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We study two variants of edge-coloring of edge-weighted graphs, namely compact edge-coloring and circular com-

pact edge-coloring. First, we discuss relations between these two coloring models. We prove that every outerplanar

bipartite graph admits a compact edge-coloring and that the decision problem of the existence of compact circu-

lar edge-coloring is NP-complete in general. Then we provide a polynomial time 1.5-approximation algorithm and

pseudo-polynomial exact algorithm for compact circular coloring of odd cycles and prove that it is NP-hard to opti-

mally color these graphs. Finally, we prove that if a path P2 is joined by an edge to an odd cycle then the problem of

the existence of a compact circular coloring becomes NP-complete.

Keywords: edge-weighted graph, compact edge-coloring, interval edge-coloring, compact circular edge-coloring,

NP-completeness, approximation algorithm.

1 Introduction

In the paper we consider two variants of edge-coloring of weighted graphs. Let (G, w) be a weighted

graph, where G = (V (G), E(G)) and w : E(G) 7→ N. For a given positive real r denote by Ir the

interval [0, r] and by Cr a circle of circumference r. Moreover, let J (Ir) and A(Cr) denote the set of

all open subintervals of Ir and the set of all open arcs of Cr, respectively. Then, an edge r-coloring of

G is an assignment c : E(G) 7→ J (Ir) such that |c(e)| = w(e) for every edge e and c(e1) ∩ c(e2) = ∅
for every pair of adjacent edges e1, e2. For a vertex v ∈ V (G) let Bv denote the set of the edges that

are incident to v. An edge r-coloring is said to be compact at v, if
⋃

e∈Bv

c(e), namely the closure of the

union of the intervals assigned to the edges incident to v, forms an interval. An edge r-coloring that is

compact at every vertex v ∈ V (G) is said to be compact.

Notice that a circle Cr can be considered as an interval Ir with identified endpoints. In this way J (Ir)
is transformed into a subset of A(Cr). Therefore, these arcs can be denoted as (a, b), where a < b. The

arcs of A(Cr) that are not inherited from J (Ir) are the open arcs containing point 0, therefore they can be
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Fig. 1: An optimal circular edge-coloring of C5.

denoted as (a, b), where b < a. These notions motivate us to transform the definition of edge-coloring in

such a way that arcs of a circle, instead of intervals, are assigned to the edges. A circular edge r-coloring

of (G, w) is a mapping c : E(G) 7→ A(Cr) such that |c(e)| = w(e) for every edge e and c(e1)∩c(e2) = ∅
for every pair of adjacent edges e1, e2. In the same way as above we provide the definition of compactness

for this coloring model. Namely, a circular edge r-coloring is said to be compact at vertex v ∈ V (G) if⋃
e∈Bv

c(e) forms an arc of Cr or is equal to Cr. Finally, a circular edge r-coloring is compact if it is

compact at every vertex v ∈ V (G).

In the paper we consider edge-colorings only, therefore we often write circular r-coloring and r-

coloring instead of circular edge r-coloring and edge r-coloring, respectively. Moreover, in the case

r-coloring could be misled with circular r-coloring , we write standard r-coloring instead of r-coloring.

At this point we would like to notice that the restriction of the edge weights to positive integers is for

convenience merely. Suppose the weights were rational and c was a standard or circular r-coloring. Then,

we could multiply all the weights by M , the least common multiple of the denominators of the weights,

making all of the weights positive integers. If we also multiplied by M the endpoints of all the colors

assigned by c, we would obtain a standard or circular (M · r)-coloring. Moreover, this transformation

would preserve the compactness property in both coloring models.

In both cases our objective is to minimize the parameter r, namely the length of an interval or the

length of a circle. In the following, we name the parameter r as the number of colors. Clearly, every

r-coloring can be transformed into a circular r-coloring. However, the opposite transformation is not

always possible. Fig. 1 depicts an optimal circular edge-coloring of C5 with all weights equal to 1 [5].

This coloring uses 2.5 colors, while a standard coloring would require at least 3 colors. Notice that the

transformation of an r-coloring into a circular r-coloring preserves the property of compactness.

