strings of length greater thag, (n) theny »
also starts with)”, but X = ), hencel(X) = (), hencex . x) = 0. O

We will strengthen Simonsen’s remark (Simonsen, 2006, Rlerhd) in the following way: in Corol-
lary 11 we will see that there exists a decidable Besuch thatC(Xr) is not decidable. That means
that there exists computable input for the funct@nn Proposition 6 which is mapped by this function
to non-computable output. Note that any computable funclio:C ¥ — ¢ maps any computable
binary sequence € dom H to a computable binary sequence; see, e.g., Weihrauch Y28@fore we
construct such a computable input, let us clarify what omeazanpute when one knows (an oracle for)
some sef, i.e., if xr for some sef is given. We will see that one can still enumer&i{eX )¢. In fact
in order to be able to do that, it is sufficient to be able to earateF'. We formulate only a non-uniform
(not involving oracle Turing machines) version of this staent.

Proposition 7 If F C ¥* is a computably enumerable set, théX )¢ is computably enumerable as
well.

Proof: If a setF' is computably enumerable, then also the set of all strings*ithat have a substring in
F'is computably enumerable. The assertion follows now froenftilowing lemma. O

Lemma 8 Fix some sef’ C ¥*. A stringv is in L(X )¢ if, and only if, there exists somee N such
that each of th@2" stringsuvw with u,w € X" has a substring irF".
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Proof: For a stringv we setK, := {p € X2 | v = p[0...|v| — 1]}. A stringv is in £L(XF)¢ if, and
only if, everyp € K, contains an element df as a substring. And this is the case if, and only if, for any
p € K, there is some. € N such thap[—n ... |v| — 1+ n] contains an element df as a substring. Now,
the claim follows easily from the compactness of thelsgt for anyw. O

Especially, if a shiftX has a decidable set of forbidden words, th&X )¢ must be a c.e. set. The
converse is true as well.

Theorem 9 If X is a shift such thatZ(X)¢ is c.e., then there exists a polynomial time decidable set
F CY*with X = Xp.

Proof: This is proved by a padding argument. Létbe a shift such thaf(X)¢ is computably enumer-
able. LetM be a Turing machine that halts on inpute ¥* after finitely many steps if, and only fif,
v € L(X)°. Leth :C ¥* — N be defined by

h(v) = number of steps until/ halts on input  if v € £(X)¢,
| undefined ifv € L(X).

We define a sef’ C X* as follows:

F:= U {ow | w € {0,1}")},

veL(X)e

We claim that this sef’ has the desired properties.

“X = Xg" Thisis clear.

“F'is decidable in polynomial time”: A Turing machine that dées$ for a given string: € ¥* in time
polynomial in|z| whetherz belongs toF' or not can work for example as follows. For every prefigf
it startsM with inputv, lets M run for at mostz| — |v| + 1 steps and accepisif, and only if, there is a
prefixv of = such thatM stops on input after exactlylz| — |v| steps. O

Corollary 10 For a shift X the following conditions are equivalent:
1. £(X)¢is computably enumerable.
2. X has a c.e. set of forbidden words.
3. X has a polynomial time decidable set of forbidden words.
Proof: “3 = 2": Thisis trivial.

“2 = 1": This is Proposition 7.
“1 = 3" Thisis Theorem 9. O

Now we easily conclude that there is computable input forftmetion G in Proposition 6 which is
mapped by to non-computable output.

Corollary 11 There exists a polynomial time decidable Be€ ~* such thatC(X r) is not decidable.
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Proof: In order to derive this from Theorem 9 it is sufficient to oh&ethat there exist shifts whose
language is co-c.e., but not decidable. For an infinitessétN, define

F(S):={10"1 | n € N\ S}.

Fix some co-c.e., but not decidable $e€ N (such a set must be infinite). Th&h\ S andF(S) are c.e.
and not decidable. By Proposition 7 als0X r(s))¢ is computably enumerable. B X r(g))¢ is not
decidable because a string of the forfi¥ 1 is in £(X p(g))¢ if, and only if, n € N'\ S. O

Remark 12 For an infinite set' C N, the shiftX (s defined in the proofis callefi-gap shift(Lind and
Marcus, 1995, Example 1.2.6). For a finite, nonempty$et N, the shiftX g is calledS-gap shift
where

F(S) :=={10"1 | n € N\ S} U {0 tmax(9)},
see (Lind and Marcus, 1995, Example 1.2.6).

