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A partition of x > 0 of the form x =
P

i
2ai3bi with distinct parts is called a double-base expansion of x. Such a rep-

resentation can be obtained using a greedy approach, assuming one can efficiently compute the largest {2, 3}-integer,

i.e., a number of the form 2a3b, less than or equal to x. In order to solve this problem, we propose an algorithm

based on continued fractions in the vein of the Ostrowski number system, we prove its correctness and we analyse

its complexity. In a second part, we present some experimental results on the length of double-base expansions when

only a few iterations of our algorithm are performed.
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1 Introduction

In this paper, we consider representations of integers in two coprime bases. More exactly, we analyze

decompositions of positive integers in the form

x =

ℓ
∑

i=1

2ai3bi , (1)

with ai, bi ≥ 0 and (ai, bi) 6= (aj , bj) if i 6= j.

Apart from its practical interest in real life applications such as digital signal processing [13] and

cryptography [10, 14], this so-called double-base number system (DBNS) has many intriguing properties

and leads to interesting Diophantine approximation problems. We focus on bases 2 and 3 but most of the

results and algorithms presented in this paper remain valid for arbitrary bases.

Clearly, such a decomposition always exists, the binary expansion is a special case of (1). In fact,

this number system is even extremely redundant. For a given integer x > 0, the number f(x) of DBNS
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representations is given by (see [11] for more details):

f(x) =











1 if x = 1,

f(x − 1) + f(x/3) if x ≡ 0 (mod 3),

f(x − 1) otherwise.

It is not difficult to see that the elements of this sequence go by triples and correspond to the number of

partitions of 3x into powers of 3, also called ternary partitions (see [3] and the sequence #A005704 from

the on-line encyclopedia of integer sequences), whose first terms are:

1, 2, 3, 5, 7, 9, 12, 15, 18, 23, 28, 33, 40, 47, 54, 63, 72, 81, 93, 105, 117, . . .

For a given x > 0, finding an expansion of minimal length ℓ (i.e., it is not possible to write x with

ℓ − 1 or fewer terms) is believed to be a difficult problem. Those representations of minimal length are

extremely sparse. For example, among its 783 representations, the integer 127 can be written as a sum of

exactly three terms in 6 different ways:

127 = 2233 + 2132 + 2030 = 108 + 18 + 1

127 = 2233 + 2430 + 2031 = 108 + 16 + 3

127 = 2531 + 2033 + 2230 = 96 + 27 + 4

127 = 2332 + 2133 + 2030 = 72 + 54 + 1

127 = 2630 + 2133 + 2032 = 64 + 54 + 9

127 = 2630 + 2232 + 2033 = 64 + 36 + 27

This observation suggests that 127 cannot be expressed with fewer than three terms. In fact, the smallest

integer requiring three summands is 23 (as pointed out in [27] by Tijdeman); the smallest integer requiring

four summands is 431. Similarly, the next smallest numbers requiring five, six and seven summands are

18431, 3448733, and 1441896119 (a 21-bit integer), respectively.

For large numbers, such as those used in cryptographic applications, finding a representation of minimal

length, in a reasonable amount of time, seems very hard. Fortunately, one can use a greedy approach (see

Algorithm 1) to find a fairly sparse representation very quickly, based on the determination of the best

default approximation of x (i.e., the largest integer ≤ x) of the form z = 2a3b.

Algorithm 1 Greedy decomposition

Input : An integer x > 0

Output : The sequence of exponents (ai, bi)i>0 s.t. x =
∑ℓ

i=1 2ai3bi as in (1)

1: while x 6= 0 do

2: Find the best default approximation of x of the form z = 2a3b

3: Print (a, b)
4: x := x − z

Although it sometimes fails in finding a minimal representation (the smallest example is 41: the mini-

mal representation is 32 + 9, whereas Algorithm 1 returns 41 = 36 + 4 + 1), it is very easy to implement.
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More importantly, it guarantees an expansion of sublinear length ℓ. Indeed, an important theorem from

Dimitrov [12] states that ℓ is in O(log x/ log log x). The proof is based on a result by Tijdeman [26],

which says that there exists an absolute constant C such that there is always a number of the form 2a3b in

the interval
[

x − x/(log x)C , x
]

. See [12] for a complete proof.

In this paper we investigate the problem of finding the best default approximation of x of the form

z = 2a3b. This operation is clearly of crucial importance for Algorithm 1. We present an algorithm as

well as inhomogeneous approximation results in the vein of a number system from Ostrowski [20], which

uses the series of convergents of the continued fraction expansion of an irrational number.