Both coloring variants can be applied in scheduling theory to represent schedules with no-idles in

models such as biprocessor tasks system or open shop. Consider an automated production system in

which there is a set of tasks, each requiring the simultaneous use of two preassigned machines (processors,

tools, etc.). This situation can be modeled by a graph, whose vertices correspond to the machines and the

edges correspond to the tasks. Then, each schedule of makespan r can be represented by an r-coloring

of such a graph. Moreover, if the production process proceeds in a periodic way, i.e. whenever one set

of tasks is completed, the following one is started immediately, the schedule is modeled by a circular

edge-coloring. In some industrial applications, like chemistry or metallurgy, the processors have to work
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without idle times due to technological or economical constraints. It occurs that a schedule with no idles

on all processors corresponds to a compact coloring in both standard and periodic setting. This motivates

our considerations of compact coloring models. The reader interested further in relations between compact

colorings and schedules fulfilling the no-idle constraint is referred to [3, 8, 9, 12]

There are numerous papers on the problem of compact edge-coloring, often referred to as interval

or consecutive edge-coloring. Surveys on this topic can be found in several books that deal with various

problems in graph coloring [1, 4, 6]. It is known that not every graph admits a compact coloring even if all

weights are equal to 1 and the problem of determining whether a given graph can be colored in a compact

manner is NP-hard, even for bipartite graphs [10]. In the case of arbitrary weights the same problem is

NP-hard even for odd cycles [3]. On the other hand, paths and even cycles admit compact edge-colorings.

However, for these graphs an optimal compact coloring cannot be determined in polynomial time, unless

P=NP [2].

The compact circular coloring variant has attained less attention in the literature. The paper [7] studies

properties of this coloring model in the case of unit weights. The author constructed graphs, for which

optimal compact circular colorings are determined and graphs, for which it is proved that there are no

compact circular colorings. In the papers [11, 12] the authors consider compact circular coloring of

bipartite graphs in the context of application of this coloring model in scheduling, in the cyclic version of

open shop.

Clearly, no compact or compact circular r-coloring exists for r < ∆(G, w), where ∆(G, w) =
maxv∈V (G){

∑
e∈Bv

w(e)} denotes the weighted degree of (G, w). Below, we cite an interesting result

used in the following sections, which classifies graphs for which there exists a compact circular r-coloring

for every weight function w and every r ≥ ∆(G, w).

Theorem 1 ([11]) For every graph G the following two statements are equivalent:

(i) for every weight function w and every r ≥ ∆(G, w) there exists a compact circular r-coloring of

(G, w);

(ii) G is bipartite and outerplanar.

This paper is organized as follows. In the next section (Sec. 2) we discuss the relations between compact

and circular compact colorings. These considerations yield a characterization of the graphs which admit

a standard compact coloring with arbitrary weights on the edges. Moreover, we prove that the decision

problem of existence of a circular compact coloring is NP-complete. Then, we study the problem of

compact circular coloring of odd cycles in Section 3. We prove that a compact circular coloring exists for

every weighted odd cycle and provide an approximation algorithm. Moreover, we prove that an optimal

coloring cannot be determined in polynomial time, unless P=NP and construct a pseudo-polynomial exact

algorithm. Finally, we show that joining a path P2 to a vertex of a cycle makes the problem of colorability

NP-hard.

2 Relations between Standard and Circular Compact Colorings

As it was noticed in the introduction, a compact r-coloring can be transformed into compact circular r-

coloring. The following proposition strengthens this statement. Its proof is based on the ideas presented

in [7] for non-weighted colorings.
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Proposition 2 Suppose that a graph G with a weight function w admits a compact standard edge r-

coloring for some r ≥ ∆(G, w). Then there exists a compact circular s-coloring of (G, w) for every

s ≥ ∆(G, w).

Proof: Let c be a compact r-coloring and let s ≥ ∆(G, w). For a given edge e let c1(e) and c2(e)
denote the left and right endpoint of the interval c(e), respectively. Moreover, for x ≥ 0 we denote by

[x]s the unique y ∈ [0, s), such that x = y + i · s for some integer i. We construct an assignment

c̄ : E(G) 7→ A(Cs) given by the following formula

c̄(e) = ([c1(e)]s, [c2(e)]s).

