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Grebinski and Kucherov (1998) and Alon et al. (2004-2005) studied the problem of learning a hidden graph for some

especial cases, such as hamiltonian cycle, cliques, stars, and matchings, which was motivated by some problems in

chemical reactions, molecular biology and genome sequencing. The present study aims to present a generalization

of this problem. Graphs G and H were considered, by assuming that G includes exactly one defective subgraph

isomorphic to H . The purpose is to find the defective subgraph by performing the minimum non-adaptive tests,

where each test is an induced subgraph of the graph G and the test is positive in the case of involving at least one

edge of the defective subgraph H . We present the first upper bound for the number of non-adaptive tests to find

the defective subgraph by using the symmetric and high probability variation of Lovász Local Lemma. Finally, we

present the first non-adaptive randomized algorithm that finds the defective subgraph by at most 3

2
times of this upper

bound with high probability.

Keywords: Group testing on graphs, Non-adaptive algorithm, Combinatorial search, Learning a hidden subgraph

1 Introduction

In the classic group testing problem which was first introduced by Dorfman [11], there is a set of n items

including at most d defective items. The purpose of this problem is to find the defective items with the

minimum number of tests. Every test consists of some items and each test is positive if it includes at least

one defective item. Otherwise, the test is negative. There are two types of algorithms for the group testing

problem, adaptive and non-adaptive. In adaptive algorithm, the outcome of previous tests can be used in

the future tests and in non-adaptive algorithm all tests perform simultaneously and the defective items are

obtained by considering results of all tests.

Regarding some extensions of classical group testing, we can refer to group testing on graphs, complex

group testing, additive model, inhibitor model, etc. (see [12, 13, 17] for more information). Aigner [1]

proposed the problem of group testing on graphs, in which we look for one defective edge of the given

graph G by performing the minimum adaptive tests, where each test is an induced subgraph of the graph

G and the test is positive in the case of involving the defective edge.

In the present paper, the problem of non-adaptive group testing on graphs was considered by assuming

that there is one defective subgraph (not necessarily induced subgraph) of G isomorphic to a graph H
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and our purpose is to find the defective subgraph with minimum number of non-adaptive tests. Each test

F is an induced subgraph of G and the test result is positive if and only if F includes at least one edge

of the defective subgraph. In this study we provide the first non-adaptive algorithm for this problem.

Our problem is a generalization of the problem of non-adaptive learning a hidden subgraph studied in

[2, 4, 14]. In the problem of learning hidden graph, the graph G is a complete graph. In other words, let

H be a family of labeled graphs on the set V = {1, 2, ..., n}. In this problem the goal is to reconstruct

a hidden graph H ∈ H by minimum number of tests, where a test F ⊂ V is positive if the subgraph

of H induced by F , contains at least one edge. Otherwise the test is negative. Alon and Asodi [2] for

the problem of non-adaptive learning a general graph presented a lower bound based on the size of the

maximum independent set. Their bound is almost tight for the random graph G(n, 1
2 ). Chang et al.

[9] provided the best adaptive algorithm that learns the general hidden graph of n vertices, with at most

m logn + 10m + 3n tests when the hidden graph has m edges. Also they proved
⌈

log

m
∑

i=0

(
(

n
2

)

i

)

⌉

adaptive tests are required to identify the hidden graph H(with m edges) drawn from the family of all

graphs with n vertices.

The problem of learning a hidden graph was emphasized in some models as follows:

K-vertex model: In this model, each test has at most k vertices.

Additive model: Based on this model, the result of each test F is the number of edges of H induced by

F . This model is mainly utilized in bioinformatics and was studied in [7, 15].

Shortest path test: In this model, each test u, v indicates the length of the shortest path between u and v
in the hidden graph and if no path exists, it returns ∞. More information about this model and the result

is given in [21]. Further, this model is regarded as a canonical model in the evolutionary tree literature

[16, 18, 22].

There are various families of hidden graphs to study. However, a large number of recent studies have

focused on hamiltonian cycles and matchings [4, 6, 14], stars and cliques [2], graph of bounded degree

[7, 15], general graphs [5, 7] . Here, we present a short survey of known results on these problems by

using adaptive and non-adaptive algorithms.

Grebinski and Kucherov [14] suggested an adaptive algorithm to learn a hidden Hamiltonian cycle by

2n logn tests, which achieves the information lower bound for the number of tests needed. Further, Chang

et al.[8] improved their results to (1 + o(1))n logn.

