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We study the number of spanning forests on the Sierpinski gasket SGd(n) at stage n with dimension d equal to

two, three and four, and determine the asymptotic behaviors. The corresponding results on the generalized Sierpinski

gasket SGd,b(n) with d = 2 and b = 3, 4 are obtained. We also derive upper bounds for the asymptotic growth

constants for both SGd and SG2,b.
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1 Introduction

The enumeration of the number of spanning forests NSF (G) on a graph G is a problem of interest in

mathematics [Benjamini et al.(2001), Teranishi(2005)] and physics [Caracciolo et al.(2004)]. It is well

known that the number of spanning forests is given by the Tutte polynomial T (G, x, y) evaluated at

x = 2, y = 1 [Welsh(1993)]. Alternatively, it corresponds to a special q → 0 limit of the partition

function of the q-state Potts model in statistical mechanics [Sokal(2005)]. Some recent studies on the

enumeration of spanning forests and the calculation of their asymptotic growth constants on regular lat-

tices were carried out in Refs. [Shrock(2000), Chang and Shrock(2000), Chang and Shrock(2001)(a),

Chang and Shrock(2001)(b), Chang and Shrock(2001)(c), Jacobsen et al.(2005), Deng et al.(2007)]. It is

of interest to consider spanning forests on self-similar fractal lattices which have scaling invariance rather

than translational invariance. Fractals are geometric structures of (generally noninteger) Hausdorff di-

mension realized by repeated construction of an elementary shape on progressively smaller length scales

[Mandelbrot(1982), Falconer(2003)]. A well-known example of a fractal is the Sierpinski gasket. We shall

derive the recursion relations for the numbers of spanning forests on the Sierpinski gasket with dimension

equal to two, three and four, and determine the asymptotic growth constants. We shall also consider the

number of spanning forests on the generalized Sierpinski gasket with dimension equal to two.

2 Preliminaries

We first recall some relevant definitions for spanning forests and the Sierpinski gasket in this section. A

connected graph (without loops) G = (V,E) is defined by its vertex (site) and edge (bond) sets V and

E [Biggs(1993), Harary(1969)]. Let v(G) = |V | be the number of vertices and e(G) = |E| the number
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of edges in G. A spanning subgraph G′ is a subgraph of G with the same vertex set V and an edge set

E′ ⊆ E. While a tree is a connected graph with no cycles, a spanning forest on G is a spanning subgraph

of G that is a disjoint union of trees. That is, a spanning subgraph of G without any cycles, or an acyclic

graph. Here an isolated vertex is considered as a tree. The degree or coordination number ki of a vertex

vi ∈ V is the number of edges attached to it. A k-regular graph is a graph with the property that each of its

vertices has the same degree k. In general, one can associate an edge weight xij to each edge connecting

adjacent vertices vi and vj (see, for example [Alexander(1995)]). For simplicity, all edge weights are set

to one throughout this paper.

When the number of spanning forests NSF (G) grows exponentially with v(G) as v(G) → ∞, there

exists a constant zG describing this exponential growth [Burton and Pemantle(1993), Lyons(2005)]:

zG = lim
v(G)→∞

lnNSF (G)

v(G)
(1)

where G, when used as a subscript in this manner, implicitly refers to the thermodynamic limit. We will

see that the limit in Eq. (1) exists for the Sierpinski gasket considered in this paper.

The construction of the two-dimensional Sierpinski gasket SG2(n) at stage n is shown in Fig. 1. At

stage n = 0, it is an equilateral triangle; while stage n + 1 is obtained by the juxtaposition of three n-

stage structures. In general, the Sierpinski gaskets SGd can be built in any Euclidean dimension d with

fractal dimension D = ln(d + 1)/ ln 2 [Gefen and Aharony(1981)]. For the Sierpinski gasket SGd(n),
the numbers of edges and vertices are given by

e(SGd(n)) =

(

d + 1

2

)

(d + 1)n =
d

2
(d + 1)n+1 , (2)

v(SGd(n)) =
d + 1

2
[(d + 1)n + 1] . (3)

Except the (d + 1) outmost vertices which have degree d, all other vertices of SGd(n) have degree 2d. In

the large n limit, SGd is 2d-regular.
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Fig. 1: The first four stages n = 0, 1, 2, 3 of the two-dimensional Sierpinski gasket SG2(n).



Spanning forests on the Sierpinski gasket 57

The Sierpinski gasket can be generalized, denoted by SGd,b(n), by introducing the side length b which

is an integer larger or equal to two [Hilfer and Blumen(1984)]. The generalized Sierpinski gasket at stage

n + 1 is constructed from b layers of stage n hypertetrahedrons. The two-dimensional SG2,b(n) with

b = 3 at stage n = 1, 2 and b = 4 at stage n = 1 are illustrated in Fig. 2. The ordinary Sierpinski gasket

SGd(n) corresponds to the b = 2 case, where the index b is neglected for simplicity. The Hausdorff

dimension for SGd,b is given by D = ln
(

b+d−1
d

)

/ ln b [Hilfer and Blumen(1984)]. Notice that SGd,b is

not k-regular even in the thermodynamic limit.
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Fig. 2: The generalized two-dimensional Sierpinski gasket SG2,b(n) with b = 3 at stage n = 1, 2 and b = 4 at stage n = 1.

3 The number of spanning forests on SG2(n)
In this section we derive the asymptotic growth constant for the number of spanning forests on the two-

dimensional Sierpinski gasket SG2(n) in detail. Let us start with the definitions of the quantities to be

used.

Definition 3.1 Consider the generalized two-dimensional Sierpinski gasket SG2,b(n) at stage n. (a)

Define f2,b(n) ≡ NSF (SG2,b(n)) as the number of spanning forests. (b) Define t2,b(n) as the number

of spanning forests such that the three outmost vertices belong to one tree. (c) Define ga2,b(n), gb2,b(n),
gc2,b(n) as the number of spanning forests such that one of the outmost vertices belongs to one tree and

the other two outmost vertices belong to another tree. (d) Define h2,b(n) as the number of spanning forests

such that each of the outmost vertices belongs to a different tree.

