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A graph G is Kr−covered if each vertex of G is contained in a Kr−clique. Let γt(G) denote the total domination

number of G. It has been conjectured that every Kr−covered graph of order n with no Kr−component satisfies

γt(G) ≤ 2n

r+1
. We prove that this conjecture is true for r = 5 and 6.
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1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). We use [6] for terminology and notation

which are not defined here. The open neighborhood NG(v) of a vertex v ∈ V (G) is the set of all vertices

adjacent to v. Its closed neighborhood is NG[v] = NG(v) ∪ {v}. If S is a set of vertices of G, then

N(S) = ∪u∈SN(u) and N [S] = N(S) ∪ S. For the sake of simplicity we write N(u, v) instead of

N({u, v}). For each nonempty set S of vertices, the subgraph induced by S is denoted by G[S]. For an

integer p ≥ 3, a multitriangle of order p is the graph consisting of p − 2 triangles sharing one edge. A

multitriangle of order 3 is thus a triangle.

A set D ⊆ V is a total dominating set if every vertex in V is adjacent to a vertex of D. Obviously every

graph without isolated vertices has a total dominating set. The total domination number, γt(G), is the

minimum cardinality of a total dominating set. If G has q components Gi, then γt(G) =
∑q

i=1
γt(Gi).

As for the domination number, the determination of the total domination number of a graph is NP-hard and

it is interesting to determine good upper bounds on γt(G). Conditions on the density of the graph allow

us to lower such bounds. Here we consider the condition that every vertex is contained in a sufficiently

large clique.

A Kr−component of G is a component isomorphic to a clique Kr. A graph G is Kr-covered, r ≥ 2,

if every vertex of G is contained in a clique Kr, and minimally Kr-covered if it is Kr−covered but

G − e is not Kr−covered for any edge of G. These properties were already considered by Henning and

Swart in [5] under the terms “with no Kr−isolated vertex” or “Property C(1, r)”, and “Property C(2, r)”,

respectively.
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In a Kr−covered graph, a good vertex is a vertex of degree r − 1 and a good clique is a clique Kr

containing a good vertex. If z is a good vertex, we denote by Cz the good clique containing it. The

following results, independently proved in [3] and in [4], will be constantly used throughout the paper.

Theorem A [3, 4] Every edge of a minimally Kr−covered graph is contained in a good clique.

In 2004, Cockayne, Favaron and Mynhardt [1] conjectured that every Kr−covered graph G of order n
with no Kr−component satisfies γt(G) ≤ 2n

r+1
. They proved this conjecture for r = 3, 4. In this paper

we prove it for r = 5 and 6.

2 Proof of the conjecture for r = 5 and r = 6

The proof uses a particular family Fr of minimally Kr−covered graphs which was already considered in

[1, 4]. Recall that the corona of a graph H is obtained from H by adding a pendant edge at each vertex of

H and that the middle graph of H is the line graph of the corona of H(see for instance [2]).

Definition 1 Fr is the family of middle graphs of (r − 1)−regular graphs.

From this definition Fr is the collection of graphs consisting of edge-disjoint cliques of order r, where

each such clique contains exactly one vertex of degree r− 1 and the remaining r− 1 vertices have degree

2(r − 1). Let S be the set of these edge-disjoint cliques. Then each vertex of G of degree r − 1 belongs

to exactly one Kr in S and each vertex of degree 2(r − 1) belongs to exactly two Kr’s in S.

The following result is proved in [1].

Theorem B (See [1]) For r ≥ 3, every graph of order n of Fr satisfies γt(G) < 2n
r+1

.

We can now prove the conjecture for r = 5 and r = 6.

Theorem 1 For r=5 or 6, every Kr−covered graph G of order n with no Kr−component satisfies

γt(G) ≤ 2n
r+1

.