Alon et al. [4] proposed an upper bound (12 + o(1))
(

n
2

)

on learning a hidden matching using non-

adaptive tests. Bouvel et al. [7] developed an adaptive algorithm to learn a hidden matching with at most

(1 + o(1))n log n tests. In addition, Chang et al. [8] improved their result to (1 + o(1))n log n
2 .

Alon and Asodi [2] developed an upper bound O(n log2 n) on learning a hidden clique using non-

adaptive tests. Also they proved an upper bound k3 logn on learning a hidden K1,k using non-adaptive

tests. Bouvel et al. [7] presented two adaptive algorithms to learn hidden star and hidden clique with

at most 2n tests. Chang et al. [8] improved their results on learning hidden star and hidden clique to

(1 + o(1))n and n+ log n, respectively.

Grebinski and Kucherov [15] gave tight bound of θ(dn) and θ( n2

logn
) non-adaptive tests on learning

a hidden d-degree-bounded and general graphs in additive model, respectively. Angluin and Chen [5]

proved that a hidden general graph can be identified with 12m logn adaptive tests where m (unknown) is

the number of edges in the hidden graph.

Group testing can be implemented in finding pattern in data, DNA library screening, and so on (see
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[12, 13, 19, 20] for an overview of results and more applications). Learning hidden graph, especially

hamiltonian cycle and matchings, is mostly applied in genome sequencing, DNA physical mapping, chem-

ical reactions and molecular biology (see [5, 8, 14, 23] for more information about these applications).

Regarding the present study, the main motive behind investigating the problem of non-adaptive group

testing on graphs is the application of this problem in chemical reactions. In chemical reactions, we are

dealing with a set of chemicals, some pairs of which may involve a reaction. Moreover, before testing, we

know some pairs have no reaction. When some chemicals are combined in one test, a reaction takes place

if and only if at least one pair of the chemicals reacts in the test. The present study aimed to identify which

pairs are reacted using as few tests as possible. Therefore, we can reformulate this problem as follows.

Suppose that there are n vertices and two vertices u and v are adjacent if and only if two chemicals u and

v may involve a reaction. The reaction of each pair of the chemicals indicates a defective edge and finding

all there types of pairs is equal to find the defective subgraph. As we know some pairs have no reaction,

the graph G is not necessarily a complete graph.

2 Notation

Throughout this paper, we suppose that H is a subgraph of G with k edges. Moreover, we assume that G
contains exactly one defective subgraph isomorphic to H .

We denote the maximum degree of H by ∆ = ∆(H). Also, G[X ] denotes the subgraph of G induced

by X ∩ V (G) and for any vertex v ∈ G, NH(v) stands for the set of neighbours of the vertex v in the

graph H . Hereafter, we assume that the subgraph H has no isolated vertex, because in the problem of

group testing on graphs, just edges are defective.

3 Main result

Throughout this paper, let H1, H2, . . . , Hm be all the subgraphs of G isomorphic to H . For 1 ≤ l ≤ t,
let Fl be a random set obtained by choosing each vertex of V (G) randomly and independently with

probability p. For simplicity of notation we write Fl as an induced subgraph of G on the vertices of Fl.

For the random subset F of V (G), we say the random test F = G[F ], distinguishes between two distinct

subgraphs Hi and Hj if and only if F contains an edge of one of the subgraphs Hi and Hj and contains

no edge of the other. In other words exactly one of the following events happens

E(F ∩Hi) 6= ∅ and E(F ∩Hj) = ∅

or

E(F ∩Hi) = ∅ and E(F ∩Hj) 6= ∅

For any i, j, l, where 1 ≤ i 6= j ≤ m and 1 ≤ l ≤ t, we define Al
i,j to be the event that the test

Fl cannot distinguish between Hi and Hj . Also, let Ai,j denote the event where there is no test F ∈
{F1, F2, . . . , Ft} that distinguishes between Hi and Hj . So we would like to bound the probability

that none of the bad events Ai,j occur. In such cases, when there is some relatively small amount of

dependence between events, one can use a powerful generalization of the union bound, known as the

Lovász Local Lemma. The main device in establishing the Lovász Local Lemma is a graph called the

dependency graph. Let A1, A2, . . . , An be events in an arbitrary probability space. A graph D = (V,E)
on the set of vertices V = {1, 2, . . . , n} is a dependency graph for events A1, A2, . . . , An if for each
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1 ≤ i ≤ n the event Ai is mutually independent of all the events {Aj : {i, j} /∈ E}. We state the Lovász

Local Lemma as follows.

