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We review and extend what is known about the generating functions for consecutive pattern avoiding permutations of
length 4, 5 and beyond, and their asymptotic behaviour. There are respectively, seven length-4 and twenty-five length-
5 consecutive-Wilf classes. D-finite differential equations are known for the reciprocal of the exponential generating
functions for four of the length-4 and eight of the length-5 classes. We give the solutions of some of these ODEs. An
unsolved functional equation is known for one more class of length-4, length-5 and beyond. We give the solution of
this functional equation, and use it to show that the solution is not D-finite.

For three further length-5 c-Wilf classes we give recurrences for two and a differential-functional equation for a third.
For a fourth class we find a new algebraic solution.

We give a polynomial-time algorithm to generate the coefficients of the generating functions which is faster than
existing algorithms, and use this to (a) calculate the asymptotics for all classes of length 4 and length 5 to signif-
icantly greater precision than previously, and (b) use these extended series to search, unsuccessfully, for D-finite
solutions for the unsolved classes, leading us to conjecture that the solutions are not D-finite. We have also searched,
unsuccessfully, for differentially algebraic solutions.
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1 Introduction
Let Sn denote the set of permutations of the first n integers. Given permutations π ∈ Sn and σ ∈ Sk,
k ≤ n, then σ is said to be a pattern in π if, for some subsequence of π of length k, all the elements of the
subsequence occur in the same relative order as do the elements of σ. For example, 312 occurs as a pattern
in the permutation 15234 in three ways, as 523, 524 and 534. It occurs once as a consecutive pattern, as
523. In a consecutive pattern, the elements of σ are contiguous.

The pattern 312 occurs once in the permutation 3412, but does not occur as a consecutive pattern. The
permutation 3412 is said to be a consecutive pattern-avoiding permutation. In this article we denote the
set of pattern-avoiding permutations as Av(312), and the set of consecutive pattern-avoiding permutations
as c-Av(312). To distinguish pattern-avoiding permutations from their consecutive counterpart, the former
are sometimes referred to as classical pattern-avoiding permutations (PAPs).
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The (ordinary) generating function for classical PAPs (and in future we will drop the adjective classical)
is written

Pσ(z) =
∑
n≥0

pn(σ) · zn,

where pn(σ) is the number of permutations of length n that avoid the pattern σ. If Pσ1 = Pσ2 , we
say that σ1 is Wilf-equivalent to σ2. It was independently conjectured by Stanley and Wilf in the 1980s
and subsequently proved by Arratia (1999) and Marcus and Tardos (2004) that pn(σ)1/n is monotone
increasing (Arratia) and bounded from above (Marcus and Tardos), so that

lim
n→∞

pn(σ)1/n = λ(σ)

exists. This limit is called the Stanley-Wilf limit or growth rate of the pattern σ. Thus we see that classical
pattern-avoidance severely attenuates the number of permutations of length n, reducing them from n! to
something that grows only exponentially with n. For classical patterns it is known that all six patterns
of length 3 are Wilf-equivalent, that there are three different Wilf-classes of length 4, sixteen classes of
length 5, ninety-one classes of length 6 and five hundred and ninety-five classes of length 7 (see Kitaev
(2011)).

For consecutive PAPs, the reduction imposed by the requirement of pattern-avoidance is much less
severe. The number of acceptable patterns in this case still grows factorially, so the appropriate generating
function is the exponential generating function,

Cσ(z) =
∑
n≥0

cn(σ)

n!
· zn,

where cn(σ) is the number of permutations of length n that avoid the consecutive pattern σ. If Cσ1 =
Cσ2 , we say that σ1 is c-Wilf-equivalent to σ2. Analogously to the Stanley-Wilf-Marcus-Tardos result for
classical patterns, Elizalde (2006) proved that

lim
n→∞

(
cn(σ)

n!

)1/n

= ρσ

exists, and further that 0.7839 < ρσ < 1, if σ is a pattern of length greater than 3.
For consecutive patterns it is known that there are two different c-Wilf classes of length 3, there are

seven different c-Wilf-classes of length 4, there are twenty-five different c-Wilf-classes of length 5, and
there are ninety-two different c-Wilf-classes of length 6.

It has also been proved by Elizalde (2012) that, among all consecutive patterns σ of a given length
m, ρσ ≤ ρ(1, 2, 3, . . . ,m), and that ρσ ≥ ρ(1, 2, 3, . . . ,m − 2,m,m − 1). A comprehensive review of
consecutive PAPs is given by Elizalde (2015).

Closely related to the value of ρσ are questions of the form and nature of the generating functionCσ(z).
For example, can a closed-form solution to Cσ(z) be found? If not, does Cσ(z) satisfy a functional
equation, or a differential one? Is Cσ(z) rational, algebraic, differentiably finite, differentiably algebraic,
or none of these?

In this paper we consider the enumeration of all c-Wilf-classes of length 4 and length 5. In earlier work
Elizalde and Noy (2003) found the solution for three of the seven length-4 classes. Elizalde and Noy
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(2012) found the solution for a fourth class, and gave an (unsolved) functional equation for a fifth class.
They conjecture that the solution to this fifth class is not D-finite. In Section 2.1 we prove this to be the
case. Our proof relies on showing that the solution has an infinite number of singularities, while a D-finite
function can only have a finite number of singularities. (These arise from the zeros of the polynomial
multiplying the highest derivative in the differential equation.) Another property of D-finite functions
used in the proofs is that an exponential power series is D-finite if and only if the corresponding ordinary
power series is D-finite.

We then find a natural generalisation to certain classes of consecutive patterns of length m ≥ 4, with
solutions and non-D-finiteness following in a similar way. Finally, we find recurrence relations for an
even greater generalisation, though we do not know if these may lead to closed-form solutions. We also
comment on the solution to the known ODEs.

In Section 3 we turn our attention to length-5 classes. The theorems of Elizalde and Noy (2003, 2012)
give D-finite ODEs for eight of the twenty-five classes. We find a new closed-form solution to one c-Wilf
class, and conjecture a solution to a generalisation to length-m classes. For two other classes we find new
recurrences, one of which leads to functional-differential equation, though unfortunately we do not know
how to solve it. For a fourth class we find, but cannot solve, a functional equation.

In Sections 4 and 5 we consider the application of numerical methods. We first outline an efficient,
polynomial time algorithm for enumerating the series coefficients, which can then be followed by use of
the package gfun in Maple to search for a D-finite solution. In this way we reproduce known solutions to
eight of the twenty-five c-Wilf classes of length 5. We typically generate more than 100 coefficients for
length-4 c-PAPs, and 70 coefficients for length-5 c-PAPs. We could readily generate much longer series
(and ocassionally do so), but these are of adequate length for our purposes. The appropriate differential
equations are (with one exception) generated by less than 20 series coefficients, and confirmed by the
subsequent coefficients.

Finally, we use these enumerations to give estimates of the growth constants for all the length-4 and
length-5 classes, accurate to 19 significant digits. The estimates of the growth constants derive from
application of the method of differential approximants, see for example Guttmann (1989) for a description.
While 19 significant digits have been quoted, greater precision can easily be achieved with the available
data, but we assumed that 19 digits is sufficient for most practical purposes. We then use these estimates
to calculate the amplitudes to 17 significant digits.