Corollary 11 strengthens Simonsen’s observation (Simon2@06, Remark 17) that there can be no
Turing machine which, given a decision algorithm for anyidable setF” C ¥*, computes a decision
algorithm for£(X ).

3 The Entropy of Shifts with Decidable or with Computably Co-
Enumerable Language

The following statement is Proposition 4.1.8 in Lind and des (1995).

Proposition 13 If X is a shift, then

[ logy [£(C0) N x|

n— oo n

exists, and equals

o log, [£(X) N 57|

n>1 n
Here we uséog, (0) := —o0.

Definition 14 For a shift X, the valuehiop,(X) := lim,, o, 222/£02" s cajled the(topological)
entropyof X.

The entropy of the empty shift isco. In the rest of the paper we will only consider nonempty shift
Itis clear that the entropy of a nonempty subshif{6f1}# is always a real number betweémndl, i.e.,
a real number in the closed interv@l 1]. The converse is true as well; one can even restrict oneself t
irreducible shifts.

Definition 15 A shift X is calledirreducibleif for any two stringsu, w € £(X) there is a string € ©*
with uvw € L(X).

The irreducible shifts form an important subclass of shiftsmpare Lind and Marcus (1995).
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Proposition 16 1. The entropy of a nonempty shift is a real number in the wztido, 1].

2. Any real number in0, 1] is the entropy of a nonempty, irreducible shift.

Proof: The first assertion is clear. The second assertion followseniately from (Lind and Marcus,
1995, Exercise 4.3.7(d)) where it is stated that every reailver in[0, 1] is the entropy of arb-gap shift,
as defined in Remark 12, following (Lind and Marcus, 1995, agke 1.2.6). It is clear that an§-gap
shift is irreducible. O

A different proof of the second statement will be given in tbkbowing section. In fact, the proof of
our main result (see below) will show how, given a non-insieg sequence of rational numbergin1],
one can construct an irreducible shift whose entropy egbaltimit of this sequence.

Can one compute the entropy of a shift? What kind of infororatioes one need to have about the
shift in order to compute its entropy? By (Spandl, 2007, Tee06.3) one can effectively approximate
the entropy from the right if one has an enumeratiorL 0K )¢. We state a non-uniform version of this
precisely. Therefore, we need the notion of a right-comipieteeal number. We directly define also the
(more basic) notion of a computable real number.

Definition 17 1. A sequencéy, ),cn Of rational numbers isomputabléf there exist three total com-
putable functions, a, b : N — N with b(n) # 0 andg,, = (—1)*) - a(n)/b(n), for all n.

2. Areal number is computabléf there exists a computable sequerigg),cn Of rational numbers
with |z — ¢,| < 27", foralln € N.

3. A real number: is right-computabldf there exists a computable sequer{gg),en Of rational
numbers withg,, > ¢,+1 for all n € N (a sequence satisfying this condition will be calleoh-
increasing andz = lim,,_,« ¢p.

Remark 18 Similarly, a real number is callet:ft-computabléf it is the limit of a computable non-
decreasing sequence of rational numbers. Obviously, aiteaberz is right-computable if, and only if,
—ux is left-computable. And a real number is computable if, anly df, it is left-computable and right-
computable. But it is well known that the class of left-cortgile real numbers is strictly larger than
the class of computable real numbers; the same applies tdabe of right-computable real numbers. If,
e.g..K C Nisac.e., but undecidable set, then the nunbery", _,. 2~("*1) is a right-computable but
not computable real number betwe@and1; see, e.g., Weihrauch (2000). For an overview concerning
left-computable real numbers and other classes of real pusrdefined by computability properties, see
Zheng (2002).

Proposition 19 If X is a nonempty shift such tha&(X)¢ is c.e., then the entropy of is a right-
computable real number.

Proof: This follows from#hye, (X) = inf,>1 Mgﬂr@"\ (Proposition 13). It is also a direct conse-
quence of (Spandl, 2007, Theorem 6.3). O

Corollary 20 Ifanonempty shifk has a c.e. set of forbidden words, then its entropy is a rigittyputable
real number.
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Proof: By the previous proposition and Proposition 7. O

Of course, one would like not only to approximate the entrérpyn the right, but to compute it with
any precision.

Simonsen (2006) and the second author, Spandl (2007), havenghat the entropy is not uniformly
computable with respect to the language of the shift. To beipe, Simonsen (2006) has shown that there
is no Turing machine which, given a decision algorithm foe tanguage of some shift with decidable
language, is able to compute the entropy of the shift witliti@ty precision. In fact, Simonsen (2006)
showed that this negative result is true even if one restooeself to the class of irreducible shifts. The
second author, Spandl| (2007), showed that there is no ofacieg machine which, given the language
of some shift via an oracle, is able to compute the entrophefshift with arbitrary precision. In fact,
as was noted by Spandl (2007) and by Simonsen (2006) as tvedle thegative statements are true for
topological reasons, similarly as the negative statemERtaposition 6 in the previous section was true
for topological reasons.

