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We establish asymptotic bounds for the number of partitions of [n] avoiding a given partition in Klazar’s sense,

obtaining the correct answer to within an exponential for the block case. This technique also enables us to establish

a general lower bound. Additionally, we consider a graph theoretic restatement of partition avoidance problems, and

propose several conjectures.
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1 Introduction

The notion of partitions of [n] = {1, 2, . . . , n} avoiding a partition τ were introduced by Klazar in 2000

(Klazar, 2000). Much of the work with such partitions has been explicit and enumerative in nature. See,

for instance, Bloom and Saracino (Bloom and Saracino, 2016) and Sagan (Sagan, 2010). They have

given inequalities between the number of partitions of [n] avoiding partitions τ1 and τ2 using injections

or bijections, or have explicitly computed these numbers with generating functions. Furthermore, most of

these approaches can only enumerate the number of partitions for a relatively small class of τ .

There have been some asymptotic approaches to the partitions of [n] avoiding τ . Examples include

the original paper where Klazar introduced the concept (Klazar, 2000) and a later paper he wrote with

Marcus (Klazar and Marcus, 2007). However, these efforts have focused on very specific τ for which the

results are closely related to pattern-avoiding permutations in general and the Stanley-Wilf conjecture in

particular. In this paper, we examine the growth rate of the number of partitions of [n] avoiding a partition

τ for a different class of τ through asymptotic techniques.

Define a set partition of [n] to be a set of disjoint subsets of [n], {B1, B2, . . . , Br}, whose union is [n].
The Bi are called blocks. The order of the elements of each Bi does not matter, nor does the order in

which the Bi are written. Canonically, we arrange the blocks by increasing order of the minimal element

in each block, and write the elements of each block in ascending order. We write the blocks separated by

slashes, so 134/25 describes the partition of [5] where one set is {1, 3, 4} and the other set is {2, 5}.

∗The author was supported by NSF grant NSF-1358659 and NSA grant H98230-16-1-0026.

ISSN 1365–8050 c© 2018 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://arxiv.org/abs/1608.02279v6


2 Ryan Alweiss

Definition 1. A partition σ of n contains a partition τ of k if there exists a subpartition σ′ of σ that has

the same relative order as τ . Otherwise, σ avoids τ .

By this we mean there is an increasing bijective map from σ′ to τ that preserves blocks. For instance,

σ = 124/35 contains 1/23, because σ′ = 1/35 is a subpartition of σ. Here σ′ has the same relative order

as τ , with the bijective map f(1) = 1, f(3) = 2, f(5) = 3.

Definition 2. We use An(τ) to denote the number of set partitions of [n] avoiding a fixed partition τ .

In this paper, we are primarily concerned with the function An(τ). Bloom and Saracino (Bloom and

Saracino, 2016) have studied the behavior of An(τ) through injective mappings, proving results of the

form An(τ1) ≤ An(τ2) for various choices of τ1 and τ2. Along these lines, they conjecture that the

partition 12 · · · k of a single block is the easiest to avoid.

Conjecture 1. (Bloom, Saracino (Bloom and Saracino, 2016))

If τ is a set partition of [k] other than (12 · · · k) then

An(12 · · · k) ≥ An(τ)

with strict inequality for n sufficiently large.

In general An(τ) is very large. In order to better get a handle on it, let Fn(τ) = log(An(τ))
n log(n) . If

An(τ) = nbn, then Fn(τ) = b. We are interested in the asymptotic behavior of Fn(τ) for large n, and for

partitions τ . Our interest in Fn stems from the observation that if Fn(τ1) > Fn(τ2) for large enough n,

where τi are partitions of [k], then An(τ1) > An(τ2) for large enough n. There is one known result about

Fn(τ), due to Klazar and Marcus (Klazar and Marcus, 2007), which we state here as a lemma.

Lemma 1. If τ avoids 123 and 12/34, then An(τ) grows exponentially and so Fn(τ) = 0.