We claim that c̄ is a compact circular s-coloring.

Clearly, |c(e)| = w(e) for every edge e. Let e1 and e2 be two adjacent edges. Without loss of generality

suppose that c1(e1) < c2(e1) ≤ c1(e2) < c2(e2). Then, c2(e2) ≤ c1(e1) + ∆(G, w), since c is compact.

This together with s ≥ ∆(G, w) yields c̄(e1) ∩ c̄(e2) = ∅, which proves that c̄ is a circular s-coloring.

The proof that c̄ is compact is straightforward. ✷

Suppose that for a given weighted graph (G, w) we have a compact circular r-coloring for some r >∑
e∈E(G) w(e). Then, there exists a point x ∈ Cr such that x 6∈ c(e) for any edge e. Without loss of

generality we may assume that x = 0. Therefore, every arc c(e) can be transformed to an appropriate

interval from J (Ir). In this way we construct an r-coloring of (G, w), which is compact. This gives us

the following proposition.

Proposition 3 If for a given graph G and a weight function w there exists a compact circular r-coloring,

where r >
∑

e∈E(G) w(e), then there exists a compact r-coloring of (G, w).

Propositions 2 and 3 together with Theorem 1 yield the following theorem.

Theorem 4 For every graph G the following two conditions are equivalent:

(i) for every weight function w there exists a compact r-coloring of (G, w) for some r ≥ ∆(G, w);

(ii) G is bipartite and outerplanar.

Proof: (i) ⇒ (ii): Let w be a given weight function. From (i) we obtain that (G, w) has a compact

r-coloring for some r ≥ ∆(G, w), which together with Proposition 2 yields that (G, w) admits a compact

circular s-coloring for every s ≥ ∆(G, w). Since w is arbitrary, Theorem 1 implies that G is both bipartite

and outerplanar.

(ii) ⇒ (i): Let w be any weight function. Put r =
∑

e∈E(G) w(e)+1. From Theorem 1 it follows that

there exists a compact circular r-coloring. Proposition 3 implies that there exists an r-coloring of (G, w)
that is compact. ✷

Note that the proof of Theorem 1 from [11] together with the proof of Proposition 3 leads to a polynomial-

time algorithm for compact coloring of weighted outerplanar bipartite graphs. On the other hand, the

problem of determining the optimal compact coloring for these graphs is NP-hard, since it is already

NP-hard for paths and even cycles [2].

In the following proposition we prove that one cannot determine in polynomial time whether a given

weighted graph admits any compact circular r-coloring, unless P=NP.
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Proposition 5 The following problem is NP-complete: “Given a weighted graph (G, w). Does there exist

a real r such that (G, w) has a compact circular r-coloring?”.

Proof: First we prove that the problem belongs to NP. Note that it is not straightforward, since r and

colors are from continuous domain. It suffices to argue that the answer is positive if and only if there

exists a rational r̄ = p/q, p, q ∈ N, gcd(p, q) = 1, q ≤ p ≤
∑

e∈E(G) w(e) and a compact circular

r̄-coloring c̄ such that c̄(e) = (φ(e)/q, (φ(e)+q ·w(e))/q) for every edge e, where φ(e) ∈ {0, . . . , p−1}
and addition is taken modulo q.

For convenience we assume that G is connected. Let c be a compact circular r-coloring. If r is irrational

we claim that there exists a standard compact coloring which leads to the existence of circular compact

∆(G, w)-coloring by Proposition 2. We can assume that there is an edge e0 for which c(e0) = (0, w(e)),
shifting the colors if needed. Denote by ℓ(e) the left endpoint of c(e) for each edge e. We have ℓ(e0) = 0,

which together with connectivity of G and compactness of c implies that for each edge e there exists an

integer ke such that ℓ(e) ≡ ke (mod r). Since r is irrational, ke is unique. It is easy to observe that

assigning (ke, ke + w(e)) to each edge e gives a standard compact coloring.