We introduce the problem in Diophantine terms in Section 2 and recall basic facts on Ostrowski’s

numeration in Section 3. In Section 4, we describe our algorithm and prove its correctness. Moreover,

we show that for all x of bounded binary length, our algorithm terminates in O(log log x) iterations. The

natural extension to signed digits and some implementation considerations are discussed in Section 5. We

then conclude by presenting some numerical experiments in Section 6. The present paper is an extended

version of [7].

2 Problem and notation

Let x ≥ 2 be a given positive integer. We want to find two integers a, b ≥ 0 such that 2a3b ≤ x and

among the solutions to this problem, 2a3b is the largest possible value. In other words

2a3b = max
{

2c3d ≤ x : (c, d) ∈ N
2
}

. (2)

Equivalently, one can solve the following Diophantine inequality in non-negative integers

a log 2 + b log 3 ≤ log x, (3)

with the constraint that no other integers c, d ≥ 0 give a better left approximation to log x; meaning that

if (a, b) is a maximal solution of (3), then for all integers c, d with (c, d) 6= (a, b), we have

cα + d < aα + b ≤ log3 x, where α = log3 2.

In the following, {t} denotes the fractional part of t. Graphically, the solutions to cα + d ≤ log3 x are

the points (c, d) with non-negative integer coordinates located under the line of equation

v = −αu + log3 x.

These are the integer points in the gray area of Figure 1. Among those points, the best left approximation

of x we are looking for is the point (a, b), which has the smallest vertical distance to the line, that we

denote by δ(u) = {−αu + log3 x}, for u ≥ 0.

A naive approach consists in computing δ(u) for every integer 0 ≤ u ≤ log2 x and to keep the point

(u, v) which gives the smallest value. Since log3 x < log2 x, a little more efficient solution is to exchange

the coordinate axis, i.e., to consider the line v′ = u′/α − log2 x, and to keep the closest point among

all integers 0 ≤ u′ ≤ log3 x (we perform here the change of coordinates system u′ = v, v′ = −u).

Let us note that in some cases, it may be interesting to compute the best right approximation, i.e., the

smallest integer of the form 2a3b greater than x. Observe that it can be easily obtained by symmetry, by

looking for the point (a′, b′) located under and with the smallest vertical distance to the line of equation

v′ = −αu′ + α⌈log2 x⌉ + ⌈log3 x⌉ − log3(x) (the dashed line in Figure 1), and to apply the change of

coordinates system u = ⌈log2 x⌉ − u′, v = ⌈log3 x⌉ − v′.
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(7, 1)

(2, 5)

Fig. 1: Graphical interpretation of the problem

Example 1 In Figure 1, we consider an example with x = 358. We have log2 x ≈ 8.48, log3 x ≈ 5.35.

The best left approximation is the point of coordinates (2, 4). Similarly the closest point below the dashed

line is the point (2, 5), which by symmetry gives the best right approximation: (9− 2, 6− 5) = (7, 1). We

easily verify that 2α + 4 ≈ 5.26 < log3 x < 7α + 1 ≈ 5.41.

The complexity of all those graphical approaches is O(log x). In the next sections, we give an algorithm

which solves the problem in O(log log x).

In the following, we define β = {log3 x}. We assume 0 < β < 1. Indeed, if β = 0, then we take a = 0
and b = log3 x ∈ N. Clearly, if (a, b) is a maximal solution of (3), then we have

⌊log3 x⌋ ≤ aα + b ≤ β + ⌊log3 x⌋,

with 0 ≤ a ≤ ⌊log2 x⌋ and 0 ≤ b ≤ ⌊log3 x⌋. Indeed, the pair (c, d) = (0, ⌊log3 x⌋) is a solution which

provides cα + d = ⌊log3 x⌋.

Let us briefly describe the strategy followed in the present paper. We set k = a and l = ⌊log3 x⌋ − b.

We have 0 ≤ kα − l ≤ β.

We thus are looking for (k, l) ∈ N
2 such that 0 ≤ kα − l ≤ β and

kα − l = max
(r,s)∈N2

{rα − s : 0 ≤ rα − s ≤ β, 0 ≤ r ≤ ⌊log2 x⌋, 0 ≤ s ≤ ⌊log3 x⌋} . (4)

We shall define two increasing sequences (kn)n≥0, (ln)n≥0 such that, for some j > 0, kj = k, lj = l
satisfy (4). We then set a = k and b = ⌊log3 x⌋ − l to get the solution of (2).
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We will consider this classical inhomogeneous approximation problem in Section 4, where the sequence

of inhomogeneous best approximations of β by points of the form Nα will be explicitly given. For that

purpose, we first introduce Ostrowski’s number system.

3 Ostrowski’s number system

In this section we introduce a number system due to Ostrowski [20]. Let us first recall some basic facts

about continued fractions (see [17] for more details).