It is clear that the values ga2,b(n), gb2,b(n), gc2,b(n) are the same because of rotation symmetry, and we

define g2,b(n) ≡ ga2,b(n) = gb2,b(n) = gc2,b(n). Since we only consider the ordinary Sierpinski gasket

in this section, we use the notations f2(n), t2(n), g2(n), and h2(n) for simplicity. They are illustrated in

Fig. 3, where only the outmost vertices are shown. It follows that

f2(n) = t2(n) + 3g2(n) + h2(n) . (4)
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The initial values at stage zero are t2(0) = 3, g2(0) = 1, h2(0) = 1 and f2(0) = 7. The purpose of this

section is to obtain the asymptotic behavior of f2(n) as follows. The four quantities f2(n), t2(n), g2(n)
and h2(n) satisfy recursion relations.
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Fig. 3: Illustration for the spanning subgraphs f2(n), t2(n), ga2(n), gb2(n), gc2(n) and h2(n). The two outmost vertices at the

ends of a solid line belong to one tree, while the two outmost vertices at the ends of a dot line belong to separated trees.

Lemma 3.1 For any non-negative integer n,

f2(n + 1) = f3
2 (n) − [t2(n) + g2(n)]3 , (5)

t2(n + 1) = 6t22(n)g2(n) + 3t2(n)g2
2(n) , (6)

g2(n + 1) = t22(n)h2(n) + 2t2(n)g2(n)h2(n) + 7t2(n)g2
2(n) + 4g3

2(n)

+g2
2(n)h2(n) , (7)

h2(n + 1) = 12t2(n)g2(n)h2(n) + 14g3
2(n) + 24g2

2(n)h2(n) + 9g2(n)h2
2(n)

+3t2(n)h2
2(n) + h3

2(n) . (8)

Proof: The Sierpinski gasket SG2(n + 1) is composed of three SG2(n) with three pairs of vertices

identified. For the number f2(n + 1), the unallowable configurations are those with a circuit, i.e., the two

identified vertices of each SG2(n) belong to the same tree as illustrated in Fig. 4. Therefore, we have

f2(n + 1) = f3
2 (n) − [t2(n) + ga2(n)][t2(n) + gb2(n)][t2(n) + gc2(n)] . (9)

With the identity ga2(n) = gb2(n) = gc2(n) = g2(n), Eq. (5) is verified.

The number t2(n+1) consists of six configurations where two of the SG2(n) belong to the class that is

enumerated by t2(n) and the other one belongs to the class enumerated by g2(n), and three configurations

where one of the SG2(n) belongs to the class enumerated by t2(n) and the other two belong to the class

enumerated by g2(n) as illustrated in Fig. 5. Therefore, we have

t2(n + 1) = 2t22(n)[ga2(n) + gb2(n) + gc2(n)] + t2(n)ga2(n)gb2(n)
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Fig. 4: Illustration for the expression of f2(n + 1).
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Fig. 5: Illustration for the expression of t2(n + 1). The multiplication of three on the right-hand-side corresponds to the three

possible orientations of SG2(n + 1).

+t2(n)ga2(n)gc2(n) + t2(n)gb2(n)gc2(n) . (10)

With the identity ga2(n) = gb2(n) = gc2(n) = g2(n), Eq. (6) is verified.

Similarly, ga2(n + 1) for SG2(n + 1) can be obtained with appropriate configurations of its three

constituting SG2(n) as illustrated in Fig. 6. Thus,

ga2(n + 1) = t22(n)h2(n) + t2(n)ga2(n)[ga2(n) + gc2(n) + h2(n)]

+t2(n)ga2(n)[ga2(n) + gb2(n) + h2(n)] + f2(n)ga2
2(n)

+t2(n)ga2(n)gc2(n) + t2(n)ga2(n)gb2(n)

+ga2(n)gb2(n)gc2(n) . (11)

With the identity ga2(n) = gb2(n) = gc2(n) = g2(n) and Eq. (4), Eq. (7) is verified.
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Fig. 6: Illustration for the expression of ga2(n + 1).

Finally, h2(n + 1) is the summation of appropriate configurations as illustrated in Fig. 7, so that

h2(n + 1)
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= 4t2(n)h2(n)[ga2(n) + gb2(n) + gc2(n)]

+2gc2(n)ga2(n)[gc2(n) + ga2(n)] + 2ga2(n)gb2(n)[ga2(n) + gb2(n)]

+2gb2(n)gc2(n)[gb2(n) + gc2(n)] + 2ga2(n)gb2(n)gc2(n)

+3t2(n)h2
2(n) + h3

2(n) + 3[ga2(n) + gb2(n) + gc2(n)]h2
2(n)

+{3[ga2(n) + gb2(n) + gc2(n)]2 − ga2
2(n) − gb2

2(n) − gc2
2(n)}h2(n) . (12)

With the identity ga2(n) = gb2(n) = gc2(n) = g2(n), Eq. (8) is verified.
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✔✔ ✔✔♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣ ×3 + ✔✔

❚❚♣ ♣ ♣
♣ ♣ ♣

♣ ♣ ♣
♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣
♣♣♣ ♣♣♣

♣♣♣

+
✔✔

❚❚

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣
♣ ♣ ♣

♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣ +

✔✔ ❚❚ ♣ ♣ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣
♣ ♣ ♣♣ ♣ ♣

♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣

×3 +
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣

♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣♣ ♣ ♣ ♣ ♣ ♣ ♣

+
✔✔♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣

♣ ♣ ♣♣ ♣ ♣
♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣

×3 +
♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣♣

×3 +
❚❚♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣ ×3 +

✔✔
✔✔

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣♣

×3 + ✔✔

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣
♣ ♣ ♣

♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣♣

×3 +
❚❚

✔✔

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣
♣ ♣ ♣ ♣♣♣

♣♣♣

♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣♣ ♣ ♣ ♣ ♣ ♣ ♣ ×3

+
✔✔♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣

♣♣♣
♣♣♣ ×3 +

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣♣

×3 +
❚❚♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣

♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣ ♣♣♣

♣♣♣

×3 +
✔✔
❚❚

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣ ×3 + ❚❚

♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣ ×3

Fig. 7: Illustration for the expression of h2(n + 1). The multiplication of three on the right-hand-side corresponds to the three

possible orientations of SG2(n + 1).

Eq. (5) can also be obtained by substituting Eqs. (6), (7) and (8) into Eq. (4). ✷

The values of f2(n), t2(n), g2(n), h2(n) for small n can be evaluated recursively by Eqs. (5), (6), (7),

(8) as listed in Table 1. These numbers grow exponentially, and do not have simple integer factorizations,

in contrast to the corresponding results for the number of spanning trees [Chang et al.(2007)]. To estimate

the value of the asymptotic growth constant defined in Eq. (1), we need the following lemma.