Similar numerical work has been previously presented by Baxter et al. (2013), who give two algorithms
for the generation of the series coefficients. These algorithms can, with some computational constraints,
be used to prove that two series are in the same c-Wilf class. Baxter et al. (2011b) gives the series
coefficients to length 60 for all c-Wilf classes of length 4 c-PAPs, and to length 40 for all c-Wilf classes
of length 5 c-PAPs. Baxter et al. (2011a) gives algebraic solutions or ODEs for the cluster generating
functions for three of the seven length-4 Wilf classes, and for seven of the length-5 Wilf classes. For
the other c-Wilf classes, functional equations with several catalytic variables are given. Baxter et al.
(2011a) also give numerical estimates of the growth constants and amplitudes, accurate to 10 and 8 digits
respectively. The algorithm we give is faster, but cannot be used to prove that two series are in the
same c-Wilf class (though we have abundant evidence of this from the agreement of the first 70 or more
coefficients).
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2 Consecutive PAPs of length 4
In the case of classical PAPs, it is well known that the 24 possible PAPs of length four can be divided
into three Wilf classes. For consecutive length-4 PAPs, there are seven (see Elizalde and Noy (2003))
equivalence classes, within which each c-PAP has the same asymptotic behaviour. These are:

4.I: 1234 ∼ 4321

4.II: 2413 ∼ 3142

4.III: 2143 ∼ 3412

4.IV: 1324 ∼ 4231

4.V: 1423 ∼ 3241 ∼ 4132 ∼ 2314

4.VI: 1342 ∼ 4213 ∼ 4123 ∼ 2431 ∼ 3124 ∼ 1432 ∼ 2341 ∼ 3214

4.VII: 1243 ∼ 3421 ∼ 4312 ∼ 2134

Elizalde and Noy (2003) proved two powerful theorems, allowing the authors to give the solution of
three of these classes. The first theorem gives the solution for the case when σ is the strictly increas-
ing sequence 1, 2, 3, . . . ,m − 1,m. Then Cm(z) = 1/w(z), where w(z) is the solution of the D-finite
differential equation

m−1∑
i=0

w(i) = 0,

with w(0) = 1, w′(0) = −1, and w(k) = 0 for 2 ≤ k ≤ m− 2. A probabilistic approach to the proof of
this theorem is given by Perarnau (2013).

The second theorem gives the solution when σ is the sequence 1, 2, . . . , a−1, a, τ, a+1, of lengthm+2.
Here a and m are positive integers with a ≤ m, and τ is any permutation of {a + 2, a + 3, . . . ,m + 2}.
Then Cm,a(z) = 1/w(z), where w(z) is the solution of the D-finite differential equation

w(a+1) +
zm−a+1

(m− a+ 1)!
w′ = 0.

The first theorem gives the solution for class 4.I, while the second theorem immediately solves classes
4.VI and 4.VII. The solutions are given by the following.

Theorem 1 (Elizalde and Noy (2003)). For class 4.I, the exponential generating function is given by
1/w(x), where

w
′′′

+ w
′′

+ w′ + w = 0; w(0) = 1, w′(0) = −1, w
′′
(0) = 0.

For class 4.VI, the e.g.f. is given by 1/w(x), where

2w
′′

+ x2w′ = 0; w(0) = 1, w′(0) = −1.

For class 4.VII, the e.g.f. is given by 1/w(x), where

w
′′′

+ xw
′

= 0; w′(0) = 0, w(0) = 1, w′(0) = −1, w
′′
(0) = 0.
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We point out that the solution to the above ODE for class 4.I is

w(x) =
1

2

(
e−x − sin(x) + cos(x)

)
=
∑
n≥0

(4n+ 1− x) · x4n

(4n+ 1)!
.

The solution of the second ODE above can be expressed as integrals of Airy functions, while that of the
third ODE can be expressed in terms of Heun T functions and their integrals.

Later work by Elizalde and Noy (2012) give the solution for class 4.IV:

Theorem 2 (Elizalde and Noy (2012)). For class 4.IV, the exponential generating function is given by
1/w(x), where

xw(v) + (x+ 3)w(iv) + (6x+ 3)w
′′′

+ (5x+ 6)w
′′

+ (8x+ 3)w′ + 4xw = 0;

w(0) = 1, w′(0) = −1, w
′′
(0) = 0, w

′′′
(0) = 0, wiv(0) = 1.

This ODE can be solved in terms of integrals of BesselY and BesselJ functions.
Before we move on to new results, we will give an exceedingly brief overview of the use of Goulden-

Jackson cluster method (see Goulden and Jackson (1979, 2004) and also Elizalde and Noy (2012)). Let
σ be a length-m consecutive permutation pattern. A k-cluster of length n (with respect to σ) is any
permutation π of length n ≥ m such that

• π contains precisely k occurrences of σ,

• every element of π is part of at least one occurrence of σ, and

• any two successive occurrences of σ overlap by at least one element.

For example, 162534 is a 2-cluster of length 6 for the consecutive pattern 1423, while 1523746 is a
2-cluster of length 7.

Let sn,k be the number of k-clusters of length n for a given consecutive pattern σ, with the additional
value s1,0 = 1 (the purpose of this will soon be evident), and define Sσ(t, x) to be the exponential
generating function

Sσ(t, x) =
∑
n,k

sn,kt
k x

n

n!
.

The following theorem, which can be proved via an inclusion-exclusion argument, relates k-clusters to
consecutive pattern avoiding permutations.

Theorem 3 (Goulden and Jackson (2004)). The e.g.f. for permutations avoiding the consecutive pattern
σ is given by

Cσ(x) =
1

1− Sσ(−1, x)
.
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2.1 Class 4.V
In this section we will focus on c-Wilf class 4.V, and in particular on the enumeration of permutations
avoiding the consecutive pattern 1423. The following arguments are discussed by Elizalde and Noy
(2012) in Section 5.1 and also by Dotsenko and Khoroshkin (2013) in Section 4.2.4.

First note that, as illustrated by the examples above, in a k-cluster with respect to 1423, two successive
occurrences of 1423 can overlap by one or two elements. We can use this fact to build a recurrence for
the sequence sn,k, by conditioning on how many successive occurrences of 1423 overlap by two before
the first successive pair which overlap by one. Let π = (π1, π2, . . . , πn) be a k-cluster, with the first
` ≤ k occurrences of 1423 overlapping by two, and then (if ` < k) with the `th and (`+ 1)th occurrences
overlapping by one.

Observe next that π1, π3, . . . , π2`+1 and π2`+2 are fixed, and must take the values 1, 2, . . . , ` + 1 and
` + 2 respectively. The values π2, π4, . . . , π2` can then take any values from the remaining ` + 3, . . . , n
(and must then be arranged in decreasing order). Once these have been chosen, the remainder of the
permutation π2`+2, π2`+3, . . . , n is (after standardisation(i)) a (k − `)-cluster of length n− 2`− 1.