A simple continued fraction is an expression of the form

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

where a0 = ⌊α⌋ and a1, a2, . . . are integers ≥ 1. The sequence (an)n∈N of partial quotients can either be

finite or infinite.

Every rational number α can be expressed as a finite simple continued fraction, denoted by α =
[a0, a1, . . . , an] in the more convenient compact notation. Similarly, every irrational number α can be

expressed uniquely as an infinite simple continued fraction. We write α = [a0, a1, a2, . . . ]. For example,

the continued fraction decomposition of log 2/ log 3 = 0.630929753571 . . . is

log3 2 = [0, 1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, . . . ].

The rational number obtained by restricting the continued fraction of α to its first n + 1 partial quotients

pn

qn

= [a0, a1, a2, . . . , an]

is called the nth convergent of α. The integers pn, qn are easily computable; we have p−1 = 1, q−1 = 0,

p0 = a0, q0 = 1, and

pn+1 = an+1 pn + pn−1

qn+1 = an+1 qn + qn−1.

It is well known that the sequences (pn)n≥0, (qn)n≥0 satisfy limn→∞ pn/qn = α and pn+1qn−pnqn+1 =
(−1)n. Moreover, simple continued fractions provide the sequence of best rational approximations of an

irrational number.

Ostrowski’s number system [20] (see [2] for an introduction) is associated with the numeration scale

(qn)n≥0 of denominators of the convergents of the continued fraction expansion of an irrational number

0 < α < 1. The following proposition holds.

Proposition 1 Let 0 < α < 1 be an irrational number. Every integer N can be written uniquely in the

form

N =
m

∑

k=1

bkqk−1,

where 0 ≤ b1 ≤ a1 − 1; 0 ≤ bk ≤ ak, for k ≥ 2 and bk = 0 if bk+1 = ak+1.
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For example, for α = 1+
√

5
2 = [1, 1, 1, 1, . . . ], the sequence (qn)n≥0 corresponds to the Fibonacci

numbers [28]. The unicity condition bk = 0 if bk+1 = ak+1 means that we do not have two consecutive

ones in the corresponding Zeckendorf representation [29].

Ostrowski’s representation of integers can be extended to real numbers (see e.g. the survey [5]). The

base is given by the sequence (θn)n≥0, where θn = qnα− pn. Note that the sign of θn is equal to (−1)n.

Proposition 2 Let 0 < α < 1 be an irrational number. Every real number −α ≤ β < 1 − α can be

written uniquely in the form

β =

+∞
∑

k=1

bkθk−1,

where 0 ≤ b1 ≤ a1 − 1; 0 ≤ bk ≤ ak, for k ≥ 2; bk = 0 if bk+1 = ak+1, and bk 6= ak for infinitely many

odd integers.

Proposition 2 can be used to approximate β modulo 1 by numbers of the form Nα, with N ∈ N.

Indeed, one verifies that the integers

Nn =

n
∑

k=1

bkqk−1

provides a series of arbitrarily good approximations to β on both sides, i.e., the fractional part of Nnα can

either be greater or smaller than β.

If we are only interested in the best left approximations to β, which is our case, we can express β in

base (|θn|)n≥0 (see Section 4 below for the exact definition of best left approximations). The following

proposition holds.

Proposition 3 Let 0 < α < 1 be an irrational number. Every real number 0 ≤ β < 1 can be written

uniquely in the form

β =

+∞
∑

k=1

dk|θk−1|,

where 0 ≤ dk ≤ ak for k ≥ 1; dk+1 = 0 if dk = ak and dk 6= ak for infinitely many even and odd

integers.

In this case, the sequence of best left approximations is more difficult to define due to the alternating

signs of θn. Indeed, the corresponding numeration system on integers is defined with respect to the

numeration scale ((−1)nqn)n≥0. Nevertheless, none of these expansions provides the sequence of best

left approximations (see Remark 3 below for more details). In the next sections, we present an algorithm

inspired by [22] and [6], we prove its correctness and analyse its complexity.

4 The sequence of inhomogeneous best approximations of β

From now on we assume α irrational, 0 < α < 1 and 0 < β ≤ 1. Inhomogeneous left approximations

of β are numbers of the form kα + l ≤ β, with k, l integers. Clearly, there exist infinitely many such

approximations. We want to define two increasing sequences of integers (kn)n≥0 and (ln)n≥0, such that

0 < knα − ln < kn+1α − ln+1 < β,
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and, furthermore, ∀k < kn+1, k 6= kn, and ∀l ∈ Z such that 0 ≤ kα − l ≤ β, we have

0 < kα − l < knα − ln < β.