Suppose c is a compact circular r-coloring, where r = p/q is rational, gcd(p, q) = 1. We can assume 0
is the left endpoint of a color of some edge, shifting the colors if needed. Then, the compactness property

implies that c satisfies the condition c(e) = (φ(e)/q, (φ(e) + q · w(e))/q) for each edge.

Now we argue that if p >
∑

e∈E(G) w(e) then one could construct a compact circular ∆(G, w)-

coloring. Suppose that c is a compact circular (p/q)-coloring, where p >
∑

e∈E(G) w(e). We assume

that c(e) = (φ(e)/q, (φ(e) + qw(e))/q) for each edge e, where φ(e) ∈ {0, . . . , p− 1}. Then, there exists

some x ∈ {0, . . . , p − 1} that φ(e) 6= x for any edge e. Without loss of generality we assume that x = 0.

Since p and q are coprime, for each y ∈ {1, . . . , p − 1} there exists a unique z(y) ∈ {1, . . . , p − 1} such

that q · z(y) ≡ y (mod p). Using the same argument as that in the proof of Theorem 5 in [7], one can

observe that assigning (z(φ(e)), z(φ(e))+w(e)) to each edge e yields a compact standard edge-coloring.

Thus, we can construct a compact circular ∆(G, w)-coloring by Proposition 2.

To complete the proof we construct a reduction from a problem which is NP-complete to the considered

one. Consider a weighted graph (G, w). Let S =
∑

e∈E(G) w(e). We construct a weighted graph (Ḡ, w̄)

by adding to (G, w) two new vertices connected by an edge of weight S +1. We claim that (G, w) admits

a compact standard r-coloring for some r if and only if (Ḡ, w̄) admits a circular compact q-coloring for

some q.

Suppose there exists a compact standard r-coloring of (G, w). Then, by Proposition 2 there exists a

compact circular q-coloring of (Ḡ, w̄), where q = max{r, S + 1} ≥ ∆(Ḡ, w̄).
Now let c be a compact circular q-coloring of (Ḡ, w̄). Such a coloring restricted to (G, w) would be a

compact circular q-coloring of (G, w). Moreover, q ≥ S + 1, which together with Proposition 3 yields

that (G, w) admits a compact standard q-coloring.

Therefore, we have reduced the problem of the existence of a compact r-coloring for some r to the

problem of the existence of a compact circular q-coloring for some q. Since the former is NP-complete

[10], this completes the proof. ✷

3 Compact Circular Coloring of Odd Cycles
The results of the previous section imply that no efficient algorithm can construct a compact circular

coloring of an arbitrary graph, while the results of [12] provide an algorithm that constructs an optimal
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compact circular coloring of any outerplanar bipartite graph in polynomial time. In the first part of this

section we provide an algorithm for compact circular coloring of odd cycles. Note that determining

whether there exists a standard compact coloring of an odd cycle is NP-hard [3].

Theorem 6 For every weight function w : E(C2k+1) 7→ N of an odd cycle there exists a compact circular

r-coloring for some r ≤ 1.5 · ∆(C2k+1, w).

Proof: Denote the consecutive vertices of the cycle as v0, . . . , v2k and assume that w({v0, v1}) +
w({v1, v2}) = ∆(G, w) and w({v0, v1}) ≥ w({v1, v2}). Let

r = w({v2k, v0}) + w({v0, v1}) + w({v1, v2}).

The following inequalities hold

w({v2k, v0}) ≤ w({v1, v2}) ≤ 0.5 · ∆(C2k+1, w),

which implies that r ≤ 1.5 · ∆(G, w). We construct an assignment c : E(C2k+1) 7→ A(Cr) as follows

c({v0, v1}) = (w({v1, v2}), r − w({v2k, v0})),

c({vi, vi+1}) = (0, w({vi, vi+1})) for i = 1, 3, . . . , 2k − 1,

c({vi, vi+1}) = (r − w({v2k, v0}, r) for i = 2, 4, . . . , 2k,

where v2k+1 = v0. We claim that c is a compact circular r-coloring.