Lemma A. [3] (Lovász Local Lemma, Symmetric Case). Suppose that A1, A2, . . . , An are events in a

probability space with Pr(Ai) ≤ p for all i. If the maximum degree in the dependency graph of these

events is d, and if ep(d+ 1) ≤ 1, then

Pr
(

n
⋂

i=1

Ai

)

> 0,

where e is the basis of the natural logarithm.

To find the maximum degree in the dependency graph of the events Ai,j , we define the parameter

rG(H) as follows. Set rG(H,Hi) to be the number of subgraphs of G isomorphic to H have common

vertex with Hi, i.e., rG(H,Hi) = |{Hj : 1 ≤ j ≤ m, j 6= i, V (Hi) ∩ V (Hj) 6= ∅}|. Also, define

rG(H) = max
1≤i≤m

rG(H,Hi).

In Theorem 1, we show that there are t tests, F1, F2, . . . , Ft, such that for every i and j, there is a test

F ∈ {F1, F2, . . . , Ft} that distinguishes between Hi and Hj . So if Hi is the defective subgraph, then for

every non-defective subgraph Hj , there exists a test F ∈ {F1, F2, . . . , Ft} that distinguishes between the

defective subgraph Hi and non-defective subgraph Hj . Therefore, by these tests we can find the defective

subgraph.

Theorem 1. Let H be the defective subgraph of G and H1, H2, . . . , Hm be all the subgraphs of G iso-

morphic to H . There are t induced subgraphs F1, . . . , Ft of G such that for each pair of Hi and Hj , at

least one of F1, . . . , Ft can distinguish between Hi and Hj , where k = |E(H)|, ∆ = ∆(H),

t = 1 +

⌈

ln(4erG(H)) + lnm

ln 1
1−Pk,∆

⌉

,

Pk,∆ = 1
2k∆

(

1− 1
2∆

)2∆−1
(

1−
√

1
2k∆

(

1− 1
2∆

)∆−1
)2∆−2

, and e is the basis of the natural loga-

rithm.

In order to prove Theorem 1, first we should find the probability that tests F1, F2, . . . , Ft, distinguish

between each pair of subgraphsHi and Hj . Thus, finding the upper bound for the probability of occurring

the bad eventAi,j is essential. Accordingly, we should find the lower bound of probability that the random

test Fl can distinguish between two subgraphs Hi and Hj .

In the next theorem, based on some following lemmas, we show that the probability of distinguishing

between Hi and Hj has the minimum value whenever V (Hi) = V (Hj) and |E(Hi) \ E(Hj)| = 1.

Theorem 2. Let k = |E(H)| and ∆ = ∆(H). For every 1 ≤ i 6= j ≤ m and 1 ≤ l ≤ t, we have

Pr
(

Al
i,j

)

≥ 2p2(1 − p)2∆(1− ǫ), (1)

where p =
√

ǫ
k
(1− ǫ)

∆−1
.
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Lemma 1. Let T be a graph with n vertices, k edges, and maximum degree ∆. Pick, randomly and

independently, each vertex of T with probability p, where p =
√

ǫ
k
(1 − ǫ

k
)(∆−1). If F is the set of all

chosen vertices, then T [F ] has no edges, with probability at least 1− ǫ.

To prove this lemma, we need high probability variation of Lovász Local Lemma.

Lemma B. [10] Let B1, B2, . . . , Bk be events in a probability space. Suppose that each event Bi is

independent of all the events Bj but at most d. For 1 ≤ i ≤ k and 0 < ǫ < 1, if Pr(Bi) ≤
ǫ

k
(1 −

ǫ

k
)d,

then Pr
(

k
⋂

i=1

Bi

)

> 1− ǫ.

Proof of Lemma 1: Let E(T ) = {e1, e2, . . . , ek}. For 1 ≤ i ≤ k, we define Bi to be the event that

ei ∈ E(T [F ]), so Pr(Bi) = p2. Since vertices are chosen randomly and independently, the event Bi

is independent of the event Bj if and only if edges ei and ej have no common vertex. So the maximum

degree of the dependency graph is at most 2(∆ − 1). Since p2 ≤
ǫ

k

(

1−
ǫ

k

)2(∆−1)

, by Lemma B,

Pr
(

k
⋂

i=1

Bi

)

> 1− ǫ. Hence, T [F ] has no edges, with probability at least 1− ǫ. ✷

To find the probability of distinguishing between Hi and Hj and then prove Theorem 2, we consider

the following three cases.