Proof: The proof is by induction on n and the first four claims are established for any value of r ≥ 5. The

statement is obviously true for the smallest possible order r+1 since then γt(G) = 2. Suppose the theorem

to be true for graphs of order less than n and let G be a Kr−covered graph with no Kr−component of

order n ≥ r + 2. Let F be a minimally Kr−covered spanning subgraph of G. Since γt(G) ≤ γt(F ), it

is sufficient to prove γt(F ) ≤ 2n
r+1

.

If F is not connected but has no Kr−component, then applying the induction hypothesis to each com-

ponent of F gives the result.

The case where F is not connected and has some Kr−components has already been considered in [1].

The second part of the proof of Theorem 6 in [1] establishes by induction on n that a graph having a

certain property B(r) satisfies γt(G) ≤ 2n/(r + 1). In the case where a minimal Kr-covered spanning

subgraph F of G has Kr components, the result is proved without using the induction hypothesis B(r).
Hence the same argument holds here. As the proof is rather long, we do not repeat it and refer the reader

to [1].

So we suppose now that we are working in a connected minimal Kr−covered graph F of order n ≥
r + 2. Since F is connected, every vertex of F belongs to an edge and thus has a good neighbor by

Theorem A. For every pair of adjacent vertices u and v, let

P (u, v) = {x ∈ N(u, v) \ {u, v} | N(x) ⊆ N(u, v)}.
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Claim 1 If |P (u, v)| ≥ r − 1 for some pair of adjacent non-good vertices u and v, then γt(F ) ≤ 2n
r+1

.

Proof: Let u′ be any good neighbor of u. By Theorem A, the edge uu′ is contained in a good clique

C. The r − 2 neighbors of u′ different from u are vertices of C and thus are adjacent to u. So every

good neighbor of u, and similarly every good neighbor of v, belongs to P (u, v). Note also that if z ∈
N(u, v) \ (P (u, v) ∪ {u, v}), then z has a neighbor z1 6∈ N(u, v), and so z belongs to a good clique of

the graph F ′ = F [V \ (P (u, v) ∪ {u, v})]. Hence F ′ is Kr−covered.

Let C1, . . . , Cs be the Kr−components of F ′ if any. Obviously (N(w) \ V (Ci)) ⊆ P (u, v) ∪ {u, v}
for each w ∈ V (Ci). Since F is connected, each clique Ci contains at least one vertex wi such that

(N(wi) \ V (Ci)) ∩ (P (u, v) ∪ {u, v}) 6= ∅. From the definition of P (u, v) we have wi ∈ N(u, v). Let

X = P (u, v)∪{u, v}∪(∪s
i=1V (Ci)). The graph F [V \X] is still Kr−covered and has no Kr−component.

By the induction hypothesis, γt(F [V \ X]) ≤ 2|V \X|
r+1

. Moreover {u, v, w1, w2, · · · , ws}, or {u, v} if

s = 0, is a total dominating set of order s + 2 of F [X], and |X| = |P (u, v)| + sr + 2 with s ≥ 0. Hence

if |P (u, v)| ≥ r − 1, then γt(F [X]) ≤ s + 2 ≤ 2|X|
r+1

and we are done. ✷

We suppose henceforth |P (u, v)| ≤ r − 2 for every pair of adjacent non-good vertices of F . Recall that

all the good neighbors of u or v belong to P (u, v). If G consists of p ≥ 2 cliques Kr sharing exactly one

vertex, then n = p(r − 1) + 1 and γt(G) = 2 ≤ 2n/(r + 1). We also suppose in what follows that G has

not this structure, which means that every non-good vertex has at least one non-good neighbor.

Claim 2 Each good clique contains at most r − 4 good vertices.

Proof: Suppose to the contrary that C is a good clique (6= Kr) with more than r − 4 good vertices. Let

z1, z2, · · · , zs with r − 3 ≤ s ≤ r − 1 be the good vertices and u a non-good vertex of C. If u has a

non-good neighbor v not in C, let C′ be a good clique containing uv and z′1, · · · , z
′
t (1 ≤ t ≤ r − 2) the

good vertices of C′. The vertex v belongs to a second good clique C′′ 6= C. Let z′′ be a good vertex of C′′.