We thus obtain the recurrence

sn,k =
∑

4≤2`+2≤n

(
n− `− 2

`

)
sn−2`−1,k−` for n ≥ 4, (1)

where we impose the “initial conditions” sn,k = 0 for n ≤ 3, except for s1,0 = 1.
If we let tn =

∑
k sn,k(−1)k, then define the ordinary generating function T (x) = 1+

∑
n tnx

n. (Note
that T can be viewed as the o.g.f. counterpart to the e.g.f. S1423(−1, x) defined earlier.) Multiplying (1)
by (−1)kxn and summing then gives the following functional equation, stated as equation (18) by Elizalde
and Noy (2012).

T (x) = 1 +
x

1 + x
T

(
x

1 + x2

)
. (2)

Our first new result is to demonstrate that (2) can be solved by straightforward iteration. To lighten
notation, define

A(x) :=
x

1 + x

B(x) :=
x

1 + x2

Bj(x) := B(Bj−1(x)) with B0(x) := x

Aj(x) := A(Bj(x)).

Then (2) can be rewritten as T (x) = 1 +A(x)T (B(x)).

Theorem 4. The functional equation (2) has the solution

T (x) = 1 +

∞∑
n=0

n∏
j=0

Aj(x) = 1 +

∞∑
n=0

n∏
j=0

Bj(x)

1 +Bj(x)
. (3)

(i) That is, after shifting all elements down so that they become a bona fide permutation on 1, 2, . . . , n− 2`− 1 while maintaining
the same relative order.
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Fig. 1: Plots of A(x) and B(x) respectively.

Proof: The result follows by repeatedly iterating x 7→ B(x). After N iterations, one has the relation

T (x) = 1 +

N−1∑
n=0

n∏
j=0

Aj(x) +

 N∏
j=0

Aj(x)

T (BN+1(x)). (4)

Now Aj(x) = x− x2 +O(x3) while T (Bj(x)) = 1 + x+O(x3). So as N →∞ in (4), the coefficient
of T (BN+1(x)) vanishes (in the sense of formal power series), leaving only (3).

It is often the case that generating functions with solutions like (3) are very difficult to analyse. Fortu-
nately, our solution to T (x) is simple enough to allow us to prove some further properties. In particular,
the following verifies Conjecture 5.1 by Elizalde and Noy (2012).

Theorem 5. The generating function T (x), satisfying (2) and solved by Theorem 4, has an infinite number
of poles in the complex plane, and is thus not differentiably finite.

The behaviour of A(x) and B(x) will be important, so we plot them in Figures 1a and 1b. In particular,
over x ∈ R,

• A(x) has a simple pole at x = −1, and is monotonically increasing from (−1,−∞) to (0, 0),

• B(x) has a local (and global) minimum at (−1,−1/2),

• B(x) monotonically decreases from (−∞, 0) to (−1,−1/2), and then monotonically increases to
(0, 0).

Next, note that if B(x) = t then

x =
1±
√

1− 4t2

2t
=: C±(t). (5)

We will be working in the complex plane, and take the square root in C±(t) to be the principal value.
For the time being we will operate under the assumption that the following proposition is true; we will

return to it later.
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Proposition 1. For every j ≥ 0, the equation

Bj(x) = −1

has at least one root in x ∈ C. Moreover, this root is not a root of Bj′(x) = −1 for any j′ 6= j.

Now for given J , the terms in (4) which contain AJ(x) as a factor can be written as

TJ(x) :=

J−1∏
j=0

Aj(x)

 ·AJ(x) ·

1 +

∞∑
n=J+1

n∏
j=J+1

Aj(x)

 . (6)

Let us write this as TJ(x) = UJ(x) ·AJ(x) · VJ(x).
Let xJ be one of the roots of BJ(x) = −1. Observe that

BJ+1(xJ) = B(BJ(xJ)) = B(−1) = −1/2

BJ+2(xJ) = B(BJ+1(xJ) = B(−1/2) = −2/5

BJ+3(xJ) = B(BJ+2(xJ) = B(−2/5) = −10/29

and so on. It is clear (see Figure 1b) that for J ≥ 0, the sequence (BJ+j(xJ))j≥1 is negative and
increasing, with all values lying between −1/2 and 0. Then

AJ+1(xJ) = A(−1/2) = −1

AJ+2(xJ) = A(−2/5) = −2/3

AJ+3(xJ) = A(−10/29) = −10/19

and so on. It is then clear (see Figure 1a) that for J ≥ 0, the sequence (AJ+j(xJ))j≥1 is negative and
increasing, with all values lying between −1 and 0.

Consider then VJ(x), evaluated at x = xJ . By the above arguments, we have

• VJ(xJ) is independent both of J and of the particular root xJ ,

• the nth term in the infinite sum in VJ(xJ), for n = J + 1, J + 2, . . . is a product of n−J increasing
negative numbers, the first of which is −1.

Thus VJ(xJ) converges to a number v, independent of J and xJ . To 12 decimal places, this number is

v = 0.427119583148 . . .

This takes care of VJ , so we now turn to UJ . Since UJ(x) is the finite product

B0(x)

1 +B0(x)
· B1(x)

1 +B1(x)
· · · BJ−1(x)

1 +BJ−1(x)
,

we are concerned with two possibilities:

• Are any of B0(xJ), . . . , BJ−1(xJ) equal to 0?
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• Are any of B0(xJ), . . . , BJ−1(xJ) equal to −1?

It is straightforward to see that neither of these is possible. In the first case, if BJ−j(xJ) = 0 for some
j ≥ 1, then BJ−j+1(xJ) = B(BJ−j(xJ)) = B(0) = 0, and so on, eventually leading to BJ(xJ) = 0,
which contradicts the fact that BJ(xJ) = −1.

In the second case, if BJ−j(xJ) = −1 for some j ≥ 1, then BJ−j+1(xJ) = B(BJ−j(xJ)) =
B(−1) = −1/2 (see the arguments above for VJ ), and so on, eventually leading to BJ(xJ) > −1, again
a contradiction.

Thus, it follows that UJ(xJ) is some finite non-zero complex number. Unlike VJ(xJ), UJ(xJ) is
dependent on J and xJ .

Proof of Theorem 5 (given Proposition 1): The above arguments establish that TJ(x) has a pole at
x = xJ . It remains to be seen that this pole is not cancelled by some other term in T (x).

Define

RJ(x) := T (x)− TJ(x) = 1 +

J−1∑
n=0

n∏
j=0

Aj(x).

The pole in TJ(x) at x = xJ can only be cancelled if RJ(x) also has a pole at x = xJ . But RJ(x)
is a finite sum, so it can only have a pole if one of its summands has a pole. The summands are finite
products of Ak(x), so if RJ(x) has a pole at x = xJ then one of the Ak(x) must have a pole, ie. one
of B0(x), . . . , BJ−1(x) must be equal to −1 at x = xJ . But it was established above that this is not
possible.

Hence x = xJ is not only a pole of TJ(x), but of T (x) itself. Thus T (x) has an infinite number of
poles (subject to the proof of Proposition 1.)