Case 1: V (Hi) = V (Hj), |E(Hi) \ E(Hj)| = 1.

Case 2: |V (Hi) \ V (Hj)| ≥ 1.

Case 3: The induced subgraph on V (Hi)− V (Hj) has at least one edge.

Lemma 2. If V (Hi) = V (Hj) and |E(Hi) \ E(Hj)| = 1, then

Pr
(

E(Fl ∩Hi) 6= ∅, E(Fl ∩Hj) = ∅

)

≥ p2(1 − p)2∆(1 − ǫ),

where p =
√

ǫ
k
(1− ǫ)

∆−1
.

Proof: Let e = {u, v} ∈ E(Hi) \ E(Hj). Consider the induced subgraph H ′ of G, where V (H ′) =

V (Hj) \
(

u ∪ v ∪ NHj
(u) ∪ NHj

(v)
)

. Note that if u, v ∈ Fl and Hj ∩ Fl has no edges of Hj , then

E(Fl ∩Hi) 6= ∅ and E(Fl ∩Hj) = ∅. Also, one can see that u, v ∈ Fl and Hj [Fl] has no edges if the

following events hold

1. u, v ∈ Fl,

2. NHj
(u) ∩ Fl = ∅ and NHj

(v) ∩ Fl = ∅,

3. H ′[Fl] has no edges.
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It is straightforward to check that the aforementioned events are independent. Also, one can see that the

event u, v ∈ Fl occurs with probability p2. Since |NHj
(u) ∪NHj

(v)| ≤ 2∆, we have

Pr
(

NHj
(u) ∩ Fl = ∅, NHj

(v) ∩ Fl = ∅

)

=

Pr
(

Fl ∩
(

NHj
(u) ∪NHj

(v) \ {u, v}
)

= ∅

)

≥ (1− p)2∆.

Set E(H ′) = k′. If k′ = 0, then Fl ∩H ′ has no edges and Pr
(

E(Fl ∩H ′) = ∅

)

= 1. Suppose that

k′ ≥ 1. Since k ≥ k′, we have p2 =
ǫ

k
(1 − ǫ)2∆−2 ≤

ǫ

k′
(1 −

ǫ

k′
)2∆−2. Each vertex of the induced

subgraph H ′ is chosen with probability p. So by Lemma 1, the induced subgraph on Fl ∩ V (H ′) has no

edges, with probability at least 1 − ǫ. In other words, Pr
(

E(Fl ∩ H ′) = ∅

)

≥ 1 − ǫ. Since the events

are independent, we have

Pr
(

E(Fl ∩Hi) 6= ∅, E(Fl ∩Hj) = ∅

)

≥ p2(1 − p)2∆(1 − ǫ),

as desired. ✷

Lemma 3. If |V (Hi) \ V (Hj)| ≥ 1, then

Pr
(

E(Fl ∩Hi) 6= ∅, E(Fl ∩Hj) = ∅

)

≥ p2(1− p)∆(1− ǫ),

where p =
√

ǫ
k
(1− ǫ)

∆−1
.

Proof: Since H has no isolated vertex, there exists at least one edge e = {u, v} ∈ E(Hi) \ E(Hj). Let

v ∈ V (Hi) ∩ V (Hj) and u ∈ V (Hi) \ V (Hj). Suppose that H ′ is an induced subgraph of Hj , where

V (H ′) = V (Hj) \ (v ∪N(v)). Set |E(H ′)| = k′. Similar to the proof of Lemma 2, E(Fl ∩Hi) 6= ∅

and E(Fl ∩Hj) = ∅ if the following independent events hold

1. u, v ∈ Fl,

2. NHj
(v) ∩ Fl = ∅,

3. H ′[Fl] has no edges.

Since |NHj
(v)| ≤ ∆, the probability that NHj

(v) ∩ Fl = ∅ is at least (1 − p)∆. The rest of proof is

similar to Lemma 2, so

Pr
(

E(Fl ∩Hi) 6= ∅, E(Fl ∩Hj) = ∅

)

≥ p2(1− p)∆(1− ǫ),

as desired. ✷

Lemma 4. If the induced subgraph on V (Hi) \ V (Hj) has at least one edge, then

Pr
(

E(Fl ∩Hi) 6= ∅, E(Fl ∩Hj) = ∅

)