We first prove that for every such τ there exists a permutation σ of [k] so that τ is contained in a set

partition of [2k] given by σ. Specifically, {r, k + σ(r)} for 1 ≤ r ≤ k will be exactly the blocks of

this partition. To prove this, note that all blocks of τ have size one or two by the 123 avoidance, and

furthermore there exists a half integer c so that all blocks of size two have one element greater than c and

the other element less than c, by the 12/34 avoidance. Now, we modify τ by taking the blocks of one

element which is less than c and appending an unused number greater than c, and taking the blocks with

one element which is greater than c and appending an unused number less than c (possibly negative). The

result has all blocks of size 2, and has the same relative order as a set partition of 2k where {r, k + σ(r)}
are the blocks for 1 ≤ r ≤ k, for some k. The elements less than c correspond to 1 ≤ i ≤ k and the

elements greater than c correspond to k + 1 ≤ i ≤ 2k in the relative ordering. Call a set partition whose

blocks are {r, k + σ(r)} a permutation partition of [2k], and identify it with σ ∈ Sk. So every τ which

avoids 123 and 12/34 is contained in a permutation partition. Lemma 1 is thus equivalent to showing that

only exponentially many partitions of [n] avoid a given fixed permutation partition.

Klazar and Marcus proved that only exponentially many set partitions of [n] avoid a fixed permutation

partition; it is the 1-regular case of their Corollary 2.2 (Klazar and Marcus, 2007). Balogh, Bollobas,

and Morris independently proved this result as their Theorem 3 (Balogh et al., 2006). Thus Lemma 1 is

established.

A permutation partition corresponding to σ ∈ Sn contains a permutation partition corresponding to

σ′ ∈ Sk if and only if σ contains σ′. Here the notion of permutation containment is the usual one; σ
contains σ′ if and only if there is a substring of σ that has the same relative order as σ′. In particular, at
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most exponentially many set partitions of [2n] avoid a fixed permutation partition of [2k] by Lemma 1,

so at most exponentially many permutation partitions of [2n] avoid a fixed permutation partition of [2k].
It follows that at most exponentially many permutations of [n] avoid a fixed permutation of [k]. Thus,

Lemma 1 actually implies the well known Stanley-Wilf conjecture first proved by Marcus and Tardos

(Marcus and Tardos, 2004). In fact, the implication of the Stanley-Wilf conjecture was first noticed in

2000 by Klazar in the paper where he developed pattern avoidance in set partitions (Klazar, 2000).

Definition 3. A layered partition is a partition whose blocks consist of sets of consecutive integers.

For example, 12/345/67 is layered, whereas 13/245/67 is not.

In this paper, we compute the limit of Fn(τ) for any layered partition τ . We prove the following

theorem.

Theorem 2. If a layered partition τ of [k] is composed of r blocks, with k > r, then

An = Θ(1)nnn(1− 1

k−r
)

and so

lim
n→∞

Fn(τ) = 1−
1

k − r
.

From this, the converse of Lemma 1, which was already known to Klazar and Marcus, follows. If τ con-

tains 123 or 12/34 then An(τ) ≥ min(An(123), An(12/34)) and Fn(τ) ≥ min(Fn(123), Fn(12/34)) ≥
1
2 − o(1).

We conjecture (among other things) that Fn(τ) tends to 1 − 1
g(τ) where g(τ) is some integer that

is maximized for fixed k exactly when τ is a single block. This is essentially an asymptotic form of

Conjecture 1.

2 Upper bounds on An for a single block

We use recursion to prove an upper bound on the number of partitions of [n] that avoid the block partition

of [k]. This is a fairly well studied sequence (Heinz, 2013), but we only need rough bounds here.

Fix k ≥ 2, and let Lk = 12 · · ·k be the partition of a single block. We let f(n) = An(Lk) in this

section. Note the partitions counted by f(n) are exactly those with all blocks of size at most k − 1.

We have f(n+1) =
k−2
∑

i=0

(

n

i

)

f(n− i), because if the block containing 1 has i ≤ k−2 other elements,

there are

(

n

i

)

choices for these other elements, and then f(n−i)ways to partition the remaining elements.

We will show that

f(n) ≤ kn(nn(1− 1

k−1
)).

We do so by induction. When 1 ≤ n ≤ k, f(n) ≤ nn ≤ kn, so the bound obviously holds. This

establishes our base case.