Then {z1, · · · , zs, z
′
1, · · · , z

′
t, z

′′} is a subset of P (u, v) of order at least s + 2 ≥ r − 1, a contradiction to

|P (u, v)| ≤ r − 2. Therefore all the non-good neighbors of u belong to C.

Let u, u1, · · · , ur−s−1 be the non-good vertices of C with r − s ≥ 2. Let C′ (C′
1 respectively, possibly

equal to C′) be a second good clique containing u (u1) and let z′ (z′1) be a good vertex of C′ (C′
1). Then

{z1, · · · , zs, z
′, z′1} ⊆ P (u, u1). Since |P (u, u1)| ≤ r − 2, s = r − 3, z′ = z′1 and z′ is the unique good

vertex of the clique C′ = C′
1. Among the r − 1 non-good vertices of C′, at most three are those of C and

thus at least one, say u2, is not in C. Let C′′ be a second good clique containing u2 and z′′ a good vertex

of C′′. Then {z1, · · · , zr−3, z
′, z′′} ⊆ P (u, u2), a contradiction which completes the proof. ✷

Claim 3 No vertex can belong to r − 2 good cliques Kr.

Proof: Assume, to the contrary, that a vertex u belongs to r − 2 good cliques C1, . . . , Cr−2, and let xi

be a good vertex of Ci for 1 ≤ i ≤ r − 2. Let w and t be two non-good vertices of C1 \ {u, x1}. Since

{x1, · · · , xr−2} ⊆ P (u, t) and |P (u, t)| ≤ r − 2, we have w 6∈ P (u, t) and w has a good neighbor w′

not in N(u, t) and thus distinct from x1, · · · , xr−2. But then {x1, · · · , xr−2, w
′} ⊆ P (u, w), which is a

contradiction. ✷

Claim 4 r − 3 good cliques Kr cannot share more than one vertex.
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Proof: Assume, to the contrary, that C1, C2, · · · Cr−3 are r − 3 good Kr’s all containing the (non-good)

vertices u and v, and let xi be a good vertex of Ci for 1 ≤ i ≤ r−3. From |∪r−3

i=1
V (Ci)| ≥ (r−1)+(r−

3) = 2r−4, we get |∪r−3

i=1
V (Ci)\{x1, · · · , xr−3, u, v}| ≥ r−3 ≥ 2 while |P (u, v)\{x1, · · · , xr−3}| ≤ 1.

Therefore at least one vertex z of ∪r−3

i=1
V (Ci) \ {x1, · · · , xr−3, u, v} is not in P (u, v). Let z′ be a good

neighbor of z not in N(u, v). Since {x1, · · · , xr−3, z
′} ⊆ P (u, z) and |P (u, z)| ≤ r − 2, v is not in

P (u, z) and thus belongs to a (r − 2)th good clique. This contradicts Claim 3. ✷

End of the proof of Theorem 1 for r=5

By Claims 2, 3 and 4, each good clique contains exactly one good vertex and four non-good ones, each

non-good vertex is contained in exactly two good K5’s, and two good K5’s intersect in at most one vertex.

Therefore the graph F belongs to the family F5 described above and thus γt(F ) < 2n
6

. This completes

the proof for r = 5.

End of the proof of Theorem 1 for r=6

Henceforth, each good clique is a K6 containing at most two good vertices.

Claim 5 Let C1 and C2 be two good K6’s such that |V (C1) ∩ V (C2)| ≥ 2. Then

1. |V (C) ∩ V (Ci)| ≤ 1 for each other good clique C and i = 1, 2;

2. the clique Ci contains exactly one good vertex for i = 1, 2;

3. each other good clique C intersecting C1 or C2, contains exactly one good vertex.