First, consider a fixed vertex vi, where i ∈ {2, 3, . . . , 2k}. Observe that the colors assigned to the edges

incident to vi are (0, a) and (r− b, 0), where a and b are the weights of these edges. This yields that c is a

proper circular r-coloring at vi and that the compactness constraint is fulfilled at vi. In the same way we

check that the restrictions of compact circular coloring are satisfied by c at vertices v0 and v1. ✷

Note that if we follow the steps of the proof of Theorem 6, then we obtain an algorithm for compact

circular coloring of odd cycles which runs in linear time. Moreover, since no circular r-coloring exists for

any r < ∆(G, w), such an algorithm is 1.5-approximate.

Corollary 7 There exists a 1.5-approximation algorithm running in O(n) time for compact circular col-

oring of weighted odd cycles.

Now we prove that the problem of determining an optimal compact circular coloring of an odd cycle is

NP-hard.

Theorem 8 The problem of determining if for a given weighted odd cycle (C2k+1, w) there exists a com-

pact circular ∆(C2k+1, w)-coloring is NP-complete.

Proof: The proof that the considered problem belongs to NP is straightforward. We construct a reduction

from the problem of determining whether a given weighted odd cycle admits a standard compact coloring,

which is known to be NP-hard [3]. Consider a weighted cycle (C, w) – an instance of this problem. Let

e1, . . . , e2k+1 be the consecutive edges of the cycle and let ai be the weight of ei, i = 1, . . . , 2k + 1. We

construct an odd cycle C̄ with 2k + 3 edges f1, . . . , f2k+3 and weights w̄(fi) = ai for i = 1, . . . , 2k + 1
and w̄(f2k+2) = w̄(f2k+3) = S, where S = a1 + . . . + a2k+1. Clearly, ∆(C̄, w̄) = 2S. We claim
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that (C, w) admits any compact standard r-coloring if and only if (C̄, w̄) admits a compact circular 2S-

coloring.

(⇐): Suppose that c is a compact circular 2S-coloring of (C̄, w̄). We can assume, rotating the colors

if needed, that c(f2k+2) = (0, S) and c(f2k+3) = (S, 2S). Then, edge f1 must obtain one of the colors

(0, a1) or (S − a1, S) and edge f2k+1 must obtain one of the colors (2S − a2k+1, 2S) or (S, S + a2k+1).
The compactness of c gives us that

(c(f1) ∪ . . . ∪ c(f2k+1)) ⊂ C2S

is an arc of length at most S. This yields that either c(f1) = (0, a1) and c(f2k+1) = (2S − a2k+1, 2S) or

c(f1) = (S − a1, S) and c(f2k+1) = (S, S + a2k+1). Observe that the former case can be transformed

to the latter by reversing and rotating the coloring, therefore we assume that c(f1) = (S − a1, S) and

c(f2k+1) = (S, S + a2k+1). Using the compactness of c again we obtain that c(fi) is a subinterval

of (a2k+1, 2S − a1) for every i = 1, . . . , 2k + 1. Therefore, we can assign color c(fi) to ei for i =
1, . . . , 2k + 1 obtaining a compact standard 2S-coloring of (C, w).

(⇒): Notice that if there exists any compact r-coloring of (C, w), then there exists a compact S-

coloring. Moreover, such a coloring can be transformed by shifting and if necessary reversing the colors

to a compact 2S-coloring c, such that c(e1) = (S − a1, S) and c(e2k+1) = (S, S + a2k+1). We define an

assignment c̄ : E(C̄) 7→ A(C2S) as follows: c̄(fi) = c(ei) for i = 1, . . . , 2k + 1 and c(e2k+2) = (0, S),
c(e2k+3) = (S, 2S). This gives us a compact circular 2S-coloring of (C̄, w̄). ✷

We have proved that an optimal compact circular edge-coloring cannot be constructed in polynomial

time, unless P=NP. However, we can construct a pseudo-polynomial algorithm that solves this problem.

