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In this paper, we characterize the sets H of connected graphs such that there exists a constant c = c(H) satisfying

γ(G) ≤ c for every connected H-free graph G, where γ(G) is the domination number of G.
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1 Introduction

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph. Let V (G) and

E(G) denote the vertex set and the edge set of G, respectively. For a vertex x ∈ V (G), let NG(x) and

NG[x] denote the open neighborhood and the closed neighborhood, respectively; thus NG(x) = {y ∈
V (G) : xy ∈ E(G)} and NG[x] = NG(x) ∪ {x}. For a set X ⊆ V (G), let NG[X ] =

⋃

x∈X NG[x]. For

a vertex x ∈ V (G) and a non-negative integer i, let N i
G(x) = {y ∈ V (G) : the distance between x and

y in G is i}. Note that N0
G(x) = {x} and N1

G(x) = NG(x). Let Kn and Pn denote the complete graph

and the path of order n, respectively. For terms and symbols not defined in this paper, we refer the reader

to [3].

Let G be a graph. For two sets X,Y ⊆ V (G), we say that X dominates Y if Y ⊆ NG[X ]. A subset of

V (G) which dominates V (G) is called a dominating set of G. The minimum cardinality of a dominating

set of G, denoted by γ(G), is called the domination number of G. Since the determining problem of the

value γ(G) is NP-complete (see [7]), many researchers have tried to find good bounds for the domination

number (see [9]). One of the most famous results is due to Ore [11] who proved that every connected

graph G of order at least two satisfies γ(G) ≤ |V (G)|/2. Here one problem naturally arises: What

additional conditions allow better upper bounds on the domination number? In this paper, we focus on

forbidden induced subgraph conditions.

For a graph G and a set H of connected graphs, G is said to be H-free if G contains no graph in H as

an induced subgraph. In this context, members of H are called forbidden subgraphs. If G is {H}-free,

then G is simply said to be H-free. For two sets H1 and H2 of connected graphs, we write H1 ≤ H2

if for every H2 ∈ H2, there exists H1 ∈ H1 such that H1 is an induced subgraph of H2. The relation
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“≤” between two sets of forbidden subgraphs was introduced in [6]. Note that if H1 ≤ H2, then every

H1-free graph is also H2-free.

Let K1,3 and K∗
3 denote the two unique graphs having degree sequence (3, 1, 1, 1) and (3, 3, 3, 1, 1, 1),

respectively. Cockayne, Ko and Shepherd [1] (see also Theorem 2.9 in [9]) proved that every connected

{K1,3,K
∗
3}-free graph G satisfies γ(G) ≤ ⌈|V (G)|/3⌉. Indeed, Duffus, Gould and Jacobson [5] proved

that every connected {K1,3,K
∗
3}-free graph has a Hamiltonian path. Since γ(Pn) = ⌈n/3⌉ for every

integer n, the above inequality is a consequence of this result. Furthermore, forbidden induced subgraph

conditions for domination-like invariants were widely studied (see, for example, [2, 4, 8, 10]).

In this paper, we will characterize the sets H of connected graphs satisfying the condition that

(A1) there exists a constant c = c(H) such that γ(G) ≤ c for every connected H-free graph G.

Let n ≥ 1 be an integer. Let K∗
n denote the graph with V (K∗

n) = {xi : 1 ≤ i ≤ n} ∪ {yi : 1 ≤ i ≤ n}
and E(K∗

n) = {xixj : 1 ≤ i < j ≤ n} ∪ {xiyi : 1 ≤ i ≤ n}, and let S∗
n denote the graph with

V (S∗
n) = {x}∪{yi : 1 ≤ i ≤ n}∪{zi : 1 ≤ i ≤ n} andE(S∗

n) = {xyi : 1 ≤ i ≤ n}∪{yizi : 1 ≤ i ≤ n}
(see Figure 1). Our main result is the following.

Theorem 1.1 Let H be a set of connected graphs. ThenH satisfies (A1) if and only ifH ≤ {K∗
k , S

∗
ℓ , Pm}

for some positive integers k, ℓ and m.

We conclude this section by considering the case where a set H can contain disconnected graphs. Then

the following proposition holds.

Proposition 1.2 Let H be a set of graphs. Then H satisfies (A1) if and only if H ≤ {Kk} for some

positive integer k.