≥ p2(1− ǫ),

where p =
√

ǫ
k
(1− ǫ)

∆−1
.
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Proof: Let e = (u, v) ∈ E(Hi) \ E(Hj). If the following independent events hold

1. u, v ∈ Fl,

2. Hj [Fl] has no edges,

then E(Fl∩Hi) 6= ∅ and E(Fl∩Hj) = ∅. Since p2 =
ǫ

k
(1− ǫ)

2∆−2
≤

ǫ

k

(

1−
ǫ

k

)2∆−2

, by Lemma 1,

Pr (E(Fl ∩Hj) = ∅) ≥ 1− ǫ. Also one can see that

Pr
(

E(Fl ∩Hi) 6= ∅

)

≥ Pr
(

e ∈ E(Fl)
)

= Pr
(

u, v ∈ Fl

)

= p2.

Consequently, Pr
(

E(Fl ∩Hi) 6= ∅, E(Fl ∩Hj) = ∅

)

≥ p2(1− ǫ). ✷

Proof of Theorem 2: Let E(Hi)∩E(Hj) = {f1, f2, . . . , fr} and E(Hi)\E(Hj) = {e1, e2, . . . , ek−r}.

As previously mentioned, the event Al
i,j occurs if and only if the test Fl distinguish between Hi and Hj .

In other words,

E(Fl ∩Hi) 6= ∅ and E(Fl ∩Hj) = ∅

or

E(Fl ∩Hj) 6= ∅ and E(Fl ∩Hi) = ∅.

It is easy to check that

Pr
(

Al
i,j

)

= Pr
(

E(Fl ∩Hi) 6= ∅, E(Fl ∩Hj) = ∅

)

+ Pr
(

E(Fl ∩Hj) 6= ∅, E(Fl ∩Hi) = ∅

)

.

In the following we prove Pr
(

E(Fl ∩Hi) 6= ∅, E(Fl ∩Hj) = ∅

)

≥ p2(1 − p)2∆(1 − ǫ) and with the

completely similar proof we can prove Pr
(

E(Fl ∩Hj) 6= ∅, E(Fl ∩Hi) = ∅

)

≥ p2(1− p)2∆(1− ǫ).
It is easy to check, for every 1 ≤ q ≤ k − r,

Pr
(

E(Fl ∩Hi) 6= ∅, E(Fl ∩Hj) = ∅

)

≥ Pr
(

eq ∈ E(Fl ∩Hi), E(Fl ∩Hj) = ∅

)

.

So to find the lower bound for this probability, we need to consider the following three cases.

Case 1: V (Hi) = V (Hj), |E(Hi) \ E(Hj)| = 1.

By Lemma 2, it is clear

Pr
(

E(Fl ∩Hi) 6= ∅, E(Fl ∩Hj) = ∅

)

≥ p2(1− p)2∆(1− ǫ).

Case 2: |V (Hi) \ V (Hj)| ≥ 1.

By Lemma 3, we have

Pr
(

E(Fl ∩Hi) 6= ∅, E(Fl ∩Hj) = ∅

)

≥ p2(1 − p)∆(1 − ǫ) ≥ p2(1 − p)2∆(1− ǫ).

Case 3: The induced subgraph on V (Hi)− V (Hj) has at least one edge.

By Lemma 4,

Pr
(

E(Fl ∩Hi) 6= ∅, E(Fl ∩Hj) = ∅

)

≥ p2(1 − ǫ) ≥ p2(1 − p)2∆(1 − ǫ).
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So for every 1 ≤ i 6= j ≤ m and 1 ≤ l ≤ t, Pr
(

Al
i,j

)

≥ 2p2(1 − p)2∆(1 − ǫ). ✷

In order to prove Theorem 1, we present an upper bound for the probability of occurring the bad events

Ai,j for every 1 ≤ i 6= j ≤ m.

Theorem 3. Let k = |E(H)| and ∆ = ∆(H). For every 1 ≤ i 6= j ≤ m, we have

Pr(Ai,j) ≤ (1− Pk,∆)
t, (2)

where Pk,∆ = 1
2k∆

(

1− 1
2∆

)2∆−1
(

1−
√

1
2k∆

(

1− 1
2∆

)∆−1
)2∆−2

.

Proof: Since F1,F2, . . . ,Ft ⊂ V (G) are chosen randomly and independently, the events A1
i,j , . . . , A

t
i,j

are mutually independent. So

Pr(Ai,j) = Pr(Al
i,j)

t.