Proof:

(1) Let u, v ∈ V (C1)∩V (C2) and let C be another good clique in G. Assume, to the contrary, |V (C1)∩
V (C)| ≥ 2. Let x, x1, x2 be good vertices of C, C1 and C2, respectively. Suppose u ∈ C. By Claim

4, v 6∈ C. Let w ∈ V (C) ∩ V (C1) and w 6= u. Since {x, x1, x2} ⊆ P (u, v) and |P (u, v)| ≤ 4,

at least one vertex t of V (C1) \ {u, v, x1, w} is not in P (u, v). Let t′ be a good neighbor of t not

in N(u, v). Now we have {x, x1, x2, t
′} ⊆ P (u, t). Since |P (u, t)| ≤ 4, w is not in P (u, t) and

has a good neighbor w′ not in N(u, t). Then {x, x1, x2, w
′} ⊆ P (u, w). Thus v is not in P (u, w)

and has a good neighbor v′ not in N(u, w). This implies {x, x1, x2, w
′, v′} ⊆ P (v, w) which is a

contradiction. Thus u, v 6∈ V (C). Let w1, w2 ∈ V (C) ∩ V (C1). Since {x, x1, x2} ⊆ P (u, w1) and

|P (u, w1)| ≤ 4, v 6∈ P (u, w1) or w2 6∈ P (u, w1).

First let v 6∈ P (u, w1). Let v′ be a good neighbor of v not in N(u, w1). Now we have {x, x1, x2, v
′} ⊆

P (v, w1). Since |P (v, w1)| ≤ 4, w2 is not in P (v, w1) and has a good neighbor w′
2 not in N(v, w1).

Now we have {x, x1, x2, v
′, w′

2} ⊆ P (v, w2) which is a contradiction.

Now let w2 6∈ P (u, w1). Let w′
2 be a good neighbor of w2 not in N(u, w1). Now we have

{x, x1, x2, w
′
2} ⊆ P (u, w2). Since |P (u, w2)| ≤ 4, v is not in P (u, w2) and has a good neighbor

v′ not in N(u, w2). This implies that |P (v, w2)| ≥ 5 which is a contradiction.

(2) Suppose C1 contains two good vertices x1 and x′
1. Since |P (u, v)| ≤ 4, V (C1 ∪ C2) \ {u, v} has

a non-good vertex, say w, not in P (u, v). Let w′ be a good neighbor of w not in N(u, v). Then

{x1, x
′
1, x2, w

′} ⊆ P (u, w). Hence v is not in P (u, w) and has a good neighbor v′ /∈ N(u, w),
which implies |P (v, w)| ≥ 5, a contradiction.
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(3) Suppose C contains two good vertices y and y′. If C intersects C1 ∪ C2 in u, then {x1, x2, y, y′} ⊆
P (u, v) and there exists a vertex t of V (C1 ∪ C2) \ {u, v} with a good neighbor t′ not in N(u, v).
Then {x1, x2, y, y′, t′} ⊆ P (u, t), a contradiction. If C intersects C1 ∪ C2 in w different from u
and v, then, since {x1, x2, y, y′} ⊆ P (u, w), v has a good neighbor v′ not belonging to N(u, w).
Hence {x1, x2, y, y′, v′} ⊆ P (v, w), a contradiction.

✷

Claim 6 Let three good cliques C1, C2 and C3 share one vertex u. Then

1. |V (C) ∩ V (Ci)| ≤ 1 for each other good clique C and i = 1, 2, 3;

2. for i = 1, 2, 3, each non-good vertex of Ci \ {u} belongs to exactly two good cliques;

3. for i = 1, 2, 3, each clique Ci and each good clique C intersecting one of the Ci’s contains exactly

one good vertex.

Proof:

(1) Suppose that C is a good clique such that |V (C) ∩ V (C1)| ≥ 2. By claim 3, u 6∈ V (C). Let

v, w ∈ V (C)∩V (C1). Let x, x1, x2, x3 be good vertices of C, C1, C2 and C3, respectively. We have

{x, x1, x2, x3} ⊆ P (u, v) and so w is not in P (u, v) and has a good neighbor w′ not in N(u, v).
Then we have |P (u, w)| ≥ 5 which is a contradiction.