Proposition 21 The functiond :C ¥ — R with

domH = {xgx) | X isanonempty, irreducible shjit
H(xz(x)) = hiop(X) for any such shiftx.

is discontinuous. It is even discontinuous ifRrthe weaker topology is considered whose open sets are
the setga, 0o), witha € R, and the set§, R.

The proof will be given in the following section. The propisin says essentially that there is no
algorithm, in fact not even a continuous function, whiclvegi the characteristic function of the language
of a shift, would deliver arbitrarily good lower bounds tethntropy of the shift.

Simonsen (Simonsen, 2006, Page 94) then asked the questithexthere exists a shift with decidable
language but non-computable entropy. We shall show thaigtindeed the case. Note that this strength-
ens the negative results by Simonsen (2006) and SpandlY200dt the noncomputability of the entropy
when the language of a shift is known. In fact, we shall showend/e have already seen that the entropy
of any nonempty shif with decidable language (even with co-c.e. language) iglg+computable real
number between and1. We shall show that any such number is the entropy of a shift décidable
language. It is even the entropy of an irreducible shift veitholynomial time decidable language. The
following theorem is the main result of this paper.

Theorem 22 For every right-computable real numbere [0, 1] there exists a nonempty, irreducible shift
X with hop (X)) = o and with polynomial time decidable languagéX).

The proof will be given in the following section.

Corollary 23 For a real numbek the following conditions are equivalent.
1. a € ]0,1] and« is right-computable.
2. There exists a shifX with co-c.e. languagé&(X) and entropyt.

3. There exists an irreducible shif with polynomial time decidable languag€ X ) and entropy.
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Proof: “3 = 2" Trivial.
“2 = 1": By Proposition 19 and Proposition 16.1.
“1 = 3" By Theorem 22. O

Corollary 24 There exists an irreducible shiff’ with polynomial time decidable languad& X) such
that its entropyh., (X)) is not a computable real number.

Proof: In Remark 18 we already mentioned that there exist rightyoatable real numbers betweeand
1 that are not computable. O

Remark 25 Our main result, Theorem 22, can be considered as an effeatision of Proposition 16.2.
We will see that by simplifying the proof (by forgetting aliaffectivity properties) one obtains a second
proof of Proposition 16.2.

One may now also ask the other way around whether it might@pbigsible to prove our main result by
effectivizing the proof given above for Proposition 16.2, j by effectivizing the statement of (Lind and
Marcus, 1995, Exercise 4.3.7(d)) that any real numbé®,in] is the entropy of arb-gap shift (compare
Remark 12). Thus, the question arises whether for an anpitight-computable real number € [0, 1]
there is anS-gap shift with entropyr and decidable language. The answer to this question is no, as
was observed already by the second author in (Spandl, 2@eTip8 7): for a nonempty sét C N, the
language of the&S-gap shiftX () is decidable if, and only if5 is decidable, and in that case the entropy
hiop(X p(s)) IS @ computable real number.

We have seen that decidability of the language of a shiftiesplight-computability of the entropy,
but not computability of the entropy. One might ask also thesise question: does computability of the
entropy of a shift imply any computability property of thenuage of the shift, e.g., that is is decidable,
perhaps at least if the language is already known to be c8-Glee next result shows that this is not the
case. In order to formulate it we remind the reader of sommnstfrom computability theory. A language
L C ¥* is many-one reducibléeo a setS C N if there is a total computable functign: ¥* — N with
x €L < h(x) € S, foranyx € ¥*. Conversely, a sef C N is many-one reducibleo L C ¥*
if there is a total computable functiopn: N — X* withx € § <= g¢g(x) € L, foranyz € N.
Finally, L C ¥* andS C N are callednany-one equivalend each other ifL. is many-one reducible to
S andS is many-one reducible té. If two sets are many-one equivalent to each other then theg the
same computability-theoretic degree of difficulty. Forexde, if one of them is decidable resp. c.e. resp.
co-c.e., then the other one has the same property.