Lemma 3.2 The asymptotic growth constant for the number of spanning forests on SG2(n) is bounded:

2

3m+1
lnh2(m) < zSG2

<
2

3m+1
ln f2(m) , (13)

where m is a positive integer.
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Tab. 1: The first few values of f2(n), t2(n), g2(n), h2(n).

n 0 1 2 3

f2(n) 7 279 20,592,775 8,696,126,758,781,951,722,199

t2(n) 3 63 1,294,083 36,212,372,367,917,382,063

g2(n) 1 41 2,022,893 215,741,040,104,979,715,185

h2(n) 1 93 13,230,013 8,012,691,266,099,095,194,581

Proof: We first show that the ratio t2(n)/g2(n) is a strictly decreasing sequence. By Eqs. (6) and (7),

we have

t2(n + 1)

g2(n + 1)

=
6t22(n)g2(n) + 3t2(n)g2

2(n)

t22(n)h2(n) + 2t2(n)g2(n)h2(n) + 7t2(n)g2
2(n) + 4g3

2(n) + g2
2(n)h2(n)

<
t2(n)[6t2(n)g2(n) + 3g2

2(n)]

g2(n)[7t2(n)g2(n) + 4g2
2(n)]

<
6t2(n)

7g2(n)
. (14)

From the values in Table 1, t2(n)/g2(n) is less than one for n > 1. It is clear that this ratio approaches

zero as n increases. Similarly, g2(n)/h2(n) is also a strictly decreasing sequence by Eqs. (7) and (8).

g2(n + 1)

h2(n + 1)

<
3t2(n)g2(n)h2(n) + 7t2(n)g2

2(n) + 4g3
2(n) + g2

2(n)h2(n)

12t2(n)g2(n)h2(n) + 14g3
2(n) + 24g2

2(n)h2(n) + 9g2(n)h2
2(n) + 4t2(n)h2

2(n)

<
g2(n)[3t2(n)h2(n) + 7t2(n)g2(n) + 4g2

2(n) + g2(n)h2(n)]

h2(n)[4t2(n)h2(n) + 12t2(n)g2(n) + 24g2
2(n) + 9g2(n)h2(n)]

<
3g2(n)

4h2(n)
for n > 1 ,

(15)

where we have used the fact that t2(n) < g2(n) < h2(n) for n > 1. Again, g2(n)/h2(n) approaches zero

as n increases. The relation t2(n) ≪ g2(n) ≪ h2(n) for large n is expectable since it is rare to keep the

three outmost vertices of SG2(n) in the same tree for t2(n) and h2(n) should dominate when n becomes

large. In fact, both f2(n) and g2(n) are negligible compared with h2(n) such that f2(n) ∼ h2(n) for

large n. By Eqs. (5) and (8), we have the upper and lower bounds for f2(n):

h3
2(n − 1) < h2(n) < f2(n) < f3

2 (n − 1) , (16)

such that

h2(m)3
n−m

< f2(n) < f2(m)3
n−m

, (17)

where m is a fixed integer. With the definition for zSG2
given in Eq. (1) and the number of vertices of

SG2(n) is 3(3n + 1)/2 by Eq. (3), the proof is completed. ✷
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Proposition 3.1 The asymptotic growth constant for the number of spanning forests on the two-dimensional

Sierpinski gasket SG2(n) in the large n limit is zSG2
= 1.24733719931....

Proof: Define ratios α(n) ≡ t2(n)/f2(n) and β(n) ≡ g2(n)/f2(n). By Eq. (4), it is clear that

0 ≤ α(n)+β(n) < 1. As seen in the proof of Lemma 3.2, α(n)+β(n) is a strictly decreasing sequence.

By Eq. (5), let us define r(n) ≡ f2(n)/f3
2 (n − 1) = 1 − [α(n − 1) + β(n − 1)]3 for positive integer n .

It follows that

ln f2(n) = 3 ln f2(n − 1) + ln r(n) = ...

= 3n−m ln f2(m) +
n
∑

j=m+1

3n−j ln r(j)

> 3n−m ln f2(m) +

(

3n−m − 1

2

)

ln r(m + 1) . (18)

Divide this equation by 3(3n + 1)/2 and take the limit n → ∞, the difference between the upper bound

in Eq. (13) and the asymptotic growth constant is bounded:

2

3m+1
ln f2(m) − zSG2

≤
−1

3m+1
ln
(

1 − [α(m) + β(m)]3
)

. (19)

When m is as small as three, the right-hand-side of Eq. (19) is about 3 × 10−7 by the values given in

Table 1. Similarly, it can be shown that the difference between zSG2
and the lower bound (left-hand-side

of Eq. (13)) quickly converges to zero as m increases. In another word, the numerical values of ln f2(m)
and lnh2(m) are almost the same except for the first few m, and the upper and lower bounds in Eq. (13)

converge to the quoted value of zSG2
. In fact, one obtains the numerical value of zSG2

with more than a

hundred significant figures accurate when m is equal to eight. ✷

4 The number of spanning forests on SG2,b(n) with b = 3, 4

The method given in the previous section can be applied to the number of spanning forests on SGd,b(n)
with larger values of d and b. The number of configurations to be considered increases as d and b increase,

and the recursion relations must be derived individually for each d and b. In this section, we consider the

generalized two-dimensional Sierpinski gasket SG2,b(n) with the number of layers b equal to three and

four. For SG2,3(n), the numbers of edges and vertices are given by

e(SG2,3(n)) = 3 × 6n , (20)

v(SG2,3(n)) =
7 × 6n + 8

5
, (21)

where the three outmost vertices have degree two. There are (6n − 1)/5 vertices of SG2,3(n) with

degree six and 6(6n − 1)/5 vertices with degree four. By Definition 3.1, the number of spanning forests

is f2,3(n) = t2,3(n) + 3g2,3(n) + h2,3(n). The initial values are the same as for SG2: t2,3(0) = 3,
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g2,3(0) = 1, h2,3(0) = 1 and f2,3(0) = 7. By the method illustrated in the previous section, we obtain

the following recursion relations for any non-negative integer n.

f2,3(n + 1)

= f6
2,3(n) − 3f3

2,3(n)[t2,3(n) + g2,3(n)]3 − 3f2,3(n)[t2,3(n) + g2,3(n)]5 − [t2,3(n) + g2,3(n)]6

+6t2,3(n)f2,3(n)[t2,3(n) + g2,3(n)]4 + 6t22,3(n)[t2,3(n) + g2,3(n)]4

−6t32,3(n)[t2,3(n) + g2,3(n)]3 , (22)

t2,3(n + 1)

= 18t42,3(n)h2,3(n)g2,3(n) + 45t32,3(n)h2,3(n)g2
2,3(n) +

[

142t32,3(n) + 36t22,3(n)h2,3(n)
]

g3
2,3(n)

+
[

153t22,3(n) + 9t2,3(n)h2,3(n)
]

g4
2,3(n) + 45t2,3(n)g5

2,3(n) + 2g6
2,3(n) , (23)

g2,3(n + 1)