For the inductive step, note we have

f(n+ 1) ≤

k−2
∑

i=0

nif(n− i) ≤

k−2
∑

i=0

nikn−in(n−i)(1− 1

k−1
)
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≤

k−2
∑

i=0

niknn(n−i)(1− 1

k−1
) = kn

k−2
∑

i=0

ni+(n−i)(1− 1

k−1
)

by the inductive hypothesis, and because n− i ≤ n. We have i+ (n− i)(1− 1
k−1 ) = n− ( 1

k−1 )(n− i)
is an increasing function of i, so the i = k − 2 term represents the largest term in this sum, and it is

(k − 2) + (n− (k − 2))(1− 1
k−1 ) = (n+ 1)(1− 1

k−1 ).

Hence,

f(n+ 1) ≤ k · knn(n+1)(1− 1

k−1
) ≤ kn+1(n+ 1)(n+1)(1− 1

k−1
)

completing the proof.

3 Upper bounds on An in the layered case

In this section, we let La1,··· ,ar
be the layered partition where the smallest a1 elements are in a block,

the a2 next smallest are in a block, and so on, with
∑

ai = k. This partition can also be written

12 · · ·a1/(a1 + 1) · · · (a1 + a2)/ · · · / · · · (a1 + · · · + ar). In particular the block partition dealt with in

the previous section is Lk.

Lemma 3. Any partition of [n] with r blocks of size at least k − r + 1 contains La1,··· ,ar
.

Proof:

We assume r > 1, because the r = 1 case is trivial.

Say a partition has r such blocks A1, A2, . . . , Ar. We assume without loss of generality that for any

j = 1, 2, . . . , r, Aj has the minimum a1+· · ·+aj−(j−1)th smallest element out of {Aj , Aj+1, . . . , Ar},

by way of an algorithm. Note that a1+ · · ·+aj−(j−1) ≤ a1+ · · ·+ar−(r−1) = k−r+1, so indeed it

makes sense to speak of the a1+ · · ·+aj−(j−1)th smallest element of each block Aj , Aj+1, . . . , Ar. Of

course, reordering the blocks is permissible, as it does not affect the set partition. It is just for notational

convenience.

We now describe the algorithm. For 1 ≤ j ≤ r, on the jth step we relabel {Aj , Aj+1, . . . , Ar} in some

way so Aj has the minimum a1+ · · ·+aj − (j−1)th smallest element out of {Aj, Aj+1, . . . , Ar}. Since

immediately after the jth step of the algorithm, Aj has the minimum a1 + · · ·+ aj − (j − 1)th smallest

element out of {Aj , Aj+1, . . . , Ar}, and because in later steps only {Aj+1, . . . , Ar} are permuted among

themselves, this property is preserved.

Let the interval Sj consist of the a1+ · · ·+aj−1− (j− 2)th through a1+ · · ·+aj − (j− 1)th smallest

elements of Aj , inclusive. The set Sj has precisely aj elements.

Let S be the union of the Sj . Each Sj is in its own block. Also, the largest element of Sj is smaller

than the smallest element of Sj+1, because Aj has a smaller a1 + · · ·+ aj − (j − 1)th smallest element

than Aj+1 does by construction. As such, S has the same relative order as La1,··· ,ar
.

It follows that any partition of [n] which avoids La1,··· ,ar
has at most r − 1 blocks of size at least

k − r + 1. Thus, it suffices to bound from above the number of these partitions.

Theorem 4. The number of partitions of [n] with at most r− 1 blocks of size at least k− r+1 is bounded

by (k+1
2 )2nnn(1− 1

k−r ).
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Proof:

Call a block of size at least k − r + 1 a big block. There are at most r − 1 big blocks.

For each element of [n], we first decide whether it is in a block of size at most k − r, or in the jth big

block, for some 1 ≤ j ≤ r − 1. There are at most rn choices for this initial stage.

Afterward, this uniquely sorts some set of m of the elements [n] into big blocks. There are

An−m(12 · · · (k − r + 1)) ≤ An(12 · · · (k − r + 1)) ≤ (k − r + 1)nnn(1− 1

k−r )

ways to partition the remaining elements into blocks of size at most k − r.

This yields a bound of

rn(k − r + 1)nnn(1− 1

k−r ) ≤

(

k + 1

2

)2n

nn(1− 1

k−r )

as desired.

Thus, if we have f(n) = An(La1,··· ,ar
), then f(n) ≤ (k+1

2 )2nnn(1− 1

k−r ) = Ok(1)
nnn(1− 1

k−r ).