Theorem 26 For any setS C N with S # @ andS # N there exists a shift over the binary alphabet
whose topological entropy is equal to zero and whose langimmany-one equivalent

Proof: Fors € N we define

Xper(s) :={c € {0,1}*| ¢ contains infinitely many’s, and,
for anyk € N, the stringl0*1 is a substring of if, and only if, k = s}.

In other words X, (s) contains exactly the + 1 bi-infinite binary periodic sequences of the form

...10°10°10°1 .. . ..



84 Peter Hertling and Christoph Spandl

For finite S C N with S # (), we define

pe1 U Xper

seS

and for infiniteS C N, we define

Xper(S) := {07} U {p € £ | p contains exactly one} U | ] Xper(s).
sesS

Let us fix a setS C N with S # (.

First, we show thafX,..(S) is a shift space. The séf,..(S) is obviously invariant under the shift
mapo, i.e.,0(Xper(S)) = Xper(S). Furthermore, it is closed. In the case of infinftewe ensured that
Xper(S) is closed by adding the sequerifeand the sequences X containing exactly ong.

Now, we show thahop(Xper(S)) = 0. SinceX,e (S) is nonempty and a subset &f,..(N), it is
sufficient to show thabop (Xper(N)) = 0. Consider some: > 0. Let us give an upper bound on the
number of strings inC(Xpe(N)) N X", Clearly,

LXK N) 157 = {07} U | (£(Xper(5)) N =7)
s=0

and, for anys € N,
|L(Xper(s)) NE"[ <s+1,

thus,
1
£ (Xper() 37| < 14 2L

hence,
=0.

0 < hiop(Xper(N)) < lim logy(1+n(n+1)/2)
n—oo n
In the rest of the proof we assume not ofly# ), but alsoS # N. We still have to show that
L(Xper(S)) is many-one equivalent t8. The setS is many-one reducible t6(X,..(S)) because, for
s €N,
s€S <= 10°1 € L(Xper(9)).

For the inverse claim (thal (X, (S)) is many-one reducible t§) we distinguish two cases.

(S
1. Sisfinite. Thenl(X,er(5)) is obviously decidable. Thus, both sets are decidable.eSunther-
more) G S G Nand)) & L(X,e(S)) & T*, they are many-one equivalent.

2. Sisinfinite. Thenl(X,e:(S)) contains all strings that contain at most dneAnd a stringw with
two or morel’s is in £(X,e:(5)) if, and only if, it satisfies the following two conditions:

(A) w contains at least twd's, and there is some < |w| such thatw is a substring of the periodic
bi-infinite sequence
..10°10°10°%1 . . .|



Shifts with Decidable Language and Non-Computable Entropy 85
(B) this numbess (if is exists, it is obviously uniquely determined) is anraknt of S.

Condition (A) can be checked directly, and Condition (B) barchecked by a many-one reduction
to S. To complete the proof formally, we define a computable rédodunctionh . x, .. (s)),s :

X* — Nfrom £(X,er(S)) to S. Fix somesys € S and some,,, ¢ S (remember our assumptions
S # () andS # N). We define

syes If w contains at most onk

sno If w contains at least twi's, but does not satisfy Condition (A),

s if w satisfies Condition (A), andlis the number 06’s between
any twol’s in w between which there is no other

he(Xper(9)),8 (W) =

Itis clear that this function is computable and reduféX ., (S)) to S.

We have shown thaX,..(S) has all the desired properties. O

Corollary 27 There exists a shift over the binary alphabet whose entepggio and whose language is
co-c.e., but not decidable.

Proof: By taking for.S in Theorem 26 any co-c.e., but undecidable set, one obtaatsasshift. O

4 Proofs

In this section, we prove Proposition 21 and Theorem 22. Hiitexh, we give a new proof of Proposi-
tion 16.2. Certairsoficshifts (compare Lind and Marcus (1995)) will play an impatteole.

Definition 28 1. Afinite X-labeled graphs a pair(V, E) consisting of a finite sét” (the set ohode$
and afinite sell C V x V x X (the set ofedges labeled with elementsXy.

2. For afiniteX-labeled grapi{V, E), we define three functionsart : £ — V,end : E — V, and
label : E — ¥ giving the three components of a labeled edge as follows:

e = (start(e), end(e), label(e)),
foranye € E.

3. A bi-infinite paththrough a finiteX-labeled graphV, E) is a functionq : Z — FE such that
end(q(4)) = start(q(i + 1)), forall i € Z.

Lemma 29 If (V, E) is a finiteX-labeled graph, then the following set is a shift and callegldofic shift
defined by the graph{p € X% | there exists a bi-infinite path : Z — E through the graph such that
pli] = label(q(7)), for all ¢ € N}.