(2) If a vertex v 6= u of some Ci belongs to two other good cliques, let v′ and v′′ two good neighbors of

v respectively belonging to these two cliques. Then {x1, x2, x3, v
′, v′′} ⊆ P (u, v), a contradiction.

(3) If, say, C1 has a second good vertex x′
1, then C2 and C3 have one good vertex each, for otherwise

|P (u, v)| ≥ 5 for any neighbor v of u. Hence there exists at least one non-good vertex v belonging

to exactly one of the Ci’s. This vertex v has a good neighbor v′ /∈ {x1, x
′
1, x2, x3} and |P (u, v)| ≥

5, a contradiction. If a good clique C intersecting one of the Ci’s in one vertex v (necessarily different

from u) contains two good neighbors x and x′, then {x1, x2, x3, x, x′} ⊆ P (u, v), a contradiction.

✷

Claim 7 Let C be a good clique containing two good vertices z1, z2. Then

1. each good clique intersects C in at most one vertex;

2. each non-good vertex of C belongs to exactly two good cliques;

3. if C′ is a good clique intersecting C in u, then C′ contains exactly one good vertex, each non-good

vertex of C′ belongs to exactly two good cliques, |V (C′) ∩ V (C1)| ≤ 1 for each good clique C1 and

if |V (C′) ∩ V (C1)| = 1, then C1 contains exactly one good vertex.

Proof: (1) and (2) are consequences of Claim 5 (2) and 6 (3).
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(3) Let u′ be a good vertex of C′, w be a non-good vertex in V (C′) \ {u} and w′ a good neighbor of

w not in N(u). If w has another good neighbor w′′, which can be either a second good vertex of

C′ or of a second clique C1 containing w, or a good vertex of a third good clique containing w,

then {z1, z2, u
′, w′, w′′} ⊆ P (u, w), a contradiction. If a good clique C1 intersects C′ in v and w

(both different from u by (2)), then v /∈ P (u, w) since {z1, z2, u
′, w′} ⊆ P (u, w). Therefore v has

another good neighbor v′ /∈ N(u, w) and {z1, z2, u
′, w′, v′} ⊆ P (u, v), a contradiction.

✷

Let Vi = {u ∈ V (F ) | u belongs to exactly i good cliques}, i = 1, 2, 3. By Claim 2, V1, V2, V3

partition V (F ). Obviously V1 consists of all good vertices of F . Let t be the number of good cliques that

contain two good vertices. Counting the number of edges of F with one endpoint in V1 and another in

V2 ∪ V3, implies by Claim 7 that

5|V1| − 2t = 2|V2| + 4t + 3|V3|.

On the other hand, we have

2n = 2(|V1| + |V2| + |V3|).

It follows from the last two equations

|V1| =
2n

7
+

|V3| + 6t

7
. (1)

The following claim gives the structure of the subgraph induced by V3 in F .

Claim 8 F [V3] is a disjoint union of s cliques with s ≥ |V3|/5.

Proof: Let u and v be two adjacent vertices in V3. If the edge uv belongs to only one good clique Cz ,

let Cu′ and Cu′′ (respectively Cv′ and Cv′′ ) be the other two good cliques containing u (respectively v).

Then {u′, u′′, v′, v′′, z} is a set of five vertices contained in P (u, v), a contradiction. Therefore every

edge joining two vertices in V3 is contained in exactly (by Claim 5) two good cliques. Let now uvw be

a path of F [V3]. Among the three good cliques containing v, two contain uv and two contain vw. Hence

one of them, say Cz , contains {u, v, w} and u and w are adjacent. Moreover, the second good cliques

respectively containing uv and vw are the same by Claim 5. This implies that {u, v, w} is contained in

exactly two good cliques Cz and Cz′ . The preceding arguments show that F [V3] is a disjoint union of s
cliques Qi. Each Qi is a part of the intersection of two good cliques Cz and Cz′ , thus implying |Qi| ≤ 5,

and each vertex u of Qi belongs to a third clique intersecting Cz and Cz′ exactly in u. Finally, since

|Qi| ≤ 5, s ≥ |V3|/5. ✷

We define now the graph F ∗ with vertex set {z ∈ V (F ) | z is a good vertex in F} and two vertices

of F ∗ are adjacent if and only if they belong to the same clique or their corresponding good cliques have

a common vertex. Since F is connected and each edge of F belongs to a good clique, the graph F ∗ is

connected.