=
[

22t32,3(n)h2
2,3(n) + 3t22,3(n)h3

2,3(n)
]

g2,3(n)

+
[

77t32,3(n)h2,3(n) + 50t22,3(n)h2
2,3(n) + 3t2,3(n)h3

2,3(n)
]

g2
2,3(n)

+
[

200t22,3(n)h2,3(n) + 42t2,3(n)h2
2,3(n) + h3

2,3(n)
]

g3
2,3(n)

+
[

171t22,3(n) + 169t2,3(n)h2,3(n) + 12h2
2,3(n)

]

g4
2,3(n)

+
[

195t2,3(n) + 46h2,3(n)
]

g5
2,3(n) + 56g6

2,3(n) + 2t42,3(n)h2
2,3(n) + t32,3(n)h3

2,3(n) , (24)

h2,3(n + 1)

=
[

60t32,3(n)h2
2,3(n) + 162t22,3(n)h3

2,3(n) + 90t2,3(n)h4
2,3(n) + 18h5

2,3(n)
]

g2,3(n)

+
[

552t22,3(n)h2
2,3(n) + 522t2,3(n)h3

2,3(n) + 135h4
2,3(n)

]

g2
2,3(n)

+
[

564t22,3(n)h2,3(n) + 1404t2,3(n)h2
2,3(n) + 534h3

2,3(n)
]

g3
2,3(n)

+
[

1608t2,3(n)h2,3(n) + 1152h2
2,3(n)

]

g4
2,3(n) +

[

468t2,3(n) + 1236h2,3(n)
]

g5
2,3(n)

+468g6
2,3(n) + 14t32,3(n)h3

2,3(n) + 15t22,3(n)h4
2,3(n) + 6t2,3(n)h5

2,3(n) + h6
2,3(n) . (25)

The figures for these configurations are too many to be shown here. Some values of f2,3(n), t2,3(n),
g2,3(n), h2,3(n) are listed in Table 2. These numbers grow exponentially, and do not have simple integer

factorizations.
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Tab. 2: The first few values of f2,3(n), t2,3(n), g2,3(n), h2,3(n).

n 0 1 2

f2,3(n) 7 61,905 53,145,523,900,850,102,434,114,604,001

t2,3(n) 3 8,372 218,891,276,004,139,532,538,695,680

g2,3(n) 1 8,020 1,242,664,072,161,818,527,545,741,824

h2,3(n) 1 29,473 49,198,640,408,360,507,318,938,682,849

Lemma 4.1 The asymptotic growth constant for the number of spanning forests on SG2,3(n) is bounded:

5

7 × 6m
lnh2,3(m) < zSG2,3

<
5

7 × 6m
ln f2,3(m) , (26)

where m is a positive integer.

Proof: We first show that 5t2,3(n) < g2,3(n) and 30g2,3(n) < h2,3(n) for integer n > 1 by induction.

It is clear from Table 2 that 5t2,3(2) < g2,3(2) and 30g2,3(2) < h2,3(2). In order to save space, we will

use tn, gn, hn to denote t2,3(n), g2,3(n), h2,3(n) for the lengthy equations in this Lemma. From Eq. (23)

and the assumption that 5t2,3(n) < g2,3(n) for n > 1, we have

tn+1 <
18

5
t3nhng2

n + 9t2nhng3
n +

(142

5
t2n +

36

5
tnhn

)

g4
n +

(153

5
tn +

9

5
hn

)

g5
n + 11g6

n , (27)

such that 5t2,3(n + 1) < g2,3(n + 1) is established after Eq. (27) is compared with Eq. (24). Similarly

from Eq. (24), we have

gn+1 <
(22

5
t2nh2

n +
3

5
tnh3

n

)

g2
n +

(77

5
t2nhn + 10tnh2

n +
8

5
h3

n

)

g3
n +

(

40tnhn +
102

5
h2

n

)

g4
n

+
(171

5
tn +

399

5
hn

)

g5
n + 95g6

n +
(2

5
t3nh2

n +
1

5
t2nh3

n

)

gn

<
(22

5
t2nh2

n +
3

5
tnh3

n

)

g2
n +

(77

5
t2nhn + 10tnh2

n +
8

5
h3

n

)

g3
n +

(

40tnhn +
102

5
h2

n

)

g4
n

+
(171

5
tn +

399

5
hn

) h5
n

305
+

95

306
h6

n +
(2

5
t3nh2

n +
1

5
t2nh3

n

)

gn , (28)

such that 30g2,3(n + 1) < h2,3(n + 1) is established after Eq. (28) is compared with Eq. (25).

The next step is to show that g2,3(n)2 < t2,3(n)h2,3(n) for integer n > 1 by induction. It is clear from

Table 2 that g2,3(2)2 < t2,3(2)h2,3(2). The terms of g2,3(n) in Eq. (24) can be rearranged to give

gn+1 =
(

t3n + 3t2ngn + 3tng2
n + g3

n

)

h3
n +

(

2t4n + 22t3ngn + 50t2ng2
n + 42tng3

n + 12g4
n

)

h2
n

+
(

77t3ng2
n + 200t2ng3

n + 169tng4
n + 46g5

n

)

hn + 171t2ng4
n + 195tng5

n + 56g6
n

<
216

125
g3

nh3
n +

14112

625
g4

nh2
n +

11052

125
g5

nhn +
2546

25
g6

n
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< 2.6g3
nh3

n , (29)

where inequalities 5t2,3(n) < g2,3(n) and 30g2,3(n) < h2,3(n) are used. On the other hand, we have

h2,3(n + 1) > h6
2,3(n) from Eq. (25), and

t2,3(n + 1) > 9t2,3(n)h2,3(n)g4
2,3(n) + 2g6

2,3(n) > 11g6
2,3(n) (30)

from Eq. (24) with the assumption that g2
2,3(n) < t2,3(n)h2,3(n) for n > 1. It follows that

h2,3(n + 1)t2,3(n + 1) > 11g6
2,3(n)h6

2,3(n) > g2
2,3(n + 1) . (31)

With above inequalities, we are ready to show that t2,3(n)/g2,3(n) is a strictly decreasing sequence.

From Eqs. (23) and (24), we have

tn+1

gn+1

=
tn(18t3nhngn + 45t2nhng2

n + 142t2ng3
n + 36tnhng3

n + 153tng4
n + 9hng4

n + 45g5
n) + 2g6

n

gn(77t3nhngn + 200t2nhng2
n + 171t2ng3

n + 169tnhng3
n + 195tng4

n + 46hng4
n + 56g5

n) + ...

