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In this paper, we characterize the sets J of connected graphs such that there exists a constant ¢ = ¢(H) satisfying
~v(@) < ¢ for every connected H-free graph GG, where (G) is the domination number of G.
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1 Introduction

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph. Let V(G) and
E(Q) denote the vertex set and the edge set of G, respectively. For a vertex z € V(G), let Ng(z) and
N¢[x] denote the open neighborhood and the closed neighborhood, respectively; thus Ng(z) = {y €
V(G): 2y € E(G)} and Ng[z] = Ng(z) U{z}. Foraset X C V(G), let Ng[X] = |, x Nclz]. For
avertex z € V(G) and a non-negative integer ¢, let N/, (z) = {y € V(G) : the distance between x and
yin G is i}. Note that N2 (x) = {z} and N} (z) = Ng(z). Let K,, and P, denote the complete graph
and the path of order n, respectively. For terms and symbols not defined in this paper, we refer the reader
to [3].

Let G be a graph. For two sets X, Y C V(G), we say that X dominates Y if Y C Ng[X]. A subset of
V(G) which dominates V (G) is called a dominating set of G. The minimum cardinality of a dominating
set of GG, denoted by v(G), is called the domination number of G. Since the determining problem of the
value (@) is NP-complete (see [7]), many researchers have tried to find good bounds for the domination
number (see [9]). One of the most famous results is due to Ore [11] who proved that every connected
graph G of order at least two satisfies v(G) < |V(G)|/2. Here one problem naturally arises: What
additional conditions allow better upper bounds on the domination number? In this paper, we focus on
forbidden induced subgraph conditions.

For a graph GG and a set H of connected graphs, G is said to be H-free if G contains no graph in H as
an induced subgraph. In this context, members of J{ are called forbidden subgraphs. If G is { H }-free,
then G is simply said to be H-free. For two sets {; and I, of connected graphs, we write H; < JH,
if for every Hy € JHo, there exists H; € JH; such that H; is an induced subgraph of Hy. The relation
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Fig. 1: Graphs K, and S},

“<” between two sets of forbidden subgraphs was introduced in [6]. Note that if H; < Ho, then every
H-free graph is also Ho-free.

Let K3 3 and K3 denote the two unique graphs having degree sequence (3,1,1,1) and (3,3,3,1,1,1),
respectively. Cockayne, Ko and Shepherd [1] (see also Theorem 2.9 in [9]) proved that every connected
{K 3, K3 }-free graph G satisfies v(G) < [|V(G)|/3]. Indeed, Duffus, Gould and Jacobson [5] proved
that every connected { K 3, K7 }-free graph has a Hamiltonian path. Since v(P,) = [n/3] for every
integer n, the above inequality is a consequence of this result. Furthermore, forbidden induced subgraph
conditions for domination-like invariants were widely studied (see, for example, [2, 4, 8, 10]).

In this paper, we will characterize the sets J{ of connected graphs satisfying the condition that

(A1) there exists a constant ¢ = ¢(H) such that y(G) < ¢ for every connected H-free graph G.

Let n > 1 be an integer. Let K denote the graph with V(K ) = {z; : 1 <i <n}U{y; : 1 <i < n}
and B(K}) = {ax; 1 < i < j <n}U{zy : 1 <i <n}, and let S} denote the graph with
V(SH) ={x}U{y; 11 <i<n}U{z:1<i<n}and E(S}) ={ay;: 1 <i<n}U{yz;: 1 <i<n}
(see Figure 1). Our main result is the following.

Theorem 1.1 Let J be a set of connected graphs. Then 3 satisfies (A1) if and only if X < {K}, S}, Pp, }
for some positive integers k, ¢ and m.

We conclude this section by considering the case where a set H{ can contain disconnected graphs. Then
the following proposition holds.

Proposition 1.2 Let H be a set of graphs. Then 3 satisfies (A1) if and only if 3 < {K}} for some
positive integer k.

Proof: Suppose that J{ satisfies (A1). Then there exists a constant ¢ = ¢(H) such that v(G) < ¢ for every
connected H-free graph G. Since y(K 1) = ¢ + 1, K41 is not H-free, and so H < {K.11}.

