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We study on-line version of size-Ramsey numbers of graphs defined via a game played between Builder and Painter:
in one round Builder joins two vertices by an edge and Painter paints it red or blue. The goal of Builder is to force
Painter to create a monochromatic copy of a fixed graphH in as few rounds as possible. The minimum number of
rounds (assuming both players play perfectly) is theon-line Ramsey numberer(H) of the graphH . We determine exact
values ofer(H) for a few short paths and obtain a general upper bounder(Pn) ≤ 4n − 7. We also study asymmetric
version of this parameter when one of the target graphs is a starSn with n edges. We prove thater(Sn, H) ≤ n ·e(H)

whenH is any tree, cycle or clique.

Keywords: size Ramsey number, online Ramsey games

1 Introduction
In this paper we are concerned with on-line variant of size-Ramsey numbers of graphs. For given graphs
G andH we writeG → H if there is a monochromatic copy ofH in any red-blue coloring of the edges of
G. Thesize-Ramsey numberof a graphH , denoted bŷr(H), is the smallest possible number of edges in
a graphG satisfyingG → H . This notion was first studied by Erdős, Faudree, Rousseau, and Schelp (8),
as a variation on the usual Ramsey numberr(H) (which is the leastn such thatKn → H , whereKn is
a clique onn vertices). Clearly,̂r(H) is at most

(
r(H)

2

)
for every graphH . Somewhat surprisingly this

bound is attained ifH = Kn (8). However,̂r(Pn) ≤ cn for some absolute constantc, wherePn is a path
on n vertices. This was proved by Beck (2) in response to a one-hundred-dollar question of Erdős. The
proof uses random graphs and is nonconstructive (cf. (5)). Explicit construction based on expanders was
provided by Alon and Chung (1). Since then many deep results for other natural classes of graphs were
obtained (cf. (3; 7; 15; 22)).

On-line version of size-Ramsey numbers was introduced independently by Beck (4) and Kurek and
Ruciński (14). It is best explained by the following game betweenBuilder andPainter, played on a large
set of vertices. In one round Builder joins two nonadjacent vertices by an edge and Painter colors this
edge red or blue. The goal of Builder is to create a monochromatic copy of a fixed graphH in as few
rounds as possible. Painter will try to resist doing it for as long as possible. Theon-line Ramsey number
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r̃(H) of a graphH is the minimum number of rounds in which Builder achieves his goal, assuming both
players play perfectly. Clearly,̃r(H) ≤ r̂(H) and it is natural to ask how much these two parameters may
differ. We study this question in several typical situations. For instance we show thatr̃(Pn) ≤ 4n − 7,
while currently best bound in the off-line case isr̂(Pn) ≤ 594n (cf. (5)). In general the problem may be
hard as it is not even known if the ratiõr(Kn)/r̂(Kn) tends to zero asn → ∞ (cf. (14)). Other open
problems and related versions of the game can be found in (10; 12; 13).

One can also consider an asymmetric version of the on-line Ramsey number. We writeF → (G, H)
if in any red-blue coloring of the edges ofF there is a red copy ofG or a blue copy ofH . Similarly,
r̂(G, H) stands for the minimum number of edges in a graphF such thatF → (G, H), andr̃(G, H) is
defined accordingly.

Similar to the classical Ramsey numbers (see a dynamic survey of Radziszowski (21) which includes all
known nontrivial values and bounds for Ramsey numbers), it is hard to compute the exact value ofr̃(G)
unlessG are trivial. In this relatively new area of small on-line Ramsey numbers, very little is known.

2 Paths
As a warm-up we start with exact determination of the on-line Ramsey numbers for a few short paths. Let
e(H) denote the number of edges of a graphH . Note first that in general we havẽr(H) ≥ 2e(H) − 1,
since Painter may color safely the firste(H) − 1 edges red, and the nexte(H) − 1 edges blue. Since
e(Pn) = n − 1 we havẽr(Pn) ≥ 2n− 3. This lower bound is attained forn = 2, 3, 4, 5.