For simplicity, we define fn = |θn| for all n. We have f−1 = 1, f0 = α, f1 = 1 − a1α, and for n ∈ N

fn−1 = an+1fn + fn+1. (5)

One has fn > 0 for all n, since α is irrational. Hence, the sequence (fn−1 + fn)n≥0 is strictly decreasing

and tends to zero. Since 0 < β ≤ 1, there exists a unique integer n ≥ 0 such that

fn + fn+1 < β ≤ fn−1 + fn. (6)

Before we give the algorithm that defines the series of inhomogeneous best left approximations of β, we

need to prove the following two lemmas.

Lemma 1 Let 0 < β ≤ 1 and (fn)n≥0 be defined as above. There exists a unique integer n ≥ 0, a

unique integer c ≥ 1, and a unique e ∈ R such that

β = cfn + fn+1 + e, (7)

with 0 < e ≤ fn, and 1 ≤ c ≤ a1 − 1 if n = 0, 1 ≤ c ≤ an+1 if n ≥ 1.

Proof: If n ∈ N satisfies (7), then fn + fn+1 < β ≤ fn−1 + fn, and n is uniquely determined since

(fn + fn+1)n≥−1 is strictly decreasing. Now, let n ∈ N be the unique integer that satisfies fn + fn+1 <
β ≤ fn−1 + fn. If n ≥ 1, then fn + fn+1 < β ≤ an+1fn + fn+1 + fn by (5). If n = 0, then

f0 + f1 < β ≤ 1 = f−1 = (a1 − 1)f0 + f1 + f0. (Note that a1 ≥ 2 in this case.) ✷

Lemma 2 Let α irrational, 0 < α < 1. Let 0 < β ≤ 1 and (fn)n≥0 be defined as above, and let n, c, e
be the unique numbers satisfying (7). We define k, l ∈ N by setting

(k, l) =

{

(qn, pn) if n is even,

(−cqn + qn+1,−cpn + pn+1) if n is odd.

Then we have 0 < kα − l < β.

Proof: Let us prove that 0 < β − (kα− l) < β. Assume first that n is even. In this case, qnα− pn = fn.

We have β − (kα − l) = β − fn, and thus 0 < β − (kα − l) < β. Now, if n is odd, qnα − pn = −fn

and thus β − (kα − l) = β + c(qnα − pn) − (qn+1α − pn+1) = β − cfn − fn+1 = e, and thus,

0 < β − (kα − l) ≤ fn < β. ✷

Algorithm 2 below computes the infinite sequence (knα − ln)n≥1 of inhomogeneous best left approx-

imations to β.
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Algorithm 2 Inhomogeneous best left approximations to β

Input : Two real numbers 0 < α < 1 and 0 < β ≤ 1, with α irrational

Output : The infinite sequence (ki, li)i≥1 of best left approximations to β with 0 < kiα − li < β, ∀i
1: (k0, l0) := (0, 0)
2: while true do

3: Compute ni, ci, ei such that β − (kiα − li) = cifni
+ fni+1 + ei

4: if ni is even then

5: (ki+1, li+1) := (ki + qni
, li + pni

)
6: else

7: (ki+1, li+1) := (ki − ciqni
+ qni+1, li − cipni

+ pni+1)

This algorithm is inspired by [22]; similar ones can be found in [23, 24, 25]. Note that β−(ki+1α−li+1)
is equal to ei if ni is odd, and to (ci − 1)fni

+ fni+1 + ei, if ni is even. Hence, we may have ni+1 = ni.

This happens if and only if ni is even and ci > 1; it therefore happens (ci − 1) times before the sequence

(ni) keeps growing towards +∞. We thus have

β =
∑

ni even

cifni
+

∑

ni odd

(cifni
+ fni+1). (8)

The following proposition proves the correctness of Algorithm 2.

Proposition 4 Let 0 < α < 1 and 0 < β ≤ 1 be given. We assume α irrational. The increasing

sequences of integers (ki)i≥0 and (li)i≥0 provided by Algorithm 2 satisfy

0 < kiα − li < ki+1α − li+1 < β, ∀i ≥ 0 (9)

and furthermore, for all i, for all k such that ki < k < ki+1, and for all l ∈ Z such that 0 ≤ kα − l < β,

then

0 ≤ kα − l < kiα − li < β. (10)

Proof: We first prove (9). From Lemma 2, we know that, for all i, 0 < kiα − li < β. We consider two

cases:

1. If ni is even, then β > ki+1α − li+1 = kiα − li + qni
α − pni

= kiα − li + fni
> kiα − li > 0.

2. If ni is odd, then β > ki+1α − li+1 = kiα − li − ci(qni
α − pni

) + qni+1α − pni+1 = kiα − li +
cifni

+ fni+1 > kiα − li > 0.