On the other hand, if 3 < {K}}, then every H-free graph G satisfies 7(G) < k — 1 because every
maximal independent set of GG is a dominating set. O
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2 Proof of Theorem 1.1

For positive integers s and ¢, let R(s,t) denote the Ramsey number with respect to s and ¢. For positive
integers k, ¢ and i, we recursively define gu(i) as follows:

gre(l) =1
gre(i) = R(k, (0 = D)gre(i —1)+1) =1 (1> 2).

Lemma 2.1 Let k, £ and i be positive integers. Let G be a { K}/, S; }-free graph, and let a be a vertex of
G. Then for an independent set X C N},(a), there exists U C N ' (a) with |U| < gy, ¢(i) that dominates
X.

Proof: We proceed by induction on i. If i = 1, then U = {a} is a desired subset of N/, *(a) = {a}.
Thus we may assume that i > 2. Note that N5 ' (a) dominates X. Let U be a minimal subset of N ' (a)
that dominates X . It suffices to show that |U| < R(k, (¢ — 1)gk,e(i — 1) + 1) — 1 = gi¢(7).

By way of contradiction, suppose that |U| > R(k, ({—1)gk¢(i—1)+1). Foreachu € U, since U —{u}
does not dominate X by the minimality of U, there exists a vertex =, € X such that Ng(z,) NU = {u}.
Recall that X is an independent set. If there exists a clique U; C U with |U;| = k, then the subgraph
of G induced by Uy U {x,, : u € Ui} is isomorphic to K, which contradicts the K}-freeness of G.
Since |U| > R(k,(¢ — 1)gr¢(i — 1) + 1), this implies that there exists an independent set Uy C U
with [Us| = (¢ — 1)gke(i — 1) + 1. By the induction hypothesis, there exists U’ C N *(a) with
|U'| = g (i — 1) that dominates Us. By the pigeon-hole principle, there exists a vertex v’ € U’ such
that [N (u') N Us| > £. Let Uy € Ng(u') N Uy be a set with |Uy| = £. Then the subgraph of G induced
by {u/} UU, U {z, : u € Uy} is isomorphic to S, which is a contradiction. O

For positive integers k, ¢ and ¢ with ¢ > 2, let fy, ¢(¢) = R(k,€)gke(7).

Lemma 2.2 Let k, ¢ and i be positive integers with i > 2. Let G be a { K}, S; }-free graph, and let a be
a vertex of G. Then there exists U C V(G with |U| < fy.(i) that dominates N},(a).

Proof: Let X be a maximal independent subset of N¢ (a). By Lemma 2.1, there exists U C N§ '(a)
with |U| < g ¢(7) that dominates X . By the maximality of X, X dominates N/;(a), and so X dominates
N&(a) — Ng[UJ. Let X be a minimal subset of X that dominates N;(a) — Ng[U].

Claim 2.1 We have |Xo| < (R(k,?¢) — 1)gk.e(7).

Proof: Suppose that | Xo| > (R(k,¢) — 1)gk.e(2) + 1. Since U dominates X and |U| < g ¢(i), there
exists a vertex ' € U such that |[Ng(u') N Xo| > R(k,{). For each x € X, since Xo — {«} does
not dominate N (a) — Ng[U] by the minimality of X, there exists a vertex y,, € N} (a) — Ng[U]
such that Ng(y,) N Xo = {z}. SetY = {y, : © € Ng(u') N Xo}, and for each y € Y, write
Nea(y) N Xo = {z,}. Note that {z, : y € Y} C Ng(u') N Xo and y,, = y for each y € Y. Since
|Y| = |Na(u)NXo| > R(k, ), there exists aclique Y7 C Y with |Y;| = k or anindependentset Y2 C YV
with |Ya| = £. Recall that Y C N¢ (a) — Ng[U], and so Ng(uw') NY = (. If there exists a clique Y; C Y
with |Y7| = k, then the subgraph of G induced by Y7 U {z, : y € Y1} is isomorphic to K} ; if there exists
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an independent set Y2 C Y with |Y3| = ¢, then the subgraph of G induced by {u'} U {z, : y € Y2} UY5
is isomorphic to S} . In either case, we obtain a contradiction. O