Proposition 2.1 r̃(Pn) = 2n− 3, for n = 2, 3, 4, 5.

The casesn = 2, 3 are trivial. The casen = 4 is also very easy; after presenting three edges of a pathP 4,
there are only two possible patterns (up to symmetry):bbr andbrb. Then Builder creates a monochromatic
pathP4 in the next two moves, as depicted in Figure 1. (The final edge is drawn in two colors.) To prove
that r̃(P5) = 7 we have to analyze more subcases. In the first four moves Builder constructs a pathP 5 so
that essentially one of the three possible color patterns appears, as displayed in Figure 2. Then he obtains
a monochromaticP5 in next three moves, as shown in Figure 3. (A circled number means that Painter had
a choice in that move, which led to a branching into subcases.)
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Fig. 1: Forcing a pathP4

The pattern breaks already forn = 6.

Proposition 2.2 r̃(P6) = 10.
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Fig. 2: Forcing a monochromaticP5 (first four moves)
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(e) Case 3’ – brbr

Fig. 3: Forcing a pathP5 (last three moves)
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Proof: For the lower bound consider a natural strategy for Painter: color an edge blue if it does not create
a blue copy ofP6, otherwise use red. Suppose first that the graph constructed by Builder in the first four
moves is not a pathP5. Then clearly Painter will be able to use the color blue in the very next move and
we are done. So, suppose that after first four rounds there is a blue pathP 5. The only way for Builder to
finish the game in the total of nine rounds is to create in next four rounds a redP 5. This is possible only
by using both ends of the blue pathP5, making the last winning move impossible.

The upper bound is achieved by case-by-case analysis shown in Figure 4 (first five moves) and Figure 5
(last five moves). ✷
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Fig. 4: Forcing a monochromaticP6 (first five moves)

Further computer assisted results for small paths can be found in (18; 19). (It has been shown that
r̃(P7) = 12, r̃(P8) = 15, andr̃(P9) = 17. The values for an asymmetric version of the on-line Ramsey
number for paths of lengths at most8 are also determined.) In general we have the following upper bound.

Theorem 2.3 Let k ≥ 1. In 2k − 1 rounds Builder can force Painter to create two vertex disjoint
monochromatic paths (the red one and the blue one) the sum of whose lengths is equal tok.

In particular, r̃(Pn) ≤ 4n− 7 for all n ≥ 2.
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(e) Case 3b – bbbrr
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(f) Case 3c – bbbrr
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Fig. 5: Forcing a pathP6 (last five moves)
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Proof: The proof goes by induction onk. The basis stepk = 1 is trivial. For the inductive step assume
that the statement holds for somek ≥ 1, that is after2k−1 rounds there is a red pathR and a blue pathB
such thatV (R) ∩ V (B) = ∅ and|E(R) ∪ E(B)| = k. Let vR andvB denote any end vertices ofR and
B, respectively (take any isolated vertex asvR or vB if the corresponding path has no edge). If there is no
edgevRvB, then Builder draws the edgevRvB and Painter does her job (note that it is only to Builder’s
advantage if it already exists).

Suppose Painter colors this edge red. Then Builder draws an edge from vertexv B to a new vertexv.
If Painter uses red color, then there are two vertex disjoint monochromatic pathsR ′ = R + vB + v and
B′ = B − vB, with k + 1 edges in total. If Painter colorsvBv blue, the pathsR′ = R andB′ = B + v
satisfy the assertion. If initially Painter colors the edgevBvR blue, then Builder draws an edge fromvR

to a new vertexv instead, and the situation is symmetric.
In order to finish the proof notice that after4n−7 = 2(2n−3)−1 rounds there must be a monochromatic