For the proof see (Lind and Marcus, 1995, Section 3.1).
By {0, *}T we denote the set of all nonempty strings over the alphfihet}.



86 Peter Hertling and Christoph Spandl

Fig. 1: Graph for the sofic shiff{ (00 * 0 % *00).

Definition 30 For anyw € {0, *} T, let X (w) be the sofic shift defined by the graph defined as follows.
The graph hasw| nodesvy, . .., v}, —1. Foreachi € {0,...,|w| — 1}, it has an edge labeled with
from v; 10 v;41 mod |w|- Additionally, fori € {0, ..., |w| — 1}, it has an edge labeled withfrom v; to
Vi1 mod |w| i, @nd only if, w(i] = * (wherew = w[0Jw(1]... w[|lw| — 1]).

Example 31 The graph ofX (w) for w = 00 % 0 x %00 is depicted in Figure 1.

The shiftX (w) can be described as follows: its elements are exactly afifiite binary sequences of
the form. .. v_sv_jvguvivs ... Where, for eveni € Z, v; is a binary string of lengttw| thatmatchesw
in the following sense: at every position whetehas al, w must have &. It is equivalent to say tha;
can be obtained fromv by replacing every in w either by a0 or al. In the following we will call any
element of{0, «}* a pattern In the next lemma we collect several useful properties efsthifts X (w).

Lemma32 1. Foranyw € {0,*}*, 02 € X(w). Hence X (w) is nonempty.
2. Foranyw € {0,*}™, X (w) is irreducible.

3. Foranyw € {0, %}F, hyop(X (w)) = £=4) (where#, (w) is the number of's in w).

Jw]|

4. Foranyw € {0, }* and any integek > 1, X (w*) = X (w).

5. Foranyv,w € {0,*}*,if |v| = |w| and ifv can be obtained from by replacing some’s in w by
0’s, thenX (v) C X (w).
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6. For anyw € {0,+} ", any integers:, b with a > 2 andb > 0, and anyv € * with |v| < |w|, one
has
ve L(X(w) <= ve L(X(wov?).

Proof:
1. Clear.
2. Clear.
3. Leftto the reader (compare, e.g., Lemma 20 and Theorem 3imonsen (2006)).
4. Clear.
5. Clear.

6. Since by Statements 4 and 5 of this lemma, theC$af (w?0!™!"*)) is a subset oL (X (w)), the
direction from right to left is clear. For the other direati@mssume that € £(X (w)) and|v| < |w|.
Thenwv matches a subpattern efw. Sincea > 2, we obtainu € £(X (w*0lvI?).

a

Proof of Proposition 21: The functionH defined in Proposition 21 is discontinuous for examplé4n
even with respect to the weaker topology Rnmentioned in Proposition 21. Note thit = s« =
Xc(x2), and that the full shif©? = X (x) has entropyl and is irreducible. Ifff were continuous in“

with respect to the weaker topology &) then there would be a finite prefiX’ of 1 with n > 2 such
that the entropy of any shifX with the property thaj . x) starts with1™ would be strictly larger than
1/2. In that case, we sét:= [log,(n)], and observe that by Lemma 32.3 the skft+/0') has entropy
1/2, but, obviously, all strings of lengtkl [ are in the language of this shift, hence, the characteristic
sequence of its language starts withas well. O

Before we come to the proof of Theorem 22, we need some mopatons. We had defined right-
computable real numbers as the limits of computable, noreasing sequences of rational numbers.
In fact, one can restrict oneself to dyadic rational numpamsl one can ask that the sequence can be
computed quite fast. A sequents,),cn Of natural numbers isomputable in time polynomial in if
there is a Turing machine which, given a binary name of sen@N, computes a binary name ef in
time bounded by a polynomial im.

Lemma 33 A real numberx € [0, 1] is right-computable if, and only if, there is a sequefieg),en Of
natural numbers computable in time polynomiatisuch thatz,, € {1,...,2"}, for all n, and such that
the sequencg,, /2™),¢cn iS non-increasing and convergesdo

For reasons which will become clear in the proof of Theoremv&2do not allows,, = 0.