By Theorem 2, we have Pr
(

Al
i,j

)

≥ 2p2(1 − p)2∆(1 − ǫ). According to p =
√

ǫ
k
(1− ǫ)

∆−1
, we set

ǫ = 3
∆ to almostly maximize the lower bound of good events Al

i,j . So Pr
(

Al
i,j

)

≥ Pk,∆, where

Pk,∆ =
6

k∆

(

1−
3

∆

)2∆−1
(

1−

√

3

k∆

(

1−
3

∆

)∆−1
)2∆

.

Therefore, Pr(Ai,j) = Pr(Al
i,j)

t ≤ (1− Pk,∆)
t. ✷

Now, we can prove Theorem 1.

Proof of Theorem 1: By Theorem 3, for every 1 ≤ i 6= j ≤ m, Pr(Ai,j) ≤ (1− Pk,∆)
t. Now we prove

that if t >
ln(4erG(H)) + lnm

ln 1
1−Pk,∆

, then by Lovász Local Lemma, with positive probability no event Ai,j

occurs.

We construct the dependency graph whose vertices are the events Ai,j , where 1 ≤ i, j ≤ m. Two events

Ai,j and Ai′,j′ are adjacent if and only if
(

V (Hi)∪V (Hj)
)

∩
(

V (Hi′ )∪V (Hj′ )
)

6= ∅. Remember that

rG(H) = max
i

rG(H,Hi), where rG(H,Hi) is the number of subgraphs of G isomorphic to H including

common vertex with Hi. For the fixed Ai,j , there are at most rG(H) subgraph Hi′ isomorphic to H such

that V (Hi)∩V (Hi′) 6= ∅. We can choose Hj′ with m−1 ways. So it is easy to check that the maximum

degree in the dependency graph is at most 4rG(H)(m− 1). Accordingly, if

t >
ln(4erG(H)) + lnm

ln 1
1−Pk,∆

,

then e (1− Pk,∆)
t (

4rG(H)(m− 1) + 1
)

< 1, and by Lovász Local Lemma

Pr
(

⋂

i,j

Ai,j

)

> 0.
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Therefore, if t = 1 + ⌈
ln(4erG(H)) + lnm

ln 1
1−Pk,∆

⌉, then with positive probability no event Ai,j occurs. Thus,

for each pair of Hi and Hj there is a test F ∈ {F1, F2, . . . , Ft} that distinguishes between Hi and Hj . ✷

We can obtain t = 1 + ⌈ 2 lnm
ln 1

1−Pk,∆

⌉ if we use union bound. In fact the Lovász Local Lemma is better

when the dependencies between events are rare.

Based on this theorem there are t tests which distinguish between each pair of Hi and Hj with positive

probability. However, an algorithm is essential to find these tests with high probability if we are interested

in finding these tests.

Theorem 4. Let H be the defective subgraph of G with k edges. If t =
ln m2

δ

ln 1
1−Pk,∆

, we can find this

defective subgraph by t tests with probability at least 1− δ, where ∆ = ∆(H) and

Pk,∆ =
1

2k∆

(

1−
1

2∆

)2∆−1
(

1−

√

1

2k∆

(

1−
1

2∆

)∆−1
)2∆−2

.

Proof: By Theorem 3 and the union bound we know

Pr
(

⋃

1≤i<j≤m

Ai,j

)

≤ m2(1− Pk,∆)t.

Thus, this upper bound becomes close to zero if t is large enough. It is easy to check if t =
ln m2

δ

ln 1
1−Pk,∆

,

then m2(1 − Pk,∆)
t = δ. In other words, we can distinguish between each pair of Hi and Hj with

probability at least 1− δ if we choose tests randomly and independently. ✷

If we set δ = 1
m

, then for sufficiently large m, we can find the defective subgraph with 3 lnm
ln 1

1−Pk,∆

tests

with high probability.

4 Concluding remarks

In the present paper we assume that the graph G includes few edges since the Lovász Local Lemma

is more powerful when the dependencies between events are rare. In the graph G with O(n2) edges,

the parameter rG(H) is high, which means it is better to use the union bound. In this case, there are

1 + ⌈
2 lnm

ln 1
1−Pk,∆

⌉ tests that find the defective subgraph non-adaptively.

Finally, if we consider dense and sparse defective subgraph separately, we can obtain a better upper

bound for the number of tests in the case of sparse defective subgraph.
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