path with at leastn − 1 edges, that is, a monochromaticPn. ✷

3 Trees
Let f(n) be the maximum value of̃r(T ) taken over all trees withn edges. In (9) Erdős and Graham
proved thatr(T ) ≤ 4e(T ) + 1 for every treeT . From this it follows thatf(n) = O(n2). We show that
this bound cannot be improved asymptotically, that is,f(n) = Θ(n 2). First we derive a general lower
bound forr̃(H) for arbitrary graphs and then present an example that proves the statement. Letτ(H)
denote the smallest number of vertices covering all edges ofH . The size-Ramsey number ofH can be
bounded from below in terms ofτ(H) and the maximum degree∆(H) of a graphH . A similar bound
holds in the on-line case.

Proposition 3.1 r̃(H) ≥ 1
2τ(H)(∆(H) − 1) + e(H) for every graphH .

Proof: Painter’s strategy is to color an edge red as long as the red subgraph has maximum degree strictly
less than∆(H); otherwise she colors an edge blue. So, a red copy ofH will never appear. Suppose a
blue copy ofH has appeared in a graph constructed by Builder. Then at least one end vertex of each blue
edge must be incident with exactly∆(H)− 1 red edges. Hence the red subgraph must have at leastτ(H)
vertices of degree∆(H) − 1 and thus the number of red edges is at least1

2τ(H)(∆(H) − 1). ✷

Now, we are ready to show thatf(n) = Ω(n2). Let Bn be a graph withn edges, obtained from a star
S⌊n/2⌋ = K1,⌊n/2⌋ by subdividing each edge, and with an additional edge attached to the center of the
star ifn is odd.

Corollary 3.2 f(n) ≥ r̃(Bn) ≥ n2

8 + 3n
4 , for everyn ≥ 1.

Proof: We have∆(Bn) = τ(Bn) = ⌈n/2⌉ as each cover must contain a non-center vertex from each
subdivided edge and one extra vertex for an additional edge ifn is odd. ✷

If Builder knows that Painter will follow the strategy from Proposition 3.1, then he can forceB n in(⌈n/2⌉
2

)
+ n = n2

8 + O(n) moves. He starts by building a⌈n/2⌉-clique, which Painter colors entirely red.
From now on, Painter will color any vertex incident to a clique vertex blue. So Builder can force a blue
Bn in n moves by using the clique vertices as subdivision vertices ofBn. Painter can delay her agony a
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little by coloring edges that are incident to the clique and do not create forbidden graph with red, but her
real problem was allowing the red clique.

On the other hand, at mostn2

4 + O(n) moves are enough to force Painter to create monochromaticB n.

Proposition 3.3 r̃(Bn) ≤ n2

4 + 9
2n − 7 for every evenn = 2k ≥ 4.

Proof: Builder starts by playing6k − 5 independent edges. Painter is forced to create a monochromatic
matchingM = {xiyi : i ∈ [3k − 2]}; suppose the edges ofM are blue. Add a new vertexv and edges
vxi for i ∈ [3k − 2]. To avoid creatingBn, Painter must color2k − 1 of these edges with red. Say she
colorsxiyi red fori ∈ [2k − 1]. In the nextk2 steps, Builder introducesk new verticeszl (l ∈ [k]) and
edgeszlxm (for some values ofm), forcing Painter to either create a blue star with center at somez l (thus
finishing a blueBn), or a red matchingM ′ = {zlxml

: l ∈ [k]} (thus finishing a redBn). To do this, he
simply playsk edges betweenzl andk vertices of the formxm, wherexm is not incident with an edge in
M ′.

This takes(6k − 5) + (3k − 2) + k2 edges. Builder can save some edges by being more careful at the
beginning. ✷

If we restrict to trees of bounded degree then even the size-Ramsey numbers are linearly bounded
(cf. (11)).

4 Stars versus trees, cycles, and cliques
In this section we focus on asymmetric version of the on-line Ramsey number where one of the graphs is
a starSn.