Proof: The direction from right to left is clear: for a sequer(eg).,en With the properties formulated in
Lemma 33 the limilim,, . 2, /2™ is a right-computable real number i@, 1].
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We come to the direction from left to right. Let € [0, 1] be right-computable. Let us assume that a
computable, non-increasing sequelige),,cn of rational numbers withim,, . . ¢, = « is known. The
sequencéy,, )ren defined by

yn :=min{i € {1,...,2"} | /2" > min{l,¢,}}

is a computable sequence of integers € {1,...,2"} such that the sequendeg, /2"),cy iS non-
increasing and converges ta The only problem why we cannot takg for z, is that the sequence
(yn)nen Might not be computable in time polynomialin Let M be a Turing machine which, without
ever stopping, writes the one-way infinite sequence

bin(yo)#bin(y1)#bin(y2)# . ..

onto a one-way output tape, where, for an integarve denote its binary name tyn(z). We define the
desired sequende,, ),cn as follows.

For z,, perform the first: steps of the computation @f/. Letm be the number oft’s written by M
during these steps. In case= 0, definez,, := 27. In casen > 0, definez, := y_1 - 2"T1~™.

Note thaty, = 1 and that for anyr, I € N with = > 0 it is clear thabin(z - 2') = bin(z)0'. Itis clear
that the sequende,, ),en is computable in time polynomial in. Furthermorez,, € {1,...,2"} forall
n, and the sequende,, /2"),,cn is Non-increasing and convergesito O

The strategy of the proof of Theorem 22 is to consider a coaigatsequence of intege(fs, ) ,en as
in the previous lemma and to construct a decreasing sequérisefic) shiftsX,, with entropy equal to
zn/2™. Then the desired shiff’ will be defined as the limit of the shift&,,, as in the following lemma.

Lemma 34 Let (X,,).en be a sequence of nonempty subshift€éfwith X,,.; C X, for all n. Set
X :=N,en Xn- Then

1. X is a nonempty subshift 8 as well,

2. ﬁ(X) = ﬂnEN ‘c(Xﬂ)i
3. Rgop(X) = limy— o0 Arop(Xp).

Proof: The first statement, thaX is a subshift of2Z, is shown once we have shown thtis nonempty
and closed and that(X) = X.

“X is nonempty”: Consider an arbitrary sequericg),cn of elementse,, € X,,, for eachn. Since
»” is compact, this sequence has an accumulation poltirLet us call itz. Since for alln € N and all
m > n we haver,, € X,, C X,, we conclude that is contained in the closure d{,, for all n, hence
in X, itself for all n, hencer € X. Thus,X is nonempty.

“X is closed”: For everyi, X, is closed, and the intersection of arbitrarily many closetd $s closed
again.

“o(X) C X" Fromo(X,) C X, forall n we obtaino((,,cyy Xn) € ey Xns i-€.,0(X) C X,

“o(X) D X" Let us fix somey € X. We have to show that there is some= X with o(z) = y.
Sincey € X,, ando(X,,) 2 X,,, for all n, for everyn € N there is some;,, € X,, with o(z,,) = y. As
in the proof of “X is nonempty” we can conclude that the sequengg,.cn has an accumulation point
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x, and thatr is an element ofX. The sequencgr,, )<y has a subsequence that converges.t&ince
o(x,) = y for all n and sincer is continuous, we conclude thatz) = y.

“L(X) C Nypen £(X,)": For any subshiftsy’, Z of % with Y C Z one hasC(Y) C £(Z). The
assertion follows.

“L(X) D N),en £(Xn)" Letus fix somew € (N, o £(X,). For everyn € Nthere is some,, € X,
such thate,,[0. .. |w| — 1] = w. As in the proof of ‘X is nonempty” we can conclude that the sequence
(zn)nen has an accumulation poinf and that: is an element oX . Itis also clear that|0, . .., jw|—1] =
w. Thisimpliesw € L£(X).

“htop(X) = limy,— 00 heop(Xn)™: Since for any subshifty’, Z of ©Z with Y C Z one hash, (V) <
htop(Z), the sequencéy,,(X,) is non-increasing. Since it is bounded from below (hythe limit
limy, 00 hiop(Xp) €Xists. Furthermoréyo, (X) < hiop(X5,), for alln, follows as well, hencéq, (X) <
limy, 00 hiop(Xpn). We still have to show thdt,, (X') cannot be strictly smaller thdim,, —, o Atop (Xn)-
In order to show this, let us fix some> 0. We show thatiop(X,) < hiop(X) + € for almost alln.
Remember that for an arbitrary subshiftof %,

L logy [L(Y)N k| L logy [L(Y) N k|
heop(¥) = Jim S = nf S

Therefore, there exists sonie> 1 with Mk){mzk‘ < hiop(X) + €. Above we have seefi(X) =
Nuen £(X,). Especially,£(X) N £ = N, oy (£(X,) N SF). Since the set€(X,,) N ©* are finite and
L(X,,) N¥F D L(X,) Nk foranym,n € N with m < n, we conclude that there is sorhe N such
that for alln > [ we havel(X,,) N ¥ = £(X) N ©*. We conclude that for alh >

 logy |£(Xn) N E¥| _ log, [£(X) N X
- k B k

This ends the proof. O

htop (Xn) S htop (X) +e.