4 Lower bounds on An in the layered case

Again, let f(n) = An(La1,··· ,ar
), where the notation for layered partitions is as in the previous section.

Here
∑

ai = k and we are counting the number of partitions of [n] avoiding a fixed layered partition of

[k].

Theorem 5. We have f(n) ≥ cnnn(1− 1

k−r ), where c = Ωk(1) and k > r.

Proof:

It suffices to prove the result in the case that n is divisible by k − r, because c can easily be adjusted.

Call a partition of [n] uniform if it is composed of n
k−r

blocks of size k−r, and for every 0 ≤ j < k−r
it is true that Sj = [j( n

k−r
) + 1, (j + 1)( n

k−r
)] contains exactly one element from each block.

First, we count the number of uniform partitions. Every block of the partition has exactly one element

in each Sj , so for every 0 < j < k − r we can choose some way to match the n
k−r

elements [j( n
k−r

) +
1, (j + 1)( n

k−r
)] with the n

k−r
blocks. This yields a total of

(

n

k − r

)

!k−r−1 =
(

Ωk(1)
nn

n

k−r

)k−r−1
= Ωk(1)

nnn(1− 1

k−r )

uniform partitions, using Stirling’s approximation.

Now we prove that these uniform partitions avoid La1,··· ,ar
, for some fixed (a1, · · · , ar). Assume such

a partition contained La1,··· ,ar
. Equivalently, this partition contains some xi with x1 < x2 < · · · < xk so

that the smallest aj elements which were not in the smallest a1 + · · ·+ aj−1 of these elements are their

own block. Consider pairs (xi, xi+1) in this partition. If xi and xi+1 are in the same block, they must be in

different Sj . Since there are only k − r choices for Sj , if we consider the sequence x1 < x2 < · · · < xk,

there are at most k − r − 1 numbers with 1 ≤ i ≤ k − 1 so that xi and xi+1 are in different Sj . Hence,

there are at most k − r − 1 numbers i ∈ [1, k − 1] so that xi and xi+1 are in the same block, and at
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least r numbers i ∈ [1, k − 1] so that xi and xi+1 are in different blocks. This is a contradiction, because

La1,··· ,ar
has only r − 1 such numbers.

Note that the above proof works when La1,··· ,ar
is replaced by any partition of [k] such that there are

at most r choices for i such that 1 ≤ i ≤ k − 1 and (i, i+ 1) are in different blocks of that partition.

Clearly it is easier to avoid a partition than to avoid a pattern it strictly contains.

Thus, a partition of [k] that contains a partition P of [k′] with less than r′ choices for i such that

1 ≤ i ≤ k′−1 and (i, i+1) are in different blocks of P has Ωk′(1)nn
n
(

1− 1

k′
−r′

)

= Ωk(1)
nn

n
(

1− 1

k′
−r′

)

partitions of [n] avoiding it as well. This represents a nontrivial lower bound for the general case.

Combining all these results, we have

An(La1,··· ,ar
) = Θ(1)nnn(1− 1

k−r
)

whenever k − r ≥ 1. For the r = k case, the singleton subcase τ = 1/2/ · · ·/k, An(1/2/ · · ·/k) is

the number of ways to put n elements in at most k − 1 urns, so it is at most (k − 1)n and grows only

exponentially. This establishes Theorem 2.

Interestingly, Bloom and Saracino (Bloom and Saracino, 2016) prove that in the ij/1/2/ · · ·/k case

An is at most as large as it is in the singleton case via an injection argument, even though we observe

that partitions with fewer blocks tend to have larger values of An. This shows that in fact An is also

exponential for ij/1/2/ · · ·/k, and the j = i + 1 case of this corresponds to the r = k − 1 case of our

main theorem.

5 A graph-theoretic restatement

Another possible direction of research is to try to apply graph theoretic results and techniques to partition

avoidance problems.

Definition 4. A complete partite undirected graph on n vertices is a graph whose complement is the union

of vertex-disjoint complete graphs.

Definition 5. A directed acyclic complete partite graph (DACP) is a directed acyclic graph whose under-

lying undirected graph is a complete partite graph.

We can form a bijection between set partitions of [n] and DACPs with n vertices. Given a set partition

of [n], direct an edge from a to b if and only if a and b are in different blocks with a > b. Clearly this

graph lacks directed cycles, and the complement of its underlying undirected graph is the union of cliques

corresponding to blocks of the partition. Hence from any partition of [n] we form a unique DACP on n
vertices.