<
tn(18t3nhngn + 45t2nhng2

n + 142t2ng3
n + 36tnhng3

n + 153tng4
n + 9hng4

n + 45g5
n) + 2tnhng4

n

gn(77t3nhngn + 200t2nhng2
n + 171t2ng3

n + 169tnhng3
n + 195tng4

n + 46hng4
n + 56g5

n)

<
142tn
171gn

. (32)

From the values in Table 2, t2,3(n)/g2,3(n) is less than one for n > 1. Therefore, this ratio approaches

zero as n increases. Similarly g2,3(n)/h2,3(n) is also a strictly decreasing sequence from Eqs. (24) and

(25) as follows.

gn+1 = gn

(

22t3nh2
n + 3t2nh3

n + 77t3nhngn + 50t2nh2
ngn + 3tnh3

ngn + 200t2nhng2
n + 42tnh2

ng2
n

+h3
ng2

n + 171t2ng3
n + 169tnhng3

n + 12h2
ng3

n + 195tng4
n + 46hng4

n + 56g5
n

)

+ 2t4nh2
n

+t3nh3
n (33)

where 2t4nh2
n < (2/5)t3ngnh2

n, t3nh3
n < (1/5)t2ngnh3

n, so that

gn+1 < gn

(

22.4t3nh2
n + 3.2t2nh3

n + 77t3nhngn + 50t2nh2
ngn + 3tnh3

ngn + 200t2nhng2
n + 42tnh2

ng2
n

+h3
ng2

n + 171t2ng3
n + 169tnhng3

n + 12h2
ng3

n + 195tng4
n + 46hng4

n + 56g5
n

)

(34)

where 22.4t3nh2
n < (22.4/150)t2nh3

n and 77t3nhngn < (77/150)t2nh2
ngn . Compared with

hn+1 > hn

(

15t2nh3
n + 162t2nh2

ngn + 90tnh3
ngn + 552t2nhng2

n + 522tnh2
ng2

n + 135h3
ng2

n + 564t2ng3
n

+1404tnhng3
n + 534h2

ng3
n + 1608tng4

n + 1152hng4
n + 1236g5

n

)

, (35)



66 Shu-Chiuan Chang and Lung-Chi Chen

we arrive at the inequality
g2,3(n + 1)

h2,3(n + 1)
<

25g2,3(n)

69h2,3(n)
. (36)

Again, g2,3(n)/h2,3(n) approaches zero as n increases, such that t2,3(n) ≪ g2,3(n) ≪ h2,3(n) for large

n. As for the ordinary Sierpinski gasket, both f2,3(n) and g2,3(n) are negligible compared with h2,3(n)
such that f2,3(n) ∼ h2,3(n) for large n. By Eqs. (22) and (25), we have the upper and lower bounds for

f2,3(n):
h6

2,3(n − 1) < h2,3(n) < f2,3(n) < f6
2,3(n − 1) , (37)

such that

h2,3(m)6
n−m

< f2,3(n) < f2,3(m)6
n−m

, (38)

where m is a fixed integer. With the definition for zSG2,3
given in Eq. (1) and the vertex number of

SG2,3(n) by Eq. (21), the proof is completed. ✷

We have the following proposition.

Proposition 4.1 The asymptotic growth constant for the number of spanning forests on the two-dimensional

Sierpinski gasket SG2,3(n) in the large n limit is zSG2,3
= 1.31235755933....

The convergence of the upper and lower bounds remains rapid. By the same method as given in the

proof of Proposition 3.1, the difference between the upper bound in Eq. (26) and the asymptotic growth

constant is bounded:

5

7 × 6m
ln f2,3(m) − zSG2,3

≤
−1

7 × 6m
ln

(

1 − 7

[

t2,3(m)

f2,3(m)
+

g2,3(m)

f2,3(m)

]3
)

. (39)

More than a hundred significant figures for zSG2,3
can be obtained when m is equal to five.

For SG2,4(n), the numbers of edges and vertices are given by

e(SG2,4(n)) = 3 × 10n , (40)

v(SG2,4(n)) =
4 × 10n + 5

3
, (41)

where again the three outmost vertices have degree two. There are (10n − 1)/3 vertices of SG2,4(n)
with degree six, and (10n − 1) vertices with degree four. By Definition 3.1, the number of spanning

forests is f2,4(n) = t2,4(n)+3g2,4(n)+h2,4(n). The initial values are the same as for SG2: t2,4(0) = 3,

g2,4(0) = 1, h2,4(0) = 1 and f2,4(0) = 7. We wrote a computer program to obtain the recursion relations.

Using the shorthand notation tg2,4(n) = t2,4(n) + g2,4(n), we have

f2,4(n + 1)

= f10
2,4(n) − 6f7

2,4(n)tg3
2,4(n) − 9f5

2,4(n)tg5
2,4(n) + 18f5

2,4(n)tg4
2,4(n)t2,4(n)

+2f4
2,4(n)tg6

2,4(n) + 18f4
2,4(n)tg4

2,4(n)t22,4(n) − 18f4
2,4(n)tg3

2,4(n)t32,4(n)
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−6f3
2,4(n)tg7

2,4(n) + 30f3
2,4(n)tg6

2,4(n)t2,4(n) − 30f3
2,4(n)tg5

2,4(n)t22,4(n)

+3f2
2,4(n)tg8

2,4(n) + 24f2
2,4(n)tg7

2,4(n)t2,4(n) − 36f2
2,4(n)tg6

2,4(n)t22,4(n)

−54f2
2,4(n)tg5

2,4(n)t32,4(n) + 60f2
2,4(n)tg4

2,4(n)t42,4(n) − 5f2,4(n)tg9
2,4(n)

+42f2,4(n)tg8
2,4(n)t2,4(n) − 42f2,4(n)tg7

2,4(n)t22,4(n)

−168f2,4(n)tg6
2,4(n)t32,4(n) + 330f2,4(n)tg5

2,4(n)t42,4(n)

−162f2,4(n)tg4
2,4(n)t52,4(n) + 8f2,4(n)tg3

2,4(n)t62,4(n) + 42tg8
2,4(n)t22,4(n)

−162tg7
2,4(n)t32,4(n) + 102tg6

2,4(n)t42,4(n) + 288tg5
2,4(n)t52,4(n)

−432tg4
2,4(n)t62,4(n) + 162tg3

2,4(n)t72,4(n) . (42)

The other recursion relations for SG2,4(n) are too lengthy to be included here. They are available from

the authors on request. Some values of f2,4(n), t2,4(n), g2,4(n), h2,4(n) are listed in Table 3. These

numbers grow exponentially, and do not have simple integer factorizations.