Proof of Proposition 1: Clearly x0 = −1. For j ≥ 1, this just depends on repeated compositions of
C±(x). Since we only need a single root, we can just stick with C+(x). Then we can use

x1 = C+(−1) = −0.5− 0.866025i

x2 = C+(C+(−1)) = −0.351597 + 1.49853i

x3 = C+(C+(C+(−1))) = −0.0966266− 1.36268i

and so on. Note that the arguments from the proof of Theorem 5 demonstrate that no root in this sequence
can be repeated for different j.

More generally, the full set of poles (ie. all possible xj) are generated by taking all possible combina-
tions of C+ and C−. In this way, one finds

x1 ∈ {C±(−1)} = {−0.5± 0.866025i}
x2 ∈ {C±(C±(−1))} = {−0.351597± 1.49853i,−0.148403± 0.632502i}
x3 ∈ {C±(C±(C±(−1)))} = {−0.0966266± 1.36268i,−0.281881± 1.99093i,

− 0.0517763± 0.730177i,−0.069716± 0.492406i}

and so on.

Proposition 2. For j ≥ 0, let xj be any root of Bj(x) = −1. Then <(xj) < 0.
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Proof: First note that if x = a+ bi with a, b ∈ R and x 6= ±i, then

B(x) =
a(1 + a2 + b2) + b(1− a2 − b2)i

(1 + a2 − b2)2 + (2ab)2
.

In particular, <(B(x)) has the same sign as <(x).
Now let xj satisfy Bj(xj) = −1. Of course Bj(xj) = B(Bj−1(xj)), so by the above observation,

we then have <(Bj−1(xj)) < 0. Then Bj−1(xj) = B(Bj−2(xj)), so <(Bj−2(xj)) < 0. This can be
iterated all the way down to B0(xj) = xj , so we conclude that <(xj) < 0.

Proposition 3. For j ≥ 0 the equation Bj(x) = −1 has 2j distinct roots.

Proof: This is true for j = 0 and j = 1. So take j ≥ 1, and let xj and x′j be two distinct roots of
Bj(x) = −1. By the above arguments, all of

C+(xj), C−(xj), C+(x′j) and C−(x′j)

are roots of Bj+1(x) = −1.
Then (for a contradiction) suppose C+(xj) = C+(x′j). Applying B to both sides (noting that, by

Proposition 2, neither of these is equal to ±i) gives xj = x′j , a contradiction. The same argument can be
applied to show that C−(xj) 6= C−(x′j) and C+(xj) 6= C−(x′j) (with C−(xj) 6= C+(x′j) being a natural
implication of the latter).

It remains to be shown thatC+(xj) 6= C−(xj) (withC+(x′j) 6= C−(x′j) following from this). The only
possible solutions to this equation are xj = ± 1

2 . By Proposition 2 we cannot have xj = 1
2 , so suppose

that xj = − 1
2 . But this too is impossible: if xj = − 1

2 , then we know Bj(xj) for j = 0, 1, 2, . . . is an
increasing sequence (recall Figure 1b), contradicting the fact that Bj(xj) = −1.

Then by induction, there are twice as many roots of Bj+1(x) = −1 than Bj(x) = −1, and since there
is one root for j = 0, the proof is complete.

2.2 Generalising class 4.V to length m

For m ≥ 4 let τm be the consecutive pattern

1m23 . . . (m− 2)(m− 1).

So τ4 = 1423, τ5 = 15234, and so on. The arguments leading to (1) easily generalise, and it follows that
the cluster counts sn,k satisfy the recurrence

sn,k =
∑

m≤(m−2)`+2≤n

(
n− (m− 3)`− 2

`

)
sn−(m−2)`−1,k−` for n ≥ m, (7)

with the initial conditions sn,k = 0 for n < m, except for s1,0 = 1.
The recurrence (7) can be translated into a functional equation in the same way as for class 4.V:

Tm(x) = 1 +
x

1 + x
Tm

(
x

1 + xm−2

)
. (8)
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We will keep A(x) defined as in the previous section, but now generalise B(x), Bj(x) and Aj(x):

Bm(x) :=
x

1 + xm−2

Bmj (x) := Bm(Bmj−1(x)) with Bm0 (x) := x

Amj (x) := A(Bmj (x))

The following then follows mutatis mutandis from Theorem 4, so we omit the proof.

Theorem 6. The functional equation (8) has the solution

Tm(x) = 1 +

∞∑
n=0

n∏
j=0

Amj (x) = 1 +

∞∑
n=0

n∏
j=0

Bmj (x)

1 +Bmj (x)
. (9)

Not only can we solve Tm(x) for any m ≥ 4, we can also generalise Theorem 5.

Theorem 7. The generating function Tm(x), with the solution given by Theorem 6, has an infinite number
of poles in the complex plane, and is thus not differentiably finite.

Similar to the previous section, this result depends on the analogue of Proposition 1, which we assume
to be true for the time being.

Proposition 4. For every m ≥ 4 and j ≥ 0, the equation

Bmj (x) = −1

has at least one root in x ∈ C. Moreover, this root is not a root of Bmj′ (x) = −1 for any j′ 6= j.

Proof of Theorem 7 (given Proposition 4): For even m, the proof of this theorem follows, mutatis
mutandis, the same ideas as for Theorem 5. In particular, Bm(x) is continuous and differentiable over all
of R, with a global minimum at x = ρm ∈ [−1,− 3

4 ), and always satisfies Bm(−1) = − 1
2 .

For odd m, things are a little different. First, generalise TJ(x) as defined in (6) to TmJ (x) in the
obvious way, and let xmJ be one of the roots of BmJ (x) = −1. Now BmJ+1(x) diverges as x → xmJ ,
but BmJ+2(x) → 0, as does every BmJ+j(x) for j ≥ 2. Meanwhile AmJ+1(x) → 1 as x → xmJ , and
AmJ+j(x) → 0 for all j ≥ 2. This implies that only the first term in the infinite sum in V mJ (x) remains
non-zero as x→ xmJ , and hence

V mJ (x)→ 2 as x→ xmJ .

For UmJ (x), we have a similar argument to the previous section that all of the terms in the product are
finite and non-zero: none of the BmJ−j(x) can be 0 at xmJ (or else so too would BmJ ), nor can they be −1
(or else BmJ would either be undefined or 0). So UmJ (x) is a finite, non-zero complex number at x = xmJ .

The final part of the proof (that is, showing that the pole at x = xmJ in TmJ (x) is really a pole of Tm(x))
is exactly the same as that of Theorem 5.

Proof of Proposition 4: This follows the same ideas as for Proposition 1. For Proposition 1 we used
the explicit inverse function of B(x); in general, however, the equation Bm(x) = −1 is a polynomial
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equation of degree m− 2 (namely xm−2 + x+ 1 = 0). Nevertheless, we can still use the same process:

xm1 can be any solution to Bm(x) = −1

xm2 can be any solution to Bm(x) = xm1

xm3 can be any solution to Bm(x) = xm2

and so on. By the same arguments used in the proof of Theorem 7, no root in this sequence can be
repeated.

2.3 A further generalisation
The recurrence (1) and its generalisation (7) are in fact specialisations of an even more general set of
recurrences, though in general we do not know how to solve them as we did in the previous sections.