Three good vertices z1, z2, z3 form a triangle in F ∗ if and only if

1. the good cliques Cz1
, Cz2

and Cz3
are different and share one vertex,

2. or, say, Cz1
= Cz2

and Cz1
∩ Cz3

6= ∅,
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3. or the three cliques are pairwise intersecting but Cz1
∩ Cz2

∩ Cz3
= ∅.

We only consider the triangles of the first two types and call them respectively 1-triangles and 2-triangles.

A 1-triangle of F ∗ comes from a vertex of V3. From Claim 6 (2), if two 1-triangles z1z2z3 and z′1z
′
2z

′
3

are not disjoint, then they share one edge, say, z1 = z′1 and z2 = z′2. From Claim 8, |V (Cz1
)∩V (Cz2

)| ≥ 2
and each good clique Cz3

and Cz′

3
shares one vertex with Cz1

and Cz2
. Since |V (Cz1

) ∩ V (Cz2
)| ≤ 5, at

most five 1-triangles share a common edge. Hence the 1-triangles of F ∗ form multitriangles MTi of

respective order pi with 3 ≤ pi ≤ 7. We call them multitriangles of type 1 and we associate to each of

them the clique Qi ⊆ V (Cz1
) ∩ V (Cz2

) of order pi − 2 ≤ 5 as described in Claim 8. Therefore there are

s ≥ |V3|/5 multitriangles of type 1 and all of them are disjoint.

A 2-triangle of F ∗ comes from a good clique C of F with two good vertices z1 and z2. By Claim 7, the

four other vertices of C belong to exactly one other good clique and these four good cliques are different.

Hence the edge z1z2 belongs to exactly four 2-triangles forming a multitriangle of order pi = 6, called

multitriangle of type 2. To each multitriangle MTi of type 2 we associate the clique Qi of order pi−2 = 4
of F formed by the non-good vertices of C. There are t multitriangles of type 2, the number of good

cliques with two good vertices. By Claim 7, they are pairwise disjoint and disjoint from the multitriangles

of type 1.

Let F ∗∗ be a spanning subgraph of F ∗ containing all the edges of the multitriangles but no other cycle

(the edges of F ∗∗ not in multitriangles form a spanning tree of the graph of order |V1| −
s+t∑

i=1

(pi − 1)

obtained from F ∗ by contracting each multitriangle into one vertex). We form a subset D of vertices

of F as follows. For each multitriangle MTi of order pi, 0 ≤ i ≤ s + t, put in D the pi − 2 vertices

of its associated clique Qi. For each edge zizj of F ∗∗ not in a multitriangle, put in D one vertex of

Czi
∩ Czj

. The induced subgraph F [D] is connected since F ∗∗ is connected and can be seen as the graph

representative of the 1- and 2-triangles and of the cutting edges of F ∗∗. The set D contains a vertex in

each good clique and thus dominates F . Hence γt(F ) ≤ |D|. Since F ∗∗ contains |V1| −
s+t∑

i=1

(pi − 1)− 1

cutting edges,

|D| =

s+t∑

i=1

(pi − 2) + |V1| −
s+t∑

i=1

(pi − 1) − 1 = |V1| − s − t − 1

with s ≥ |V3|/5. By (1) we get

|D| ≤
2n

7
+

|V3|

7
+

6t

7
−

|V3|

5
− t − 1 <

2n

7
.

This completes the proof of Theorem 1 for r = 6. ✷
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