Tab. 3: The first few values of f2,4(n), t2,4(n), g2,4(n), h2,4(n).

n 1 2

f2,4(n) 75,908,209 6,053,025,303,996,636,848,970,430,785,675,468,144,409,657,412,247,800,423,390,303,465,602,821,564,523,873

t2,4(n) 6,665,475 772,069,425,849,585,011,183,346,692,712,538,703,294,972,628,973,372,161,275,424,155,207,555,217,357

g2,4(n) 8,406,453 17,447,838,129,920,655,302,865,270,986,884,479,355,572,603,291,172,150,410,900,983,156,421,717,259,395

h2,4(n) 44,023,375 5,999,909,720,181,025,298,050,651,626,022,102,167,639,644,629,745,310,599,996,325,091,978,348,857,528,331

By a similar argument as in Lemma 3.2, the asymptotic growth constant for the number of spanning

forests on SG2,4(n) is bounded:

3

4 × 10m
lnh2,4(m) < zSG2,4

<
3

4 × 10m
ln f2,4(m) , (43)

with m a positive integer. We have the following proposition.

Proposition 4.2 The asymptotic growth constant for the number of spanning forests on the two-dimensional

Sierpinski gasket SG2,4(n) in the large n limit is zSG2,4
= 1.36051646575....
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The convergence of the upper and lower bounds is rapid again. By the same method as given in the

proof of Proposition 3.1, the difference between the upper bound in Eq. (43) and the asymptotic growth

constant is bounded:

3

4 × 10m
ln f2,4(m) − zSG2,4

≤
−1

12 × 10m
ln

(

1 − 15

[

tg2,4(m)

f2,4(m)

]3
)

. (44)

More than a hundred significant figures for zSG2,4
can be obtained when m is equal to four.

5 The number of spanning forests on SGd(n) with d = 3, 4
In this section, we derive the asymptotic growth constant of spanning forests on SGd(n) with d = 3, 4.

For the three-dimensional Sierpinski gasket SG3(n), we use the following definitions.

Definition 5.1 Consider the three-dimensional Sierpinski gasket SG3(n) at stage n. (a) Define f3(n) ≡
NSF (SG3(n)) as the number of spanning forests. (b) Define t3(n) as the number of spanning forests

such that the four outmost vertices belong to one tree. (c) Define g3(n) as the number of spanning forests

such that one of the outmost vertices belongs to one tree and the other three outmost vertices belong to

another tree. (d) Define h3(n) as the number of spanning forests such that two of the outmost vertices

belong to one tree and the other two outmost vertices belong to another tree. (e) Define p3(n) as the

number of spanning forests such that two of the outmost vertices belong to one tree and the other two

outmost vertices separately belong to other trees. (f) Define q3(n) as the number of spanning forests such

that each of the outmost vertices belongs to a different tree.

The quantities f3(n), t3(n), g3(n), h3(n), p3(n) and q3(n) are illustrated in Fig. 8, where only the

outmost vertices are shown. There are four different classes of forests enumerated by g3(n), three classes

enumerated by h3(n), and six classes enumerated by p3(n). By definition,

f3(n) = t3(n) + 4g3(n) + 3h3(n) + 6p3(n) + q3(n) . (45)

The initial values at stage zero are t3(0) = 16, g3(0) = 3, h3(0) = 1, p3(0) = 1, q3(0) = 1 and

f3(0) = 38.

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣

♣♣♣
♣♣♣
♣

♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣✐

f3(n)

✔
✔
✔

❚
❚

❚

✑✑ ◗◗

t3(n)

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣

♣♣♣
♣♣♣
♣

✑✑ ◗◗

g3(n)

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣

♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

h3(n)

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣

♣♣♣
♣♣♣
♣

♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

p3(n)

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣

♣♣♣
♣♣♣
♣

♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

q3(n)

Fig. 8: Illustration for the spanning subgraphs f3(n), t3(n), g3(n), h3(n), p3(n) and q3(n). The two outmost vertices at the

ends of a solid line belong to one tree, while the two outmost vertices at the ends of a dot line belong to separated trees.

The recursion relations are lengthy and given in the appendix. Some values of f3(n), t3(n), g3(n),
h3(n), p3(n), q3(n) are listed in Table 4. These numbers grow exponentially, and do not have simple

integer factorizations.
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Tab. 4: The first few values of f3(n), t3(n), g3(n), h3(n), p3(n), q3(n).

n 0 1 2

f3(n) 38 701,866 150,308,440,552,729,541,599,408

t3(n) 16 173,880 14,568,001,216,879,127,537,520

g3(n) 3 63,354 10,109,099,387,983,187,560,398

h3(n) 1 9,059 1,150,970,295,799,746,536,513

p3(n) 1 31,357 9,282,357,698,529,097,198,747

q3(n) 1 59,251 36,156,984,705,343,841,018,275

By a similar argument as in Lemma 3.2, the asymptotic growth constant for the number of spanning

forests on SG3(n) is bounded:
ln q3(m)

2 × 4m
< zSG3

<
ln f3(m)

2 × 4m
, (46)

with m a positive integer. We have the following proposition.

Proposition 5.1 The asymptotic growth constant for the number of spanning forests on the three-dimensional

Sierpinski gasket SG3(n) in the large n limit is zSG3
= 1.66680628117....

The convergence of the upper and lower bounds is not as quick as for the two-dimensional cases. By

the same method as given in the proof of Proposition 3.1, the difference between the upper bound in Eq.

(46) and the asymptotic growth constant is bounded:

1

2 × 4m
ln f3(m) − zSG3

≤
−1

6 × 4m
ln

(

1 − 7

[

t3(m)

f3(m)
+

2g3(m)

f3(m)
+

h3(m)

f3(m)
+

p3(m)

f3(m)

]3
)

. (47)

More than a hundred significant figures for zSG3
can be obtained when m is equal to nine.

For the four-dimensional Sierpinski gasket SG4(n), we use the following definitions.

Definition 5.2 Consider the four-dimensional Sierpinski gasket SG4(n) at stage n. (a) Define f4(n) ≡
NSF (SG4(n)) as the number of spanning forests. (b) Define t4(n) as the number of spanning forests such

that the five outmost vertices belong to one tree. (c) Define g4(n) as the number of spanning forests such

that two of the outmost vertices belong to one tree and the other three outmost vertices belong to another

tree. (d) Define h4(n) as the number of spanning forests such that one of the outmost vertices belong to

one tree and the other four outmost vertices belong to another tree. (e) Define p4(n) as the number of

spanning forests such that one of the outmost vertices belong to one tree, two of the other outmost vertices

belong to another tree and the remaining two outmost vertices belong to a third tree. (f) Define q4(n) as

the number of spanning forests such that three of the outmost vertices belong to one tree and the other

two outmost vertices separately belong to other trees. (g) Define r4(n) as the number of spanning forests
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such that two of the outmost vertices belong to one tree and the other three outmost vertices separately

belong to other trees. (h) Define s4(n) as the number of spanning forests such that each of the outmost

vertices belongs to a different tree.