Recall that X dominates N;(a) — Ng[U]. Hence U U X, dominates N (a). Furthermore, by the
definition of U and Claim 2.1,

U U Xo| = Ul + [Xo| < gr,e(i) + (R(k, £) — 1)gr,e(i) = fr,e(d).
Thus U = U U X is a desired set. O

Proof of Theorem 1.1: We first prove the “only if”’part. Let J{ be a set of connected graphs satisfying
(A1). Then there exists a constant ¢ = ¢(H) such that v(G) < ¢ for every connected H-free graph G.
Since we can easily verify that y(K}, ) = (S}, ;) = 7(P3ct1) = c+1,noneof K |, Sk, and P31
is J(-free. This implies that 7 < {K},,, S}, 1, P3c41}, as desired.

Next we prove the “if” part. Let J{ be a set of connected graphs such that H < {Kj, S}, Py} for
some positive integers &, £ and m. Choose k, ¢ and m so that k + ¢ 4+ m is as small as possible. Then
k, ¢ and m are uniquely determined. In particular, the value 1 + » .., 5 fx,¢(7) only depends on K.
Furthermore, every H-free graph is also { K}, S}, P, }-free. Thus it suffices to show that every connected
{K}, S}, Py }-free graph G satisfies v(G) < 1+ > 5 ;..o fre(i). Leta € V(G). Since G is Pp,-
free, N}, (a) = 0 forall i > m — 1. Since G is connected, this implies that V(G) = y<;<pm_o N&(a).
Since G is {K;, S;‘}-free, it follows from Lemma 2.2 that for each ¢ with 2 < ¢ < m — 2, there exists
aset U; C V(G) with |[U;] < fr(i) that dominates N (a). Since {a} dominates NZ(a) U N} (a),

{a} U (Uz<i<m_o Ui) is a dominating set of G, and so
V@) <Had+ Do I<1+ Y fuali),
2<i<m—2 2<i<m—2

as desired.
This completes the proof of Theorem 1.1. O

3 Concluding remark

In this paper, we characterized the sets J{ of connected graphs satisfying (A1l). For similar problems
concerning many domination-like invariants, we can use the sets appearing in Theorem 1.1.
Let 1 be an invariant of graphs, and assume that

(D1) there exist two constants ¢, c; € RT such that ¢1v(G) < u(G) < coy(G) for all connected graphs
G.

Note that many important domination-like invariants (for example, total domination number y;, paired
domination number 7,,, Roman domination number yg, rainbow domination number ., etc.) satisfy
(D1). Furthermore, we focus on the condition that

(A1) there exists a constant ¢’ = ¢/(u, H) such that u(G) < ¢ for every connected H-free graph G.

We first suppose that a set H of connected graphs satisfies (A’1). Note that
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° M(KF(C’Jrl)/CJ) =z clV(KF(C’Jrl)/CJ) =ci-[(+1)/a]l =2 +1,
° 'M(SF(C’-H)/CJ) > Cl7(SF(c/+1)/cﬂ) =c-[(d+1)/er] > +1,and

o 1(Pspert1)/ent+1) = AV (Bsferir)/ent) = e [( + 1) /el 2 ¢ + 1

Thus, by similar argument to the proof of “only if” part of Theorem 1.1, we have H < { K}, S}, P, } for
some positive integers k, £ and m.

On the contrary, suppose that a set H of connected graphs satisfies H < {K}, S}, P,,} for some
positive integers k, £ and m. Then by Theorem 1.1, (A1) holds, and hence for a connected H-free graph
G, we have

H(G) < exv(G) < ez - e(H).

Consequently (A’1) holds (for ¢’ = ¢ - ¢(H)). Therefore, we obtain the following theorem.

Theorem 3.1 Let i be an invariant for graphs satisfying (D1), and let J{ be a set of connected graphs.
Then I satisfies (A’1) if and only if { < { K}, S}, P, } for positive integers k, ¢ and m.
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