Given a DACP on n vertices, we can likewise reconstruct the set partition it represents. Call two vertices

v and u of a DACP indistinguishable if they are not connected, and have the same in-neighborhoods and

out-neighborhoods. This is an equivalence relation, and therefore partitions the n vertices into equivalence

classes. Given two equivalence classses, there must exist a vertex v with an in-edge from all vertices in

one class and an out-edge to all vertices in the other. As such, the DACP induces a total order on the

equivalence classes. Thus given an equivalence class A of size r which is larger than s other elements,

the elements of A will be the (s+1)st through (s+ r)th smallest elements for any extension of the partial

order of the DACP to a total order. Hence, any two total orders are isomorphic. Pick an arbitrary such

order, an assignment of the elements of [n] to the vertices of the DACP. Then this corresponds to a set
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partition, where the independent sets are the blocks. The partition is uniquely determined because of the

isomorphism property.

Thus, there is a natural bijection between set partitions of [n] and DACPs with n vertices.

Furthermore, if a set partition of [n] contains a set partition of [k] then the former has a subset order

isomorphic to the latter, and so the DACP corresponding to the former has the DACP corresponding to

the latter as an induced subgraph. Likewise if a DACP has another DACP as an induced subgraph, this

represents a containment of their corresponding partitions.

Thus An(τ) is the number of DACPs on n vertices that avoid some specific DACP on k vertices (cor-

responding to τ ) as a subgraph.

6 Conjectures

We propose several conjectures about the behavior of An(τ) and Fn(τ).

Conjecture 2. For all τ , limn→∞ Fn(τ) = 1− 1
c

for some constant c depending on τ .

Conjecture 3. For all τ , the constant c in Conjecture 2 is an integer.

Conjecture 4. When τ is a partition of [k], the constant c in Conjecture 2 satisfies c ≤ k−1 with equality

only for the one-block partition.

Note that Conjecture 4 implies Conjecture 1 in the limit, and is also a strengthening of Conjecture 2.

The next conjecture is a revised version of a conjecture by the author that appeared in an earlier version

of this paper. In fact, it was first conjectured by Gunby (Gunby, 2016) who built upon the work of the

author. To state it, we first need a definition.

Definition 6. Given a set partition τ of [n], let the permeability pm(τ) be the minimum k such that [n]
can be partitioned into k+1 intervals (i.e. sets of consecutive integers) and each of these intervals has at

most one element from each block of τ .

Gunby (Gunby, 2016) showed that An(τ) ≥ 1 − 1
pm(τ) in general, and that this is a strengthening of

Theorem 3.

Conjecture 5. Fn(τ) = 1− 1
pm(τ)

This conjecture subsumes all of the conjectures before it. All conjectures are true for k ≤ 4. The case

where pm(τ) = 1 is Lemma 1.

After establishing some or all of these conjectures, for various τ one could obtain more precise asymp-

totics. Consider the function
An(τ)

n
n(1− 1

c )
. If it is known that C−nnn(1− 1

c ) ≤ An(τ) ≤ Cnnn(1− 1

c ) for some

C > 1, perhaps the gap between the two multipliers in front of nn(1− 1

c ) can be narrowed to something

sub-exponential.

We can formulate a conjecture along these lines.

Conjecture 6. |Fn(τ)− (1− 1
c
)| = O( 1

log(n) ) for the appropriate c so that limn→∞ Fn(τ) = 1− 1
c

and

c ≥ 2.

This conjecture appears to be true for small cases, and certainly holds for blocks.

A graph theoretic approach may also bear some fruit. The limit for Fn of the single block, 1 − 1
k−1 ,

seems reminiscient of the Erdős-Stone theorem (Erdös and Stone, 1946) especially given its restatement as

avoidance of an independent set of size k, the complement of a graph of chromatic number k− 1. In light
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of the graph theoretic restatement, perhaps there is some meaningful connection. Note that Klazar and

Marcus found the cases where Fn = 0, proving their generalization of the Stanley-Wilf conjecture, using

a different graph theoretic restatement involving undirected graphs (Klazar and Marcus, 2007). Their

interpretation does not generalize to stating the entire problem graph theoretically, however.
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