Let us now prove (10). Let us assume that ki < k < ki+1, and 0 ≤ kα− l < β. By rewriting β−(kα−
l), we get that 0 ≤ β−(kα−l) = β−(kiα−li)+(kiα−li−ki+1α+li+1)+(ki+1α−li+1−kα+l) < β.

What we prove in the next two cases depending on the parity of ni, is that β − (kα− l) > β − (kiα− li).

1. Assume first that ni is even. We have

β − (kα − l) = β − (kiα − li) − fni
+ (ki+1α − li+1 − kα + l).
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Thus, what remains to be proved is that (ki+1α− li+1 − kα + l) is greater than fni
. Since |ki+1 −

k| < |ki+1 − ki| = qni
, one has |ki+1α − li+1 − kα + l| > fni

(we use the best approximation

property of continued fractions, see e.g. [8]). Next we show that (ki+1α − li+1 − kα + l) cannot

be negative by considering two cases. Note first that, from (5) and line 3 of Algorithm 2, we have

|β − (kiα − li) − fni
| ≤ fni−1.

(a) If ki+1 − k 6= qni−1, then |(ki+1α − li+1 − kα + l)| > fni−1, and since 0 ≤ kα − l < β,

we have (ki+1α − li+1 − kα + l) > 0.

(b) If ki+1−k = qni−1, since ni−1 is odd, we have (ki+1α−li+1−kα+l) = (qni−1α−pni−1) =
−fni−1 < 0. And we get β− (kα− l) = β− (kiα− li)−fni

−fni−1 ≤ 0, which contradicts

the hypothesis.

2. If we now assume that ni is odd, we have

β − (kα − l) = β − (kiα − li) − (cifni
+ fni+1) + (ki+1α − li+1 − kα + l).

Here, what remains to be proved is that (ki+1α− li+1−kα+ l) is greater than cifni
+fni+1. Since

|ki+1 − k| < |ki+1 − ki| = qni+1 − ciqni
, we have |ki+1α − li+1 − kα + l| > fni+1 + cifni

. We

know from (7) and Algorithm 2, that |β − (kiα − li) − cifni
− fni+1| ≤ fni

. Hence (ki+1α −
li+1 − kα + l) > 0, which implies (ki+1α − li+1 − kα + l) > cifni

+ fni+1.

Thus, in both cases β − (kα − l) > β − (kiα − li), which concludes the proof. ✷

As stated in Section 2, we want to find two integers a, b ≥ 0 such that

2a3b = max
{

2c3d : (c, d) ∈ N
2, and 2c3d ≤ x

}

.

Let (a, b) ∈ N
2 be one of the solutions of the equivalent Diophantine inequality

a log 2 + b log 3 ≤ log x.

Let α = log3 2 (note that α is irrational and 0 < α < 1), and β = {log3 x}. Recall that we assume

0 < β < 1. We have aα + b ≤ β + ⌊log3 x⌋ with 0 ≤ a ≤ ⌊log2 x⌋ and 0 ≤ b ≤ ⌊log3 x⌋.

Now, we use a slightly modified version of Algorithm 2 (see Remark 4, below) to compute (k, l) ∈ N
2

such that 0 ≤ kα − l ≤ β and

kα − l = max
(r,s)∈N2

{rα − s : 0 ≤ rα − s ≤ β, 0 ≤ r ≤ ⌊log2 x⌋, 0 ≤ s ≤ ⌊log3 x⌋} .

Proposition 5 Let x ≥ 2 be a fixed positive integer. Let α = log3 2; note that α is irrational and

0 < α < 1. Let β = {log3 x}. We assume furthermore that β 6= 0. Let (kn, ln)n∈N be the sequence

of inhomogeneous best left approximations of β. Let v be the uniquely defined integer that satisfies kv ≤
⌊log2 x⌋ < kv+1. Then

kvα − lv = max
(r,s)∈N2

{rα − s : 0 ≤ rα − s ≤ β, 0 ≤ r ≤ ⌊log2 x⌋, 0 ≤ s ≤ ⌊log3⌋} .
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Proof: From the proof of Proposition 4, we know that Algorithm 2 returns the infinite sequence (ki, li)i≥0

of best left approximations to β = {log3 x}. In order to find (k, l) as above, we only need to perform a

finite number of iterations. In fact, this number of iterations is given by the smallest integer v such that

⌊log2 x⌋ < kv , or equivalently, the smallest integer v such that ⌊log3 x⌋ < lv . We use this bound in our

complexity analysis (see proof of Proposition 6). ✷

Remark 1 As pointed out in the proof of Proposition 5, we only need to perform a finite number of

iterations of Algorithm 2. Remark that this number of iterations depends on the sequence of partial

quotients in the continued fraction expansion of α. For the same reason, we can also use a rational

approximation of α = log3 2, say pw/qw, given by the wth convergent. Note that the required precision

for the rational approximation of α depends on the binary length of the input x. This is why we state

our complexity result for integers x with bounded binary length. We analyse the required precision in

Remark 2.