Proof of Theorem 22: Let o € [0, 1] be a right-computable real number. By Lemma 33 there exists a
sequencéz, )nen Of integers computable in time polynomialinwith z,, € {1,...,2"} such that the
sequencégq,, )nen defined byg, := z,/2™ is non-increasing and convergesdo We define a sequence
(wn )nen Of patternsw,, € {0, x}* recursively by

Wy = Ok,

wn+1 = wflzn«#l Olwn | '(4Z'n72zn+1) .

Note thatz,, # 0 for all » and that the assumption that the sequeagé,.cn IS non-increasing implies
thatdz,, > 2z, for all n. We define a sequen¢&’,,),en of sofic shifts by

X = X (wy).

By Lemma 32.1X,, is nonempty, for each. Sincew, ; can be obtained fromy**» by replacing some
¥’S in wi by 0's, Lemma 32.4 and 32.5 tell us th&t(w,,+1) C X (w,,), for all n. We define

X = ﬂXn.

neN
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By Lemma 34.1X is a nonempty subshift a%. We claim that it has all desired properties.

“hiop(X) = ™ This is true by Lemma 34.3 because we have construstedo thath.,(X,) = ¢n
for all n. We show this by induction. Fat = 0 it is true because, = 1, hencegy = 1, and X, =
X (wo) = X (¥) = X% is the full shift, and the entropy of the full shift is equaltoForn + 1 we obtain
by Lemma 32.3 and by the induction hypothesis

#i(Wny1)
| w1
#+(wn) - 22n 11
|wn| -4z,

= htOP(Xn) :

nt1
2zp
o Zntl
2" 2z,
Zn+1
2n+1
dn+1-

htop (Xn+ 1 )

2Zn+1
4z,

Thus, the subshifK has the desired entropy.

We still have to show thaX is irreducible and that its languag¥ X ) is decidable in polynomial time.
First, we observe thatvy| = 1 and|w,+1| = |wn| -4 - 2, > |wy]| - 4 for all n, hencdw,,| > 4™ for all
n.
Secondly, we claim that for any € N and anyv € ¥* with |v| < |w,|

veLX(wy)) < ve LX) Q)

Indeed, by Lemma 34.2(X) = ,,cn £(X (wn)). Thus, the direction from right to left in (1) is clear.
For the direction from left to right, fix some € N and somev € L£(X(wy)) with |v] < |w,|. By
Lemma 32.6p € L(X (wp+1)). Sincelv| < |w,| < |wn1], We can repeat this argument and obtain
v € L(X (wp42)), and so on. Thug; € L(X (wy,)) forall m > n. Sincev € L(X (w,,)) forallm <n

is clear anyway (due t8(X (w)) 2 L(X (wg+1)) for all & € N), we obtainv € £(X). This ends the
proof of (1).

“X is irreducible”: Assume that, >z € X* are two strings in(X). Choosen large enough so that
|wy,| > max{|z|,|z|}. By Lemma 34.2, we observe z € £(X (wy,)). This implies that: matches a
subpattern ofv,,w,, in the sense explained above, i.e., in the sense that it calothmed from a subpattern
of w,w, if the «'s in the subpattern are replaced appropriatelyisyor 1's. The same as for is true for
z. But then, sincev,,; containsw,w,, as a subpattern, there is a stripge * such thatryz matches
a subpattern ofv,, 1w, 11 in the same sense, and, hence, by the same argument, masthgsattern of
wp+2. By (1), this implies thatyz is an element of (X). Hence X is irreducible.

“L(X) is decidable in polynomial time”: We claim that the followialgorithm decides for an arbitrary
input stringv € ¥* whetherv belongs to£(X) or not. Furthermore, the algorithm can be implemented
on a Turing machine that works in time polynomial|i. In the algorithm we use a Turing machiné
which, given a binary name of any < N, computes in time polynomial in the binary name of,,.
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Algorithm: Assume that some € ¥* is the input.

First part: Fori = 0,1, 2, ... compute the binary name of (useM for this task) and the string; until
a number has been found such that;| > |v|.

Second part:For thisi, check whethep is an element o2 (X (w;)) by checking whether matches a
subpattern ofv;w;.