It is clear that the Proposition 3.1 can be easily generalized to the asymmetric version we consider.
Since the proof is almost identical, we omit it here.

Proposition 4.1 r̃(G, H) ≥ 1
2 max{τ(H)(∆(G) − 1) + e(H), τ(G)(∆(H) − 1) + e(G)} for arbitrary

graphsG andH .
In particular, r̃(Sn, H) ≥ 1

2τ(H)(n − 1) + e(H).

Before we state a general upper bound we need a few more definitions. Letπ be a permutation of the
vertices ofG. For a vertexv ∈ V (G), let N +

π (v) be the number of neighbors ofv that follow it in the
permutation. Similarly, we defineN −

π (v). Let dπ(G) be the maximum “back degree”, that is,

dπ(G) = max{N−
π (v) : v ∈ V (G)},

andlπ(G) be the number of vertices with no “forward neighbors”, that is,

lπ(G) =
∑

v∈V (G)

δ(N+
π (v) = 0)

whereδ(A) is the Kronecker delta function

δ(A) =

{
1, if A is true
0, otherwise.

Finally, letn(G) denote the number of vertices in a graphG.
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Proposition 4.2 r̃(Sn, H) ≤ minπ dπ(H)(n(H) − lπ(H))(n − 1) + e(H) for any graphH .

Proof: Fix a permutationπ of vertices ofH . We present Builder’s strategy to constructH in an order
yielded by permutationπ. When we consider a new vertexv of H , we choose a new vertexw in the
graph we are constructing and add all edges fromw to previously assigned vertices that correspond to the
neighbors ofv in H . If Painter uses blue color only, we assignw to v and move to the next vertex inH .
Otherwise we try again starting from a new vertexw. In total we can have at most(n(H)− l π(H))(n−1)
retries since that is exactly an upper bound for the number of red edges when Painter is trying to avoid red
Sn and each retry can be associated with a unique red edge generated in the previous try. In each retry we
use at mostdπ(H) edges. ✷

Now, we are ready to prove bounds forr̃(Sn, H) in a few special cases where graphH is any tree,
cycle or clique.

Proposition 4.3 LetT be any tree withe(T ) ≥ 2 edges andl vertices of degree1 (leaves). Then for every
n ∈ N

r̃(Sn, T ) ≤ e(T )n − (l − 1)(n − 1) .

The proof follows immediately from Proposition 4.2 since there is a permutationπ with d π(G) = 1
andlπ(G) = l. We present an alternative proof below.

Proof: Let r ∈ V (T ) be any vertex of degree at least2, and select this vertex as a root of the treeT making
this tree a rooted one. Letd(v) denote the degree of a vertexv in the treeT . In the firstd(r)+n−1 moves
Builder draws a starSd(r)+n−1 forcing Painter to create a blue starSd(r). This is the first level ofT . Then
for every leafv of the blue starSd(r), which is not a leaf ofT , Builder draws a starS(d(v)−1)+(n−1) with
center inv. This creates the second level ofT (see Figure 6). And so on, until a complete blue copy ofT
(or a red copy ofSn) appears. The total number of edges drawn by Builder is

(n − 1)(|V (T )| − l) + e(T ) = e(T )n − (l − 1)(n − 1)

as asserted. ✷
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Fig. 6: Forcing a redK1,n or blueT

In next proposition we show that the on-line Ramsey number for a starS n versus a fixed cycle grows
linearly inn. This is different than in the off-line case, where for odd cycles we have a quadratic growth
(cf. (16; 17)).
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Proposition 4.4 For everyn, k ∈ N, k ≥ 3

k

4
(n + 3) ≤ r̃(Sn, Ck) ≤ nk.