Proposition 6 Let m > 0. For all x having at most m bits, the finite version of Algorithm 2 (see Remark 4,

above) terminates in O(log log x) iterations.

Proof: We use the notation of Algorithm 2. According to (8), we obtain

β =
∑

ni even

cifni
+

∑

ni odd

(cifni
+ fni+1).

For x ≥ 2, let v(x) be the unique integer such that kv(x) ≤ ⌊log2 x⌋ < kv(x)+1. If ni is even, we

compute ki+1 = ki + qni
and we have seen that this occurs ci − 1 times. If ni is odd, we compute

ki+1 = ki − ciqni
+ qni+1. We have

kv(x) =
∑

ni even

ciqni
+

∑

ni odd

(−ciqni
+ qni+1) ,

and thus

kv(x) =
∑

ni even

ciqni
+

∑

ni odd

(

(ani+1
− ci)qni

+ qni−1

)

.

Let w(x) = maxi{ni}. Since ani+1 − ci ≥ 0, for all ni ≥ 1, and ci ≥ 1, for all ni, we have

qw(x)−1 ≤
∑

ni even

qni
+

∑

ni odd

qni−1 ≤ kv(x) ≤ ⌊log2 x⌋ .

Moreover, we also know that the sequence (qi)i≥0 grows at least as fast as the sequence of Fibonacci

numbers given by the denominators of the continued fraction expansion of (1 +
√

5)/2 = [1, 1, 1, 1, . . . ]
(all the partial quotients are equal to 1). Therefore, from Binet’s formula (see [28]), we deduce that there

exists a constant C > 0 such that

∀x, w(x) < C log log x.

Consequently, there exists C ′ such that for all x having at most m bits, w(x) < C ′ log m. We now set A =
maxi=1... C′ log m{ai}. For any m-bit integer x, the number of iterations s(x) satisfies s(x) ≤ Aw(x).
This concludes the proof. ✷
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Corollary 1 The greedy algorithm combined with Algorithm 2 is optimal.

Proof: Since the greedy algorithm produces decompositions with O(log x/ log log x) terms according

to [12], its overall asymptotic complexity is O(log x), i.e., it reaches the lower bound for a recoding

algorithm (all the bits/digits of x have to be scanned). ✷

Remark 2 Let us analyse the required precision for α in terms of the bitlength of x. From the proof of

Proposition 6, we have

kv =
∑

ni even

ciqni
+

∑

ni odd

(ani+1 − ci)qni
+ qni−1 ≤ ⌊log2 x⌋

with ani+1 − ci ≥ 0 for all ni ≥ 1, and ci ≥ 1 for all ni. Therefore, if x is an m-bit integer, we only need

the denominators qi such that qi ≤ m for all i ≥ 1. Let w = max{i : qi ≤ m}. Table 1 gives some useful

numerical values for w.

Now, we need to know how many bits of precision µ are given by α̂ = pw

qw

, the wth rational approxima-

tion of α. It is well known (see [17]) that for all n

∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

≤ 1

qnqn+1
.

Therefore, if 1
qn+1qn

> 2−µ, we obtain

µ > log2 qn + log2 qn+1. (11)

From (11), we can e.g. deduce that

1.11022... × 10−16 ≈ 2−53 <
1

q16q17
≈ 6.87368... × 10−16,

which tells us that a double-precision binary floating-point approximation of α = log3 2 provides roughly

the same precision as the 16th convergent, and that it is ”good-enough” for numbers of size up to 17
millions bits!

Size of x (in bits) w µ

3 to 7 4 6

8 to 18 5 9

19 to 64 6 12

65 to 83 7 14

84 to 484 8 18

484 to 1053 9 23

Tab. 1: Number w of partial quotients ai, and convergents pi/qi to be computed based on the size of input x. The

last column gives the number of bits of precision provided by pw/qw, the wth rational approximation of α.
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Remark 3 We have seen that Algorithm 2 provides an expansion of β of the form

β =
∑

ni even

cifni
+

∑

ni odd

(cifni
+ fni+1).

Let us stress the fact that sequences (ni)i≥0 and (ci)i≥0 cannot be directly derived from the sequences

of digits provided by Proposition 2 and 3 by performing finitely many operations. Note that these latter

sequences of digits can be generated in an effective way by maps defined on the unit square as skew

products of the Gauss map, such as described in [15] and [16].