This time, take m ≥ 4 and let τ be a pattern of the form

1mτ3τ4 . . . τm−1τm,

with the property that τm = τm−1 + 1. Set c ≡ c(τ) = m− τm − 1.

Theorem 8. The cluster counts sn,k for the consecutive pattern τ satisfy the recurrence

sn,k =
∑

m≤(m−2)`+2≤n

(
n− (m− c− 3)`− 2

(c+ 1)`

)
sn−(m−2)`−1,k−` for n ≥ m, (10)

with the initial conditions sn,k = 0 for n < m, except for s1,0 = 1.

Note that the consecutive patterns considered earlier were “boundary cases”, with c = 0.

Proof: Two successive occurrences of τ in a k-cluster can overlap by one or two elements, so we follow
a similar strategy to the one outlined at the start of Section 2.1. Let σ be a k-cluster of length n for τ ,
and say the first ` occurrences of τ in σ overlap by two elements, with the `th and (` + 1)th occurrences
overlapping by one. Let σa1 , σa2 , . . . , σas be the elements of σ, up to and including σ(m−2)`+2, which
satisfy σai ≤ σ(m−2)`+2. Similarly, let σb1 , σb2 , . . . , σbt be the elements of σ, up to σ(m−2)`+2, which
satisfy σbi > σ(m−2)`+2.

By definition of c, we must have t = (c+1)`, and hence s = (m−2)`+2− t = (m−c−3)`+2. The
set {σa1 , . . . σas} is exactly the set {1, 2, . . . , (m− c− 3)`+ 2}, with the order of the σai depending on
(and being fixed by) the particular τ in question. The σbi elements are then free to take any values between
(m−c−3)`+3 and n, with their order again being fixed by τ . The remainder of σ, i.e. σ(m−2)`+2, . . . , σn,
is then (after standardisation) a (k−`)-cluster of length n−(m−2)`−1. The recurrence (10) follows.

3 Consecutive PAPs of length 5
In the case of classical PAPs, it is known (see Kitaev (2011)) that the 120 possible patterns of length
five can be divided into 16 so-called Wilf classes, each of which has the same asymptotic behaviour. For
consecutive, length five PAPs, there are twenty five (see Elizalde (2015)) equivalence classes, each of
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which has the same asymptotic behaviour of its coefficients. These are given below, ordered in terms of
increasing coefficient size (not necessarily asymptotically, but lexicographically):

5.I: 12354 ∼ 21345 ∼ 45321 ∼ 54312

5.II: 12453 ∼ 12543 ∼ 31245 ∼ 32145 ∼ 34521 ∼ 35421 ∼ 54123 ∼ 54213

5.III: 21534 ∼ 23154 ∼ 43512 ∼ 45132

5.IV: 24153 ∼ 25143 ∼ 31524 ∼ 32514 ∼ 34152 ∼ 35142 ∼ 41523 ∼ 45213

5.V: 13452 ∼ 13542 ∼ 14352 ∼ 14532 ∼ 15342 ∼ 15432 ∼ 23451 ∼ 23541

∼ 24351 ∼ 24531 ∼ 25341 ∼ 25431 ∼ 41235 ∼ 41325 ∼ 42135 ∼ 42315

∼ 43125 ∼ 43215 ∼ 51234 ∼ 51324 ∼ 52134 ∼ 52314 ∼ 53124 ∼ 53214

5.VI: 12435 ∼ 13245 ∼ 53421 ∼ 54231

5.VII: 15234 ∼ 23415 ∼ 43251 ∼ 51432

5.VIII: 15423 ∼ 32451 ∼ 34215 ∼ 51243

5.IX: 21354 ∼ 45312

5.X: 21453 ∼ 31254 ∼ 35412 ∼ 45213

5.XI: 13425 ∼ 14235 ∼ 52431 ∼ 53241

5.XII: 14523 ∼ 32541 ∼ 34125 ∼ 52143

5.XIII: 23514 ∼ 25134 ∼ 41532 ∼ 43152

5.XIV: 25413 ∼ 31452 ∼ 35214 ∼ 41253

5.XV: 15324 ∼ 24315 ∼ 42351 ∼ 51342

5.XVI: 12534 ∼ 23145 ∼ 43521 ∼ 54132

5.XVII: 21543 ∼ 32154 ∼ 34512 ∼ 45123

5.XVIII: 14325 ∼ 52341

5.XIX: 13524 ∼ 24135 ∼ 42531 ∼ 53142

5.XX: 25314 ∼ 41352

5.XXI: 24513 ∼ 31542 ∼ 35124 ∼ 42153

5.XXII: 13254 ∼ 21435 ∼ 45231 ∼ 53412

5.XXIII: 15243 ∼ 32415 ∼ 34251 ∼ 51423

5.XXIV: 14253 ∼ 31425 ∼ 35241 ∼ 52413

5.XXV: 12345 ∼ 54321

The solution of class 5.XXV follows from the first theorem of Elizalde and Noy. The exponential
generating function is 1/w(x), where

wiv + w
′′′

+ w
′′

+ w′ + w = 0; w(0) = 1, w′(0) = −1, w
′′
(0) = 0, w

′′′
(0) = 0,

while the solution of classes 5.I, 5.II and 5.V follow from the second theorem. Elizalde and Noy (2012)
proved further results which solve classes 5.VI, 5.XVI and 5.XXII. For class 5.XI Elizalde and Noy also
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prove results which lead to a 13th order ODE for 1/w(z), which we improve to a 7th order ODE in
Section 5. The relevant ODEs are given in Table 1 below. We wish to point out that the solution to the
ODE above for class 5.XXV is

w(x) =
∑
n≥0

(5n+ 1− x) · x5n

(5n+ 1)!
.

For class 5.VII, the results of Section 2.2 give the solution to the cluster generating function, and
demonstrate that it is non-D-finite. It follows that the e.g.f. for this class of c-PAPs is non-D-finite. Class
5.VIII is covered by the results of Section 2.3, and while we can in fact write down a functional equation
for the cluster generating function, it is complicated and we do not know how to solve it.

In the next section we find an explicit, algebraic solution to the cluster generating function for class
5.XI, and conjecture that a generalisation of this holds for certain classes of length m ≥ 4. We will also
find a recurrence for the cluster numbers of class 5.XII, and a differential-functional equation for class
5.XXIII.

3.1 Class 5.XI
We will focus on the consecutive pattern 13425 from class 5.XI. This class, and the generalisations dis-
cussed in Section 3.2, are covered by Elizalde and Noy (2012) in Section 4.2. In that paper, Elizalde and
Noy find explicit D-finite solutions to a family of cPAPs, of the form

134 . . . (s+ 1)2(s+ 2)(s+ 3) . . .m,

where m is the length of the pattern and s + 2 ≤ m ≤ 2s. (Class 5.XI and the generalisations of the
following section are the case s = m − 2.) For clarity we will reproduce here some of the arguments
behind Elizalde and Noy (2012)’s Theorem 4.2, and Theorems 9 and 11 are essentially rewordings of that
theorem. Theorem 10 and Conjectures 1 and 2 are new, however.