Proof: The lower bound follows immediately from Proposition 4.1 sinceτ(C k) ≥ k/2.
For the upper bound, Builder first forces a blue path withk − 2 edges. By Proposition 4.3 this takes

at mostn(k − 3) + 1 rounds. Letv1 andvk−1 be the two end vertices of this path. Builder draws a star
S2n−1 with center invk−1 and new verticesu1, . . . , u2n−1 as its leaves. Clearly at leastn edges of this
star must be blue. Then he joins these vertices to the vertexv1. If there is no red star yet, then there must
be a vertexui such that both edgesuiv1 anduivk−1 are blue. Hence a blue cycle is created (see Figure 7).
Total number of edges is equal to((k − 3)n + 1) + (2n − 1) + n = kn. ✷

❅
❅❅

�
��

✏✏



✏✏



✏✏



✏✏

❇❇ ✂✂ ❇❇ ✂✂

v1

v2

v3

v4

v5vk−3

vk−2

vk−1

�
�
�
�

� �

�
�

(a) First phase

❅
❅❅

�
��

❅
❅❅

❍❍❍❍❍❍ ✏✏



✏✏



✏✏



✏✏

❇❇ ✂✂ ❇❇ ✂✂

✟✟✟✟✟✟

�
��

v1

v2

v3

v4

v5vk−3

vk−2

vk−1

�
�
�
�

� �

�
�

� � � � �
(b) Second phase

❅
❅❅

�
��

❅
❅❅

❍❍❍❍❍❍



















 ✏✏



✏✏



✏✏



✏✏

❇❇ ✂✂ ❇❇ ✂✂

✟✟✟✟✟✟

�
��

❅
❅❅

❍❍❍❍❍❍

v1

v2

v3

v4

v5vk−3

vk−2

vk−1

�
�
�
�

� �

�
�

� � � � �
(c) Third phase

Fig. 7: Forcing a redK1,n or blueCk

It is clear that better bounds can be achieved with more effort. For example let us mention the following
small improvement. If Painter creates redSn−1 in the first phase, then Builder can start growing a path
from the other direction so that vertexv1 is attached to the red star. Now in the second phase we can
generate one blue edge only (instead ofn as before). This saves at leastmin{n − 1, k − 3} edges. Since
there is no hope for a general exact formula, we are happy with the bound which is optimal up to a
multiplicative constant.

A similar bounds hold for cliquesKk. The bound is optimal up to a factor ofck for some constant
c > 0.

Proposition 4.5 For everyn, k ∈ N, k ≥ 2

1

2
(k − 1)(n − 1) +

(
k

2

)
≤ r̃(Sn, Kk) ≤

(
k

2

)
n .

Proof: Again, the lower bound is a simple consequence of Proposition 4.1 sinceτ(K k) = k − 1.
For the upper bound, letV0 be a set of|V0| = (k − 1)n + 1 vertices. First Builder proposes(k − 1)n

edges of a starS(k−1)n on the setV0. Since Painter is trying to avoid a red star withn edges, at least
(k − 2)n + 1 edges must be colored blue. LetV1 ⊂ V0, |V1| = (k − 2)n + 1 be a set of vertices of degree
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1 connected with a blue edge. In the second phase Builder is drawing a starS (k−2)n onV1 forcing Painter
to use blue color at least(k− 3)n + 1 times. Thus, there is a setV2 ⊂ V1, |V2| = (k− 3)n + 1 of vertices
of degree2 incident with a blue edges only. Repeating this strategy in each phase, Builder eventually
forces Painter to draw either a red starSn or a blue cliqueKk. An example of the game in case ofK1,2

andK4 is shown on Figure 8. Note that the game consists ofk − 1 phases and during theith round, the
Builder is drawing a star with(k − i)n edges. Thus

r̃(Sn, Kk) ≤
k−1∑

i=1

(k − i)n =
k(k − 1)

2
n

and the assertion follows. ✷

✘✘✘✘✘✘
❳❳❳❳❳❳
❅

❅
❅

❅❅

❈
❈
❈
❈
❈
❈

✄
✄
✄
✄
✄
✄

�
�

�
��





 
 