A numerical example

We want to find the largest integer of the form 2a3b ≤ x = 23832098195. We have ⌊log3 x⌋ = 21,

β = {log3 x} ≈ 0.7495. The partial quotients and the convergents of the continued fraction expansion of

α = log3 2 ≃ 0.63093 are given in Table 2.

i ai pi qi fi = |qiα − pi|
0 0 0 1 0.63093
1 1 1 1 0.36907
2 1 1 2 0.26186
3 1 2 3 0.10721
4 2 5 8 0.04744
5 2 12 19 0.01234
6 3 41 65 0.01043

Tab. 2: Partial quotients and convergents of log3 2

Table 3 gives the first inhomogeneous best left approximations to β.

i β − (kiα − li) ni ci ei ki+1 li+1 ki+1α − li+1

0 0.7495 1 1 0.1186 1 0 0.6309
1 0.1186 4 2 0.0114 9 5 0.6784
2 0.0712 4 1 0.0114 17 10 0.7258
3 0.0237 5 1 0.0009 63 39 0.7486

Tab. 3: Best left approximations of β ≃ 0.7495 with numbers of the form kα − l

The stop condition (see Remark 4) is reached for i = 3 because we get a negative ternary exponent

(21 − 39 = −18). We thus retain the third approximation (0.7258), which gives a = 17 and b =
21 − 10 = 11. In order to find the DBNS representation of x, we then apply the same algorithm with the

value x − 217311 = 613086611. For completeness, we give the DBNS representation of x provided by

the greedy decomposition: x = 217311 + 27314 + 2738 + 2238 + 2930 + 2231 + 2031.
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5 Signed expansions

It is natural to consider signed expansions of the form

x =
∑

±2ai3bi ,

with ai, bi ≥ 0, (ai, bi) 6= (aj , bj) if i 6= j. The following proposition shows that it is not possible to

define a greedy algorithm based on a similar logarithm reduction approach, that is, by working with the

sequence of two-sided inhomogeneous best approximations of β. More precisely, Proposition 7 below

shows that it may give an erroneous solution infinitely often; this happens only when the logarithm reduc-

tion approach returns a solution greater than log x whereas the best approximation of x is possibly less

than x.

Proposition 7 Let (Kn)n∈N be the increasing sequence of integers of the form 2a3b, with a, b ∈ N. For

any positive integer n, we define Nn as the number of positive integers x such that Kn ≤ x < Kn+1 with

1. x − Kn ≤ Kn+1 − x

2. log Kn+1 − log x < log x − log Kn.

The sequence (Nn)n∈N tends towards infinity.

Proof: Condition (1) is equivalent to Kn ≤ x ≤ Kn+1 + Kn

2
, whereas condition (2) is equivalent to

log Kn + log Kn+1

2
< log x < log Kn+1, that is,

√

KnKn+1 < x < Kn+1.

Hence Nn satifies

∆n − 1 ≤ Nn ≤ ∆n + 1

with

∆n =
Kn + Kn+1

2
−

√

KnKn+1.

For all n, we set δn =
Kn+1

Kn

. One has

∆n =

(

δn + 1

2
−

√

δn

)

Kn =

(√
δn − 1

)2

2
Kn =

(δn − 1)
2

2
Kn

1
(√

δn + 1
)2 .

According to [26], there exist C, C ′ with C > 0, C ′ > 0 such that for all n

1

log Kn
C′

≤ δn − 1 =
Kn+1 − Kn

Kn

≤ 1

log Kn
C

.

We thus deduce that limn→+∞ Nn = +∞. ✷
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Nevertheless, we can apply the following strategy in the signed case. Let x ≥ 2 be a given positive

integer. We first find a, b ≥ 0 such that 2a3b ≤ x and among the solutions to this problem, 2a3b is the

largest possible value:

2a3b = max
{

2c3d ≤ x : (c, d) ∈ N
2
}

.

We similarly find a′, b′ ≥ 0 such that 2a′

3b′ ≥ x and among the solutions to this problem, 2a′

3b′ is the

smallest possible value:

2a′

3b′ = min
{

2c′3d′ ≥ x : (c, d) ∈ N
2
}

.

For this latter problem, we can either deal with an analogous algorithm providing the sequence of inho-

mogeneous best right approximations of β, or work with 1−α and 1−β, with the notation of the previous

sections. It then remains to compare x − 2a3b and 2a′

3b′ − x, and to take the smallest of both values.

6 An approximate greedy algorithm

The greedy algorithm is not optimal, in the sense that it does not necessarily produce a DBNS representa-

tion of minimal length. However, within this algorithm, we proved that finding the largest number of the

form 2a3b less than equal to x is optimal in complexity. It seems then natural to investigate the potential

advantages of an approximate greedy algorithm, where we only perform a few iterations of Algorithm 2

to define a “good” integer of the form 2a3b, although not the largest, less than or equal to x.