Consider an odd cycle (C, w) and denote its edges as e1, . . . , en. Let (P,w) be a path of length n, with

edges f1, . . . , fn and weights w(fi) = w(ei). To construct an optimal compact circular edge-coloring of

(C, w) we first find for each fi the set of colors that can be assigned to that edge by some standard compact

coloring c of (P,w) such that c(f1) = (0, w(f1)) and c(fj) is an interval of R for all j = 1, . . . , n. For

each i = 1, . . . , n we construct a set L[i] of the values that can be attained by the left endpoint of c(fi) in

such a coloring. The sets L[i] can be determined using the following dynamic programming formulas

L[1] = {0}, (1)

L[i + 1] = {ℓ − w(fi+1) : ℓ ∈ L[i]} ∪ {ℓ + w(fi) : ℓ ∈ L[i]}, i = 1, . . . , n − 1. (2)

The following proposition provides a relation between standard compact colorings of (P,w) and compact

circular colorings of (C, w).

Proposition 9 Let r ≥ ∆(C, w). A compact circular r-coloring of (C, w) exists if and only if there exists

a compact standard coloring c of (P,w) such that c(f1) = (0, w(f1)) and c(fn) = (ar − w(fn), ar) for

some integer a.

Proof: (⇒) Consider a compact circular r-coloring c̄ of (C, w). Without loss of generality we can assume

that c̄(e1) = (0, w(e1)) and c̄(en) = (r − w(en), r). We construct a compact coloring c of (P,w). First

we put c(f1) = (0, w(f1)) and then we define c(fi+1) using c(fi) for every i = 1, . . . , n− 1. For every i
the left endpoint of c̄(ei+1) is equal to the right endpoint of c̄(ei), or the right endpoint of c̄(ei+1) is equal

to the left endpoint of c̄(ei). In the first case we put c(fi+1) = (ri, ri + w(ei+1)) and in the second case
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we put c(fi+1) = (li −w(ei+1), li), where (li, ri) = c(fi). It is easy to observe that c defined in this way

is a standard compact coloring of (P,w) and that

c̄(ei) = ([li]r, [ri]r).

Therefore, since c̄(en) = (r − w(en), r), we have rn ≡ 0 (mod r), which implies c(fn) = (ar −
w(fn), ar) for some integer a.

(⇐) Consider a compact coloring c of (P,w) such that

c(f1) = (0, w(e1)), c(fn) = (ar − w(fn), ar), (3)

where a ∈ Z and r ≥ ∆(C, w). Denote c(fi) = (li, ri) and put c̄(ei) = ([li]r, [ri]r). We claim that

c̄ is a compact circular r-coloring of (C, w). Using (3) we obtain c̄(e1) = (0, w(e1)) and c̄(en) =
(r − w(en), r). Therefore, the colors of e1 and en are not conflicting and the compactness criterion is

satisfied in the common vertex of e1 and en. Moreover, since c is a compact coloring of path P and

r ≥ ∆(C, w) coloring c̄ must be proper and compact at every other vertex of the cycle (C, w).
✷ Proposition 9 implies that once we have computed L[n] we can find an optimal compact circular

coloring by finding the minimum r ≥ ∆(C, w) such that ar − w(en) ∈ L[n] for some integer a.

Theorem 10 An optimal compact circular coloring of an odd cycle (C, w) can be constructed in O(nW )
time, where W =

∑n

i=1 w(ei).

Proof: First, we derive the sets L[i] for i = 1, . . . , n using formulas (1) and (2). This can be completed

in O(nW ) time, since L[i] contains at most 2W integers for every i = 1, . . . , n.

Then, we must find the minimum r, such that r ≥ ∆(G, w) and ar − w(en) ∈ L[n] for some integer

a. If (−w(en)) ∈ L[n] then obviously r = ∆(C, w). Otherwise, for each ℓ ∈ L[n] we derive

r(ℓ) = |ℓ + w(en)|/⌊|ℓ + w(en)|/∆(G, w)⌋,

where r(ℓ) = +∞ if |ℓ + w(en)| < ∆(G, w). It is easy to observe that r(ℓ) is the minimum real not less

than ∆(G, w) such that a · r(ℓ) = ℓ + w(en) for some a ∈ Z. Therefore, the optimal value r is equal to

r = min{r(ℓ) : ℓ ∈ L(n)}. (4)