As usual, we count k-clusters of length n by conditioning on the number ` of initial occurrences of
13425 which overlap by two elements. Let σ be a k-cluster with ` ≥ 2. There are three possible relative
orderings for σ1, . . . , σ8, namely

σ1 < σ4 < σ2 < σ3 < σ7 < σ5 < σ6 < σ8 (5.XI-1)
σ1 < σ4 < σ2 < σ7 < σ3 < σ5 < σ6 < σ8 (5.XI-2)
σ1 < σ4 < σ7 < σ2 < σ3 < σ5 < σ6 < σ8. (5.XI-3)

Note that the relative ordering of all elements except σ7 is the same throughout.
Similarly if ` ≥ 3, the relative order of {σ1, . . . , σ11}\{σ7, σ10} will be fixed. In the case (5.XI-1),

there will be three possible positions for σ10; in the case (5.XI-2), there will be four possible positions;
and in case (5.XI-3), there will be five possible positions. This generalises as follows: if there are at least
` + 1 ≥ 3 occurrences of 13425 at the start of σ which overlap by two elements, consider the relative
ordering of the first 3`+ 2 elements, and in particular the position of σ3`+1 in that ordering. It can occur
anywhere between the (` + 1)th and the (3` − 1)th positions. Say σ3`+1 is in the pth position in that
ordering. Now also take into the account the positions of the next three terms of σ, i.e. σ3`+3, σ3`+4 and
σ3`+5. The positions of σ3`+3 and σ3`+5 are fixed, but there are 3`+ 2− p possible positions for σ3`+4.

This continues, where at each stage (i.e. each additional occurrence of 13425 which overlaps its pre-
decessor by two) we have between three and 2` + 1 possible choices for σ3`+4. The reader may have
observed the resemblance to the growth of ternary trees:
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• Start with a tree with one node and three leaves, and label the leaves 1, 2, 3 from left to right. All
three leaves are currently active.

• Select leaf i to convert into a node. Label i vanishes, and all leaves with label < i become inactive.
The new leaves are active, and get the labels 4, 5, 6.

• Repeat this process, each time selecting an active leaf to convert into a node, deactivating all leaves
with smaller labels, and adding three new leaves at the new node.

• After n steps, there are n nodes and 2n + 1 leaves. At least three must be active, but they may all
be.

In this way every ternary tree can be constructed in a unique and traceable way. Since it is well-known
that the number of ternary trees with n nodes is 1

2n+1

(
3n
n

)
, we have the following.

Theorem 9 (Elizalde and Noy (2012)’s Theorem 4.2). The cluster counts sn,k for the consecutive pattern
13425 satisfy the recurrence

sn,k =
∑

5≤3`+2≤n

1

2`+ 1

(
3`

`

)
sn−3`−1,k−` for n ≥ 5, (11)

with the initial conditions sn,k = 0 for n < 5, except for s1,0 = 1.

Multiplying (11) by (−1)kxn and summing, we obtain (with the help of Mathematica) the equation

T (x) = 1 + x+ x

[
2√
3x3

sinh

(
1

3
arcsinh

(
3
√

3x3

2

))
− 1

]
(T (x)− 1) . (12)

Theorem 10. The cluster generating function T (x) for the consecutive pattern 13425 has the solution

T (x) =
1 + 2x− F (x)

1 + x− F (x)

where

F (x) =
2√
3x

sinh

(
1

3
arcsinh

(
3
√

3x3

2

))
.

It is an algebraic function, being the root of a cubic polynomial with coefficients in Z[x].

Proof: The solution to T (x) is easily obtained from (12). As for the algebraicity of T (x), this follows from
the algebraicity of F (x), which in turn follows from an application of the standard formula arcsinh(y) =

log(y +
√
y2 + 1). We have found the polynomial of which T (x) is a root with the aid of Mathematica;

it is

1 + 2x+ 6x2 + 12x3 + 8x4 − (3 + 5x+ 15x2 + 24x3 + 12x4)T

+ (3 + 4x+ 12x2 + 15x3 + 6x4)T 2 − (1 + x+ 3x2 + 3x3 + x4)T 3.

Note that since T (x) is algebraic, it is also D-finite, and hence so too is the e.g.f. for permutations
avoiding the consecutive pattern 13425 (a fact already demonstrated by Elizalde and Noy (2012)).
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3.2 Generalising class 5.XI to length m

It is natural to expect that the numbers 1
2`+1

(
3`
`

)
we observed in the last section to generalise. Indeed, it is

well-known that 1
(q−1)n+1

(
qn
n

)
is the number of q-ary trees with n nodes. It is straightforward to see that

the length m patterns which will give the same kind of recurrence as the trees are patterns of the form

τ = 134 . . . (m− 1)2m

for m ≥ 4. For m = 4 this is the pattern 1324, for m = 6 it is 134526, and so on. The consecutive pattern
1324 falls into class 4.IV, whose cluster numbers are indeed known (see Dotsenko and Khoroshkin (2013);
Elizalde and Noy (2012)) to satisfy the recurrence

sn,k =
∑

4≤2`+2≤n

1

`+ 1

(
2`

`

)
sn−2`−1,k−`

with appropriate initial conditions. More generally, we have the following.

Theorem 11 (Elizalde and Noy (2012)’s Theorem 4.2). The cluster numbers sn,k for the consecutive
pattern τ , of length m ≥ 4, satisfy

sn,k =
∑

m≤(m−2)`+2≤n

1

(m− 3)`+ 1

(
(m− 2)`

`

)
sn−(m−2)`−1,k−` for n ≥ m, (13)

with initial conditions sn,k = 0 for n < m, except for s1,0 = 1.

With the aid of Mathematica, we then conjecture the form of the solution for arbitrary m.

Conjecture 1. The cluster generating function T (x) for the pattern τ of length m ≥ 4 is given by

T (x) =
1 + 2x−G(x)

1 + x−G(x)

where G(x) is the generalised hypergeometric function

G(x) = z ·(m−3)F(m−4)

(
1

m− 2
,

2

m− 2
, . . . ,

m− 3

m− 2
;

2

m− 3
,

3

m− 3
, . . . ,

m− 4

m− 3
,
m− 2

m− 3
;

− (m− 2)m−2

(m− 3)m−3
xm−2

)
,

using the notation

pFq(a1, . . . , ap; b1, . . . , bq; z) =

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

· z
n

n!
.

Here, (a)n is the rising factorial

(a)n = a(a+ 1) · · · (a+ n− 1).

We furthermore conjecture the following.
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Conjecture 2. For m ≥ 4, the solution to T (x) given in Conjecture 1 is algebraic, being the root of a
polynomial of degree m− 2.