The greedy decomposition described in Algorithm 1 can easily be adapted to compute a DBNS expan-

sion of x, where only d iterations of Algorithm 2 are performed at each step to define the term z ≤ x. In

the following, we shall refer to d as the depth.

In order to visualize DBNS expansions, we use a two-dimensional array where the columns represent

the powers of 2 while the rows represent the powers of 3. A black square at position (i, j) indicates

that the term 2i3j is part of the DBNS decomposition. (The upper-left corner corresponds to the term

2030 = 1.) Figure 2 shows the DBNS representations obtained for x = 23832098195 when the greedy

decomposition algorithm is applied at depth 1,2, and 3. (Note that depth 3 is equivalent to the complete

greedy decomposition.)

As expected, the length of the DBNS decomposition decreases as the depth increases; we get 12 terms

at depth 1; 8 terms at depth 2; and 7 terms at depth 3. We note also that the largest binary exponent (the

number of columns) is smaller for small depths. These results were to be expected. However, the follow-

ing questions seem difficult to answer in the general case. By using a greedy decomposition algorithm at

a given depth d, how many summands are required to represent x compared to the solution provided by

the complete greedy approach? What decrease (resp. increase) can we expect on the largest binary (resp.

ternary) exponents? In order to answer those questions, we have implemented the algorithm at different

depths, for a thousand randomly chosen numbers of sizes ranging from 128 to 512 bits. The difference in

length between the full-greedy approach and the decomposition at fixed depths is shown in Figures 3 to 5.

Our experiments are summarized in Table 4.

We first note that, for all our tests (up to 512-bit integers), d = 5 is equivalent to the complete greedy

algorithm; which means that we perform 6 iterations of Algorithm 2 to get an approximation which

corresponds to a negative ternary exponent (the stop condition, cf. Remark 4). With the greedy algorithm

at fixed depth d, it is possible that the stop condition occurs before we reach the desired depth, or would

occur at the (d + 1)th iteration. Only in those two cases, we get the optimal solution; i.e, the largest
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Fig. 2: DBNS decompositions of x = 23832098195 at depth 1,2,3
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Fig. 3: Distribution of the length difference of DBNS expansions obtained with the full-greedy and the approximate

algorithm at depths 2,3,4 for 128-bit numbers
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Size of x Approx # digits Avg. dist. to greedy at depth . . .

(in bits) with F-greedy d = 1 d = 2 d = 3 d = 4 d = 5

64 12 9.08 2.35 0.47 0 -

128 20 19.76 5.8 1.4 0.02 0

256 35 - 14.5 4.6 0.5 0

512 62 - - 12.14 2.2 0

Tab. 4: Average distance to the full-greedy solution at various depths. Note that depth 5 is equivalent to the full-

greedy algorithm in all our experiments

2a3b ≤ x. It is also interesting to note that at medium depth (d = 3 or 4), the length of the representations

can be very close to the full greedy ones, and in some cases even shorter.

For some applications, we might not need the DBNS decomposition given by the complete greedy

approach, but rather satisfy with an approximated one, with slightly more terms, especially if the time

required for the conversion is reduced. Another consequence of using the greedy decomposition at fixed

depth is that the binary exponent is likely to be smaller at small depths than with the complete greedy

decomposition. It is clear that the ternary exponent increases at the same time, but clearly not as fast (the

ratio is α ≃ 0.63).

7 Discussions

The question of the generalization to more than two bases, such as 2a3b5c is natural. Nevertheless, there

is no canonical generalization of Ostrowski numeration to higher dimensions. This is mainly due to the

fact that there is no canonical notion of multidimensional continued fractions. To remedy to the lack of

a satisfactory tool replacing continued fractions, several approaches are possible. One can consider e.g.

lattice reduction algorithms: let us quote the computation of the n-th Hamming number in [21] based on

results from [4]. Let us recall that Hamming numbers are numbers of the form 2a3b5c for a, b, c ∈ N,

and that they are called after Hamming who asked for an efficient algorithm to generate in order the list

of these numbers. The problem was popularized by E. W. Dijkstra in [9].

Algorithm 2 relies on the so-called three-gap theorem (see [22] and also the survey [5]). In the same

vein, an algorithm is given in [18] which computes the points in Z
2 located at a distance smaller than

a given ε from a segment. This latter algorithm is based on the three-distance theorem, which can be

considered as a dual version of the three-gap theorem. As an application, an algorithm which produces

worst cases when trying to round the elementary functions in floating-point arithmetic is given in [19].

Instead of working with integer bases, one can also consider numeration in rational base (2/3). The

dynamical and arithmetical behaviour of such a numeration system differs drastically. Let us quote [1]

which considers connections to number theory and applications to the problem of the distribution of the

fractional part of the powers of rational numbers.
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