Notice that
∑n−1

i=0 w(ei) ∈ L(n) and
∑n

i=0 w(ei) ≥ ∆(G, w), which implies that r defined by (4)

satisfies r < +∞. After we have computed r we can find a compact circular r-coloring of (C, w).
First, backtracking the algorithm for computing L[i], we find a standard coloring c of (P,w) such that

c(f1) = (0, w(f1)) and c(fn) = (ar−w(fn), ar) for some integer a. Finally, putting c̄(ei) = ([li]r, [ri]r),
where (li, ri) = c(fi) for i = 1, . . . , n, we obtain a compact circular r-coloring c̄, in the same way as in

the proof of Proposition 9. ✷

The results we have proved so far provide that odd cycles can be colored in a compact circular way in

polynomial time, while the problem of determining whether for an input graph there exists any compact

circular coloring is NP-complete in general. One may ask, how the structure of the cycle must be made

more complicated to make this problem hard. The following theorem proves that it is NP-hard for an odd

cycle with a path P2 connected to a vertex of the cycle.
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Fig. 2: A graph (G, w̄) constructed in the proof of Theorem 11.

Theorem 11 The following problem is NP-complete: “Given weighted graph (G, w), where G has a

structure of an odd cycle with a path P2 connected to one of its vertices. Does there exist a real r > 0
such that (G, w) admits a compact circular r-coloring?”.

Proof: In the same way as in the proof of Theorem 8 we reduce the problem of determining if there exists

a compact r-coloring of (C2k+1, w) for some r to the considered problem. Let a1, . . . , a2k+1 be the

weights of consecutive edges of (C2k+1, w) and let S = a1 + . . . + a2k+1. Consider a weighted graph

(G, w̄) depicted in Fig. 2. We claim that (G, w̄) admits a compact circular r-coloring for some r if and

only if (C2k+1, w) is standard compact q-colorable for some q.

(⇒): Suppose c is a compact circular r-coloring of (G, w̄). Clearly, r ≥ ∆(G, w̄) = 6S + 2. Without

loss of generality, rotating the coloring if needed, we may assume that either c(f1) = (0, 2S) and c(f2) =
(2S, 4S) or c(f1) = (0, 2S) and c(f2) = (2S + 1, 4S + 1).

Consider the first case. The color of edge e1 is equal to either (r − 2a1, r) or (2S, 2S + 2a1) and the

color of e2k+1 is either (2S − 2a2k+1, 2S) or (4S, 4S + 2a2k+1). However, (c(e1) ∪ . . . ∪ c(e2k+1))
is an arc of length at most 2S, since c is compact, therefore we get that c(e1) = (2S, 2S + 2a1) and

c(e2k+1) = (2S − 2a2k+1, 2S). Moreover, c(ei) ⊂ (0, 4S) for i = 1, . . . , 2k + 1, which yields that c can

be transformed to a compact 4S-coloring of (C2k+1, w).
We claim that the second case cannot occur. If we suppose that c(f1) = (0, 2S) and c(f2) = (2S +

1, 4S+1), in the same way we obtain that c(e1) = (2S, 2S+2a1), c(e2k+1) = (2S−2a2k+1+1, 2S+1).
However, compactness of c yields that c(ei) ⊂ (0, 4S +1), i = 1, . . . , 2k+1 implying that the arcs c(ei),
i = 1, . . . , 2k + 1 either all begin in even points or all begin in odd points – a contradiction.

(⇐): Suppose that there exists a compact standard r-coloring of (C2k+1, w). Then we can transform

it, in the same way as in the proof of Theorem 8, to a compact circular (6S + 2)-coloring. ✷

4 Concluding Remarks

We have studied the complexity of the problem of circular edge-coloring of weighted graphs. The former

results of [11] give a polynomial-time algorithm for circular coloring of outerplanar bipartite graphs, while

coloring general bipartite graphs was proven to be NP-hard [9, 12]. The theorems of the last section extend

these results and yield a nearly complete classification of the complexity of the problem of coloring non-

bipartite graphs. We have proved that it is NP-hard to optimally color weighted odd cycles. Moreover,

Theorem 11 implies that it is not possible to provide a polynomial-time algorithm that constructs any
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compact circular coloring of non-bipartite graphs from any significantly wider class than odd cycles. This

also justifies, why in Theorem 6 and Corollary 7 we have considered such simple graphs as odd cycles.
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