We have numerically verified this conjecture for m ≤ 7, finding the polynomials for m = 4:

1 + 2x+ 4x2 + 4x3 − (2 + 3x+ 6x2 + 4x3)T + (1 + x+ 2x2 + x3)T 2;

for m = 6:

1 + 2x+ 8x2 + 24x3 + 32x4 + 16x5 − (4 + 7x+ 28x2 + 72x3 + 80x4 + 32x5)T

+ (6 + 9x+ 36x2 + 78x3 + 72x4 + 24x5)T 2 − (4 + 5x+ 20x2 + 36x3 + 28x4 + 8x5)T 3

+ (1 + x+ 4x2 + 6x3 + 4x4 + x5)T 4;

and for m = 7:

1 + 2x+ 10x2 + 40x3 + 80x4 + 80x5 + 32x6− (5 + 9x+ 45x2 + 160x3 + 280x4 + 240x5 + 80x6)T

+(10+16x+80x2+250x3+380x4+280x5+80x6)T 2−(10+14x+70x2+190x3+250x4+160x5+40x6)T 3

+ (5 + 6x+ 30x2 + 70x3 + 80x4 + 45x5 + 10x6)T 4− (1 + x+ 5x2 + 10x3 + 10x4 + 5x5 + x6)T 5.

3.3 Class 5.XII
We will focus on the consecutive pattern 14523 from class 5.XII. The recurrence for sn,k here is relatively
straightforward. We first make the somewhat trivial observation that, if τ = 14523, then there are two
elements of τ (namely τ2 and τ3) which are larger than τ5. Next, let σ be a cluster with ` ≥ 2 (using the
usual definition of `). There are three possible relative orderings for the first 8 elements of σ:

σ1 < σ4 < σ7 < σ8 < σ5 < σ2 < σ3 < σ6

σ1 < σ4 < σ7 < σ8 < σ5 < σ2 < σ6 < σ3

σ1 < σ4 < σ7 < σ8 < σ5 < σ6 < σ2 < σ3.

The pertinent fact here is that there are always four elements which are bigger than σ8. If ` ≥ 3 then there
are 15 possible relative orderings for the first 11 elements of σ (we will not list them all out), but one
can check that there are always six elements bigger than σ11. It is easy to see that this pattern continues:
among the ordering of the first 3` + 2 elements of σ, there are always 2` elements which are bigger than
σ3`+2.

This matters for the following reason: say that the first ` + 1 occurrences of τ in σ overlap by two
elements, with the relative ordering of σ1, . . . , σ3`+2 fixed, and consider the ways in which we can fit
σ3`+3, σ3`+4 and σ3`+5. We must have the ordering

· · · < σ3`+1 < σ3`+4 < σ3`+5 < σ3`+2 < · · · ,

so our only choice is for the position of σ3`+3. The only restriction is that it must be greater than σ3`+2.
We already know that there were previously 2` elements greater than σ3`+2, so we have exactly 2` + 1
possible choices.
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It hence follows that, with exactly the first ` occurrences of 14523 overlapping by two, there are

1× 3× 5× · · · × (2`− 1) = (2`− 1)!!

choices for the relative ordering of σ1, . . . , σ3`+2. Of those, the values of σ1, σ4, . . . , σ3`+1 and σ3`+2

are entirely fixed, and take the values 1, 2, . . . , `+ 2 respectively; we are free to choose the values of the
remaining 2` elements. Thus, we have the following.

Theorem 12. The cluster numbers sn,k for the consecutive pattern 14523 satisfy the recurrence

sn,k =
∑

5≤3`+2≤n

(
n− `− 2

2`

)
(2`− 1)!!sn−3`−1,k−` for n ≥ 5, (14)

with the initial conditions sn,k = 0 for n < 5, except for s1,0 = 1.

Unfortunately, we do not know what kind of functional equation the corresponding generating function
satisfies.

3.4 Class 5.XXIII
We will focus on the consecutive pattern 15243. This one is different to the others we have considered so
far, because two successive occurrences of 15243 in a cluster can overlap by one or three elements, but
not two. It is easy to see that if the first ` occurrences of 15243 overlap by three elements, then there is
only one possible relative ordering of σ1, . . . , σ2`+3. Moreover, the elements σ1, σ3, . . . , σ2`+3 are fixed,
and take the values 1, 2, . . . , ` + 2 respectively; we are free to choose the remaining ` + 1 terms. This
leads to the following.

Theorem 13. The cluster numbers sn,k for the consecutive pattern 15243 satisfy the recurrence

sn,k =
∑

5≤2`+3≤n

(
n− `− 2

`+ 1

)
sn−3`−2,k−` for n ≥ 5, (15)

with initial conditions sn,k = 0 for n < 5, except for s1,0 = 1.

Multiplying (15) by (−1)kxn and summing, we arrive at the following differential-functional equation.

Theorem 14. The cluster generating function T (x) for the consecutive pattern 15243 satisfies the equa-
tion

x3T ′(x) = 1 + x− T
(

x

1 + x2

)
(16)

with initial condition T (0) = 1.

Unfortunately, we do not know how to solve (16).

4 Generating series
Baxter et al. (2013) perform enumeration by a simple recursive technique using dynamic programming
resulting in polynomial time algorithms. The algorithm used to generate these has typically been the
cluster method (see Goulden and Jackson (1979); Elizalde and Noy (2012); Nakamura (2011)). This is a
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very different algorithm to ours, that runs in good time, and can, with some computational constraints, be
used to prove that two series are in the same Wilf class. The faster algorithm we present below is simpler
and easier to analyse, but is not as amenable to definitively proving that two series are in the same Wilf
class. However, it can be used to generate large numbers of terms which provides strong evidence for
Wilf equivalence.

Suppose one wants to enumerate permutations of length n not including a consecutive pattern of length
L. A simple recursive algorithm would build up the permutation one step at a time, at each point consider-
ing all the remaining integers, and rejecting it if, when added to the preceding n− 1 elements, it produces
the undesired pattern.

This simple algorithm will take time proportional to the number of such permutations. A more efficient
algorithm can be created by discarding unnecessary states and using dynamic programming. In particular,
the only thing that matters about elements prior to the last L−1 elements is that those integers are already
taken. Even this is more information than is needed; all one cares about is how many integers are left in
the gaps between the last L − 1 integers. Similarly the actual values of the last L − 1 elements are not
needed, only their relative order.

The number of such states is O(L!nL−1), which is polynomial in n, making such sequences easy to
enumerate.

Furthermore a trivial alteration to the algorithm is to see if there are any possible future integers that,
added to the last L − 1 elements, would produce the undesired pattern. If so, the whole state is rejected.
This causes the enumeration of permutations avoiding L elements, all consecutive except (possibly) the
last.

In this way we have generated series avoiding consecutive permutations of length-4 up to eighty terms,
in some cases, and over 100 terms in others, and of length-5 up to seventy terms.

5 Numerical results

5.1 Searching for differential equations

The D-finiteness of the generating functions for classes 4.I, 4.IV, 4.VI and 4.VII was discussed in Sec-
tion 2, and the non-D-finiteness of class 4.V was proved in Section 2.1. For the two remaining classes,
namely 4.II and 4.III, we have not found a D-finite e.g.f., nor for its reciprocal. It is likely that the corre-
sponding reciprocal of the e.g.f. is not D-finite in those cases. As far as can be tested with the available
series, it is not D-algebraic either.