(End of the description of the algoritim

Due to|w,| > 4™, the search in the first part of the algorithm will be succelssind by (1) it is clear
that this algorithm decides whetheris an element ofZ(X) or not. We show now that the algorithm
(when implemented properly on a Turing machine) works iretpolynomial inv|.

Let i be the smallest numbewith |w;| > |v|. Since|w,| > 4™ for all n, we obtain; = 0 for |v| < 1
andi < [log,(Jv])] < 1+ log,(|v|) for |u| > 1. The computation of the numbers, ..., z; in the first
part of the algorithm can be done in time polynomiat mence, certainly in time polynomial im|. If,
for somek < i, the stringw, and the numbersy, 2,1 are known, one can in time polynomial in the
length ofwy.+; compute the string,11. Note thatwy = x. Hence, if|jv| < 1, the algorithm will already
stop withi = 0. Assume now thay| > 1. Then|wo| = | * | = 1 < ||, hence > 1 and|w;_1| < |v],
hence,

|w1| = |w¢_1| 4z < |w¢_1| 4.2 < |1}| -4 - 2log4(\v|) =4- |1}| . m

This and|wy| < |w;| for k& < ¢ imply that the stringsuy, . . ., w; can be computed in time polynomial
in |v| (in the first part of the algorithm). Thus, the first part of tgorithm works in time polynomial
in |v|. The checking in the second part can be done in detail asafollor each position inv;w;, one
checks whether matches the subpattern efw; starting at this position with lengthy| (of course, at
the lastjv| — 1 positions ofw;w; no subpattern of lengthv| can start). For each position, this checking
can be done in time linear if|. Since there are only - |w;| positions, the second part takes only time
polynomial in|v|. Thus, the whole algorithm works in time polynomiallisi. This ends the proof of
Theorem 22. O

Proof of Proposition 16.2, 2nd variant: For any real numbet € [0, 1] there exists a sequentg, ) en
of numbersz,, with z,, € {1,...,2"}, for eachn, such that the sequen¢e, /2™),cx iS Nnon-increasing
and converges ta. By defining patterns,, and shiftsX (w,,) and, finally, a shiftX in exactly the same
way as in the proof of Theorem 22, one obtains a nonemptyluaible shiftX with topological entropy
o. O

5 Summary and Open Problems

We have answered positively the question by Simonsen (2@86jher there exists a shift with decid-
able language whose topological entropy is non-computdbléct, the shift constructed by us is even
irreducible and its language is polynomial time decidal8enonsen (2006) also suggested to study the
class of shifts with primitive recursive language, a subglaf the shifts with decidable language. Since
any polynomial time language is primitive recursive, owsuie shows that restriction to shifts with primi-
tive recursive language does not help with respect to thelégical entropy: there are even shifts in this
smaller class whose topological entropy is non-computable

In the second paragraph of the introduction we mentioneeragpositive results concerning the com-
putability of the entropy for certain types of shift spac@sit there is still a gap between those positive
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results and the negative result of this paper. It remainatandsting task to narrow this gap and to identify
more known classes of shifts such that the entropy is corbprifar the shifts in the class.

On the other hand, we have also shown that computability efetitropy of a shift does not imply
any kind of computability of the language of the shift. Edpby, it does not imply that the language is
decidable, not even if the language happens to be computabyumerable. Thus, in a computability
theoretic sense the language of a shift and the entropy ddhtieare not closely related: decidability
of the language does not imply computability of the entra@mg computability of the entropy does not
imply decidability of the language.

We have not only shown that there exist shifts with (polyralntime) decidable language and non-
computable entropy. Actually, we have classified exaceyrtral numbers that can appear as the topologi-
cal entropy of a subshift of the full shift of all binary bifinite sequences with co-c.e. resp. with decidable
resp. with polynomial decidable language (the answer isthease: exactly the right-computable real
numbers betweefl and1). Note that Hochman and Meyerovitch (2007) showed an anal®gesult
for multi-dimensional shifts of finite type: they showed tithe real numbers that are the entropy of
a multi-dimensional shift of finite type are exactly the noegative right-computable real numbers. It
would be interesting to ask the same question for other tgpelynamical systems, modifying slightly
two questions raised by Koiran (2001): which real numbers loa the entropy of a one-dimensional
cellular automaton (note that Hurd et al. (1992) have shdva there is no algorithm which, given a
one-dimensional cellular automaton, computes its entwifly any desired precision) or of a piecewise
affine map as studied by Koiran (2001)?
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