 




(a) First phase

✘✘✘✘✘✘✘✘✘✘✘✘✏✏✏✏✏

❳❳❳❳❳❳
❅

❅
❅

❅❅

❈
❈
❈
❈
❈
❈

✄
✄
✄
✄
✄
✄

�
�

�
��

�
�
�

�
�

�
��

✧
✧

✧
✧

✧
✧

✧✧





 
 
 




(b) Second phase

✘✘✘✘✘✘✘✘✘✘✘✘✏✏✏✏✏✘✘✘✘✘✘
✟✟✟

❳❳❳❳❳❳
❅

❅
❅

❅❅

❈
❈
❈
❈
❈
❈

✄
✄
✄
✄
✄
✄

�
�

�
��

�
�
�

�
�

�
��

✧
✧

✧
✧

✧
✧

✧✧
✟✟✟





 
 
 




(c) Third phase

Fig. 8: Forcing a redK1,n or blueKk

The above results suggest that perhapsr̃(Sn, H) ≤ n · e(H) for every graphH .

5 Discussion
We conclude the paper with some questions for future consideration. LetF be a fixed family of graphs
and letr̃(n) = max{r̃(H) : H ∈ F , |V (H)| = n}. Also let r̂(n) andr(n) be defined analogously for
size-Ramsey and Ramsey numbers of graphs fromF , respectively. Clearly for any classF we have

r̃(n) ≤ r̂(n) ≤
(

r(n)

2

)
.

A general problem is to determine the asymptotic growth of the functionr̃(n) for some basic graph
classes. In particular, to decide whether

lim
n→∞

r̂(n)

r̃(n)
= ∞. (1)

It is natural to expect that (1) should hold for most reasonable families of graphs. Clearly (1) cannot
hold if r̂(n) is linear, but, as we demonstrated, it also does not hold for trees, wherer̂(n) grows quadrat-
ically. We do not know what happens for graphs of bounded degree. A well known theorem of Chvátal,
Rödl, Szemerédi, and Trotter (6) asserts thatr(n) grows linearly for every fixed∆ (hencer̂(n) is at
most quadratic). On the other hand, as proved by Rödl and Szemerédi (22), there are cubic graphs with
quadratic size-Ramsey number.
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It is obvious that the real challenge is in computing the on-line Ramsey numbers for cliques. Therefore,
the following intriguing question was posed by Kurek and Ruciński (14): does (1) hold for the family of
all cliques? A natural strategy for Builder is to mimic a recursive construction giving the upper bound for
classical Ramsey numberr(Kn). This gives for instancẽr(K3) ≤ 8 (in fact, r̃(K3) = 8; the proof of
the lower bound is elementary but nontrivial). Moreover, it has been shown thatr̃(K k) ≤ 2k

(
2k−2
k−1

)
∼

1
2
√

π

√
k4k. The third author of this note, with computer support, showed that an asymmetric version of

the on-line Ramsey number̃r(K3, K4) is equal to17, provided a general upper bound forr̃(K k, Kl),
which gives a slightly better asymptotic upper bound of3

8
√

π
4k

√
k

for a symmetric version of the on-line
Ramsey numbers (see (20) for more details).

References
[1] N. Alon and F.R.K. Chung, Explicit construction of linear sized tolerant networks, Proceedings of the

First Japan Conference on Graph Theory and Applications (Hakone, 1986). Discrete Math.72 (1988),
no. 1-3, 15–19.

[2] J. Beck, On size Ramsey number of paths, trees and cycles I, J. Graph Theory7 (1983) 115–130.

[3] J. Beck, On size Ramsey number of paths, trees and cycles II. Mathematics of Ramsey Theory,
Springer, Berlin, Alorithms and Combin.5 (1990), 34–45.

[4] J. Beck, Achievement games and the probabilistic method, in: Combinatorics, Paul Erdős is Eighty,
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