The quantities f4(n), t4(n), g4(n), h4(n), p4(n), q4(n), r4(n) and s4(n) are illustrated in Fig. 9, where

only the outmost vertices are shown. There are ten different classes of forests enumerated by g4(n), five

classes enumerated by h4(n), fifteen classes enumerated by p4(n), ten classes enumerated by q4(n) and

ten classes enumerated by r4(n). By definition,

f4(n) = t4(n) + 10g4(n) + 5h4(n) + 15p4(n) + 10q4(n) + 10r4(n) + s4(n) . (48)

The initial values at stage zero are t4(0) = 125, g4(0) = 3, h4(0) = 16, p4(0) = 1, q4(0) = 3, r4(0) = 1,

s4(0) = 1 and f4(0) = 291.
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Fig. 9: Illustration for the spanning subgraphs f4(n), t4(n), g4(n), h4(n), p4(n), q4(n), r4(n) and s4(n). The two outmost

vertices at the ends of a solid line belong to one tree, while the two outmost vertices at the ends of a dot line belong to separated

trees.

We wrote a computer program to obtain the recursion relations. Using the shorthand notations tr4(n) =
t4(n) + 4g4(n) + 3h4(n) + 3p4(n) + 3q4(n) + r4(n), tq4(n) = t4(n) + g4(n) + 2h4(n) + q4(n),
tp4(n) = t4(n) + 2g4(n) + h4(n) + p4(n) and th4(n) = t4(n) + h4(n), we have

f4(n + 1)

= f5
4 (n) − 10f2

4 (n)tr3
4(n) − 15f4(n)tr4

4(n) − 30f4(n)tq4
4(n) − 12tr5

4(n)

+60f4(n)tr2
4(n)tq2

4(n) − 15tr4
4(n)tp4(n) + 30tr4

4(n)th4(n)

−30tr3
4(n)tp2

4(n) + 120tr3
4(n)tp4(n)th4(n) + 140tr3

4(n)tq2
4(n)
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−120tr3
4(n)th2

4(n) + 240tr2
4(n)tq2

4(n)tp4(n) − 480tr2
4(n)tq2

4(n)th4(n)

+300tr4(n)tq2
4(n)tp2

4(n) − 1200tr4(n)tq2
4(n)tp4(n)th4(n)

−180tr4(n)tq4
4(n) + 1200tr4(n)tq2

4(n)th2
4(n) − 51tp5

4(n)

+510tp4
4(n)th4(n) + 260tq2

4(n)tp3
4(n) − 2040tp3

4(n)th2
4(n)

−1560tq2
4(n)tp2

4(n)th4(n) + 4080tp2
4(n)th3

4(n) − 210tq4
4(n)tp4(n)

+3120tq2
4(n)tp4(n)th2

4(n) − 4080tp4(n)th4
4(n) + 420tq4

4(n)th4(n)

−2080tq2
4(n)th3

4(n) + 1632th5
4(n) . (49)

The other recursion relations for SG4(n) are too lengthy to be included here. They are available from the

authors on request. Some values of f4(n), t4(n), g4(n), h4(n), p4(n), q4(n), r4(n), s4(n) are listed in

Table 5. These numbers grow exponentially, and do not have simple integer factorizations.

Tab. 5: The first few values of f4(n), t4(n), g4(n), h4(n), p4(n), q4(n), r4(n), s4(n).

n 1 2

f4(n) 85,824,132,029 7,035,17,527,028,105,500,700,677,412,563,863,619,648,991,055,157,831,483

t4(n) 3,412,986,435 96,263,552,482,319,683,899,326,687,304,651,572,426,360,843,549,870,965

g4(n) 392,122,089 2,066,883,222,491,708,347,294,489,449,954,683,350,540,164,424,914,435

h4(n) 5,923,774,096 40,841,537,587,690,687,322,887,835,686,137,425,636,710,177,922,212,520

p4(n) 224,652,411 1,952,486,255,633,069,494,764,677,365,066,319,434,639,193,908,980,317

q4(n) 1,740,690,487 19,621,800,909,697,266,778,177,200,667,594,598,639,201,513,851,821,683

r4(n) 693,438,141 12,210,477,454,458,190,580,945,663,798,559,596,025,810,422,699,074,029

s4(n) 1,159,981,779 34,767,376,906,364,680,701,267,847,191,441,347,363,970,403,604,091,693

By a similar argument as in Lemma 3.2, the asymptotic growth constant for the number of spanning

forests on SG4(n) is bounded:

2

5m+1
ln s4(m) < zSG4

<
2

5m+1
ln f4(m) , (50)

with m a positive integer. We have the following proposition.

Proposition 5.2 The asymptotic growth constant for the number of spanning forests on the four-dimensional

Sierpinski gasket SG4(n) in the large n limit is zSG4
= 1.98101707560....
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The convergence of the upper and lower bounds is even slower compared with that for SG3. By the

same method as given in the proof of Proposition 3.1, the difference between the upper bound in Eq. (50)

and the asymptotic growth constant is bounded:

2

5m+1
ln f4(m) − zSG4

≤
−1

2 × 5m+1
ln

(

1 − 67

[

tr4(m)

f4(m)

]3
)

. (51)

We only have fourteen significant figures for zSG4
with m calculated up to six.

6 Bounds of the asymptotic growth constants

As the spanning tree is a special case of spanning forest where there is only one component, it is clear that

the number of spanning trees NST (G) is always less than NSF (G). Define

zG = lim
v(G)→∞

lnNST (G)

v(G)
, (52)

then zG < zG. We have obtained such asymptotic growth constants for the number of spanning trees on

the Sierpinski gasket SGd for general d and SG2,b with b = 3, 4 in Ref. [Chang et al.(2007)]. They serve

as the lower bounds for our current consideration for the spanning forests.