For consecutive patterns of length 5, we have used the series data to rederive known differential equa-
tions satisfied by eight of the twenty-five generating functions. In each case the exponential generating
function is given by 1

y(x) , where y(x) is D-finite. The eight classes, and their corresponding differential
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equations, are given in Table 1. Note that the differential equation for class 5.XI is

(3600x+ 7920x2 − 1620x3 − 3240x4 − 18549x6)y(x)

+ (4480 + 10800x+ 21840x2 − 1020x3 − 4224x4 − 55647x6)y′(x)

+ (13440 + 13520x+ 18000x2 + 3540x3 + 6768x4 − 12366x5 − 55647x6)y′′(x)

+ (13440 + 11760x+ 2480x2 + 540x3 + 12768x4 − 37098x5 − 21297x6)y′′′(x)

+ (4480 + 11760x+ 6960x2 − 7140x3 + 816x4 − 37098x5 − 26793x6)y(4)(x)

+ (4480 + 2720x− 960x2 + 720x3 + 4056x4 − 12366x5 − 8244x6)y(5)(x)

+ (2720x+ 320x2 − 3120x3 − 480x4 − 12366x5 − 2748x6)y(6)(x)

+ (320x2 − 480x4 − 2748x6)y(7)(x) = 0 (17)

We have not found a D-finite e.g.f., or its reciprocal, for the remaining seventeen classes. It seems
likely that the corresponding reciprocal of the e.g.f. is not D-finite in those cases. As far as can be tested
with the available series, it is not D-algebraic either. Thus it appears that Elizalde and Noy (2003, 2012)
have proved results for all the D-finite cases of c-PAPs of length up to 5. Our only new numerical result
is to reduce the order of the differential equation for class 5.XI from 13 to 9. We subsequently were able
to reduce this from 9 to 7. Then in Section 3.2 we give an algebraic solution to the o.g.f. for this case.

5.2 Estimating the growth rates
For each class Σ of c-PAPs, the coefficients of the ordinary generating function behave asymptotically as

cΣn ∼ CΣ · n! · κnΣ.

The estimate of the growth constant κΣ and amplitudes CΣ, accurate to all quoted digits, for all length 4
classes is given in Table 2, and for all length 5 classes in Table 3.

6 Conclusion
Of the seven length-4 consecutive-Wilf classes we give the ODEs and comment on the solution for four
of these, and give a functional equation, solution and proof of non-D-finiteness for a fifth class. For the
twenty-five length-5 consecutive-Wilf classes we give the ODEs for eight of these, and give a functional
equation, solution and proof of non-D-finiteness for class 5.VII. For class 5.VIII we give a recurrence for
cluster counts, and comment that this yields an ugly and unsolved recurrence for the cluster generating
function. For class 5.XI we reduce the known ODE for the e.g.f from order 13 to order 7, and then give an
algebraic solution to the o.g.f. For class 5.XII we give a recurrence for cluster counts, but cannot solve this.
For class 5.XIII we give a recurrence for cluster counts and show that this yields a differential-functional
equation which we can’t solve.

Thus we have improved the state of our knowledge for one length-4 class and for five length-5 classes.
We have given a fast, polynomial-time algorithm to generate the coefficients, and used this to (a) cal-

culate the asymptotics for all classes of length 4 and length 5 to significantly greater precision than has
previously been reported, and (b) use these extended series to search, unsuccessfully, for D-finite solu-
tions for the unsolved classes, leading us to conjecture that the solutions are not D-finite. We have also
searched, unsuccessfully, for differentially algebraic solutions.
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Class Differential equation Initial conditions

5.I xy′(x) + y(4)(x) = 0
y(0) = 1, y′(0) = −1,

y′′(0) = 0, y′′′(0) = 0

5.II x2y′(x) + 2y′′′(x) = 0 y(0) = 1, y′(0) = −1, y′′(0) = 0

5.V x3y′(x) + 6y′′(x) = 0 y(0) = 1, y′(0) = −1

5.VI y(x) + y′(x) + y(4)(x) = 0
y(0) = 1, y′(0) = −1,

y′′(0) = 0, y′′′(0) = 0

5.XI (17)

y(0) = 1, y′(0) = −1,

y′′(0) = 0, y′′′(0) = 0,

y(4)(0) = 0, y(5)(0) = 1,

y(6)(0) = 0

5.XVI xy′(x) + xy′′(x) + y(4)(x) = 0
y(0) = 1, y′(0) = −1,

y′′(0) = 0, y′′′(0) = 0

5.XXII xy′(x) + y′′(x) + y(4)(x) = 0
y(0) = 1, y′(0) = −1,

y′′(0) = 0, y′′′(0) = 0

5.XXV y(x) + y′(x) + y′′(x) + y′′′(x) + y(4)(x) = 0
y(0) = 1, y′(0) = −1,

y′′(0) = 0, y′′′(0) = 0

Tab. 1: The exponential generating function Cclass(x) = 1
y(x) , where y(x) satisfies the given ODE for

eight of the twenty-five classes of length 5 consecutive PAPs.

Class Σ κΣ CΣ

Class I 0.9630055289154941756 1.076344539715227
Class II 0.9577180134976572362 1.137593123292952
Class III 0.9561742431150784277 1.146540529900785
Class IV 0.9558503134742499890 1.100226245067883
Class V 0.9548260509498783340 1.104489004860327
Class VI 0.9546118344740519438 1.103720832998758
Class VII 0.9528914233250531974 1.114556873900595

Tab. 2: Growth constants κΣ and amplitudes CΣ for the seven classes of length 4 consecutive PAPs.



22 Nicholas R. Beaton, Andrew R. Conway, Anthony J. Guttmann

Class Σ κΣ CΣ

Class I 0.9913880716699268181 1.0359338947290985
Class II 0.9914185408600983479 1.0356740409503498
Class III 0.9914215726255505158 1.0356482525747201
Class IV 0.9914637023566386736 1.0352912840051055
Class V 0.9914787346349870644 1.0351640090771068
Class VI 0.9914031046134865367 1.0358339838201155
Class VII 0.9914152799149738845 1.0357301469691008
Class VIII 0.9914455405535310693 1.0354727912203914
Class IX 0.9914486888810151958 1.0354456527948576
Class X 0.9914905951981662739 1.0350913714694614
Class XI 0.9914573454495660358 1.0354283564589345
Class XII 0.9914991759877895239 1.0350742999782649
Class XIII 0.9915021807789432127 1.0350488441916296
Class XIV 0.9915430268589110657 1.0347070291236631
Class XV 0.9914961218699849309 1.0351275914657668
Class XVI 0.9914962152197285242 1.0351265076491731
Class XVII 0.9915702712612490911 1.0345028067355504
Class XVIII 0.9915374435675450185 1.0348337036858431
Class XIX 0.9915491202315941687 1.0347354953793692
Class XX 0.9915807073163505786 1.0344726469008412
Class XXI 0.9916208625283576837 1.0341385793668625
Class XXII 0.9916009188510841597 1.0345693190404323
Class XXIII 0.9916298962721992117 1.0343256965190087
Class XXIV 0.9918325187738895504 1.0330524632572689
Class XXV 0.9928637443921790385 1.0280679375675015

Tab. 3: Growth constants κΣ and amplitudes CΣ for the twenty-five classes of length 5 consecutive PAPs.
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