By Eq. (3) and a similar argument as in Lemma 3.2, we have the upper bound of the asymptotic growth

constant for the number of spanning forests on SGd(n):

zSGd
<

2

(d + 1)m+1
lnNSF (SGd(m)) , (53)

with m a positive integer. Although the number NSF (SGd(m)) for general m is difficult to obtain, it is

known for m = 0. We first recall that SGd(0) at stage zero is a complete graph with (d+1) vertices, each

of which is adjacent to all of the other vertices. The number of spanning forests on the complete graph is

given by sequence A001858 in Ref. [Sloane]. The first few values of NSF (SGd(0)) are 7, 38, 291, 2932

for d from 2 to 5 [Callan(2003)]. Define

z̄SGd
=

2

d + 1
lnNSF (SGd(0)) , (54)

then zSGd
< z̄SGd

. We list the first few values of zSGd
, zSGd

, z̄SGd
and their ratios in Table 6. Notice

that the upper bound is closer to the exact value when d is small, while the lower bound is closer to the

exact value when d is large.

For the generalized Sierpinski gasket SG2,b(n) with dimension equal to two, the number of vertices

can be calculated to be

v(SG2,b(n)) =
b + 4

b + 2

[

b(b + 1)

2

]n

+
2(b + 1)

b + 2
. (55)

The upper bound of the asymptotic growth constant for the number of spanning forests on SG2,b(n) is

given by

zSG2,b
<

(

b + 2

b + 4

)

lnNSF (SG2,b(m))

[b(b + 1)/2]
m , (56)
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Tab. 6: Numerical values of zSGd
, zSGd

, z̄SGd
and their ratios. The last digits given are rounded off.

d D zSGd
zSGd

z̄SGd
zSGd

/zSGd
zSGd

/z̄SGd

2 1.585 1.048594857 1.247337199 1.297273433 0.8406667076 0.9615067787

3 2 1.569396409 1.666806281 1.818793080 0.9415589724 0.9164353546

4 2.322 1.914853265 1.981017076 2.269329307 0.9666010902 0.8729526691

5 2.585 2.172764568 - 2.661146688 - -

Tab. 7: Numerical values of zSG2,b
, zSG2,b

, z̄SG2,b
and their ratios. The last digits given are rounded off.

b D zSG2,b
zSG2,b

z̄SG2,b
zSG2,b

/zSG2,b
zSG2,b

/z̄SG2,b

3 1.631 1.133231895 1.312357559 1.389935821 0.8635084908 0.9441857241

4 1.661 1.194401491 1.360516466 1.459432612 0.8779030028 0.9322228754

∞ 2 - - 1.945910149 - -

with m a positive integer. Although the number NSF (SG2,b(m)) for general m is difficult to obtain, it is

always equal to seven for stage zero since SG2,b(0) is the equilateral triangle. Define

z̄SG2,b
=

b + 2

b + 4
ln 7 , (57)

then zSG2,b
< z̄SG2,b

. We list the first few values of zSG2,b
, zSG2,b

, z̄SG2,b
and their ratios in Table 7.

Notice that the upper bound is closer to the exact value when b is small, while the lower bound is closer

to the exact value when b is large.
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A Recursion relations for SG3(n)

We give the recursion relations for the three-dimensional Sierpinski gasket SG3(n) here. Since the sub-

script is d = 3 for all the quantities throughout this appendix, we will use the simplified notation fn+1 to

denote f3(n + 1) and similar notations for other quantities. For any non-negative integer n, we have

fn+1 = f4
n − 4fn[tn + 2gn + hn + pn]3 − 3[tn + 2gn + hn + pn]4

+12[tn + 2gn + hn + pn]2[tn + gn]2 − 6[tn + gn]4 , (58)



74 Shu-Chiuan Chang and Lung-Chi Chen

tn+1 = 72t2npn[gn + hn] + 56tn[gn + hn]3 + 24t2np2
n + 12tnpn[11g2

n + 12gnhn + h2
n]

+12g2
n[3g2

n + 8gnhn + 6h2
n] + 12tnp2

n[4gn + hn] + 48g2
npn[gn + hn] + 4tnp3

n + 12g2
np2

n ,
(59)

gn+1 = 6t2nqn[gn + hn] + 24t2np2
n + 12tnpn[9g2

n + 16gnhn + 7h2
n]

+4gn[5g3
n + 18g2

nhn + 24gnh2
n + 14h3

n] + 6t2npnqn + 6tnp2
n[21gn + 11hn]

+3tnqn[5g2
n + 6gnhn + h2

n] + 24gnpn[5g2
n + 9gnhn + 4h2

n] + 6tnpnqn[3gn + hn]

+21tnp3
n + 6gnp2

n[19gn + 13hn] + 3gnqn[3g2
n + 4gnhn + h2

n] + 3tnp2
nqn

+6gnpnqn[2gn + hn] + 25gnp3
n + 3gnp2

nqn , (60)

hn+1 = 2t2np2
n + 12tnpn[g2

n + 4gnhn + 3h2
n] + 2[g4

n + 8g3
nhn + 18g2

nh2
n + 16gnh3

n + 11h4
n]

+8tnp2
n[2gn + 3hn] + 8pn[2g3

n + 9g2
nhn + 9gnh2

n + 2h3
n] + 4tnp3

n

+2p2
n[10g2

n + 24gnhn + 9h2
n] + 8p3

n[gn + hn] + p4
n , (61)

pn+1 = 6t2npnqn + 120tnp2
n[gn + hn] + 14tnqn[gn + hn]2 + 88pn[gn + hn]3

+4tnpnqn[13gn + 10hn] + 78tnp3
n + 6p2

n[49g2
n + 78gnhn + 29h2

n]

+2qn[11g3
n + 26g2

nhn + 19gnh2
n + 4h3

n] + t2nq2
n + 2tnq2

n[2gn + hn] + 26tnp2
nqn

+2pnqn[38g2
n + 50gnhn + 15h2

n] + 2p3
n[115gn + 76hn] + 2tnpnq2

n

+q2
n[4g2

n + 4gnhn + h2
n] + 2p2

nqn[31gn + 18hn] + 49p4
n + 2pnq2

n[2gn + hn] + 14p3
nqn

+p2
nq2

n , (62)

qn+1 = 144tnpnqn[gn + hn] + 208tnp3
n + 720p2

n[gn + hn]2 + 56qn[gn + hn]3 + 24tnq2
n[gn + hn]

+252tnp2
nqn + 24pnqn[25g2

n + 44gnhn + 19h2
n] + 104p3

n[17gn + 15hn] + 60tnpnq2
n

+24q2
n[3g2

n + 5gnhn + 2h2
n] + 12p2

nqn[110gn + 89hn] + 972p4
n + 4tnq3

n

+12pnq2
n[22gn + 17hn] + 776p3

nqn + 4q3
n[4gn + 3hn] + 210p2

nq2
n + 24pnq3

n + q4
n . (63)
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