Proof: Suppose that H satisfies (A1). Then there exists a constant c = c(H) such that γ(G) ≤ c for every

connected H-free graph G. Since γ(Kc+1) = c+ 1, Kc+1 is not H-free, and so H ≤ {Kc+1}.

On the other hand, if H ≤ {Kk}, then every H-free graph G satisfies γ(G) ≤ k − 1 because every

maximal independent set of G is a dominating set. ✷
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2 Proof of Theorem 1.1

For positive integers s and t, let R(s, t) denote the Ramsey number with respect to s and t. For positive

integers k, ℓ and i, we recursively define gk,ℓ(i) as follows:

{

gk,ℓ(1) = 1

gk,ℓ(i) = R(k, (ℓ− 1)gk,ℓ(i− 1) + 1)− 1 (i ≥ 2).

Lemma 2.1 Let k, ℓ and i be positive integers. Let G be a {K∗
k , S

∗
ℓ }-free graph, and let a be a vertex of

G. Then for an independent set X ⊆ N i
G(a), there exists U ⊆ N i−1

G (a) with |U | ≤ gk,ℓ(i) that dominates

X .

Proof: We proceed by induction on i. If i = 1, then U = {a} is a desired subset of N i−1
G (a) = {a}.

Thus we may assume that i ≥ 2. Note that N i−1
G (a) dominates X . Let U be a minimal subset of N i−1

G (a)
that dominates X . It suffices to show that |U | ≤ R(k, (ℓ− 1)gk,ℓ(i− 1) + 1)− 1 = gk,ℓ(i).

By way of contradiction, suppose that |U | ≥ R(k, (ℓ−1)gk,ℓ(i−1)+1). For each u ∈ U , since U−{u}
does not dominate X by the minimality of U , there exists a vertex xu ∈ X such that NG(xu)∩U = {u}.

Recall that X is an independent set. If there exists a clique U1 ⊆ U with |U1| = k, then the subgraph

of G induced by U1 ∪ {xu : u ∈ U1} is isomorphic to K∗
k , which contradicts the K∗

k-freeness of G.

Since |U | ≥ R(k, (ℓ − 1)gk,ℓ(i − 1) + 1), this implies that there exists an independent set U2 ⊆ U
with |U2| = (ℓ − 1)gk,ℓ(i − 1) + 1. By the induction hypothesis, there exists U ′ ⊆ N i−2

G (a) with

|U ′| = gk,ℓ(i − 1) that dominates U2. By the pigeon-hole principle, there exists a vertex u′ ∈ U ′ such

that |NG(u
′) ∩ U2| ≥ ℓ. Let Ũ2 ⊆ NG(u

′) ∩ U2 be a set with |Ũ2| = ℓ. Then the subgraph of G induced

by {u′} ∪ Ũ2 ∪ {xu : u ∈ Ũ2} is isomorphic to S∗
ℓ , which is a contradiction. ✷

For positive integers k, ℓ and i with i ≥ 2, let fk,ℓ(i) = R(k, ℓ)gk,ℓ(i).

Lemma 2.2 Let k, ℓ and i be positive integers with i ≥ 2. Let G be a {K∗
k , S

∗
ℓ }-free graph, and let a be

a vertex of G. Then there exists Û ⊆ V (G) with |Û | ≤ fk,ℓ(i) that dominates N i
G(a).

Proof: Let X be a maximal independent subset of N i
G(a). By Lemma 2.1, there exists U ⊆ N i−1

G (a)
with |U | ≤ gk,ℓ(i) that dominates X . By the maximality of X , X dominates N i

G(a), and so X dominates

N i
G(a)−NG[U ]. Let X0 be a minimal subset of X that dominates N i

G(a)−NG[U ].

Claim 2.1 We have |X0| ≤ (R(k, ℓ)− 1)gk,ℓ(i).

Proof: Suppose that |X0| ≥ (R(k, ℓ) − 1)gk,ℓ(i) + 1. Since U dominates X0 and |U | ≤ gk,ℓ(i), there

exists a vertex u′ ∈ U such that |NG(u
′) ∩ X0| ≥ R(k, ℓ). For each x ∈ X0, since X0 − {x} does

not dominate N i
G(a) − NG[U ] by the minimality of X0, there exists a vertex yx ∈ N i

G(a) − NG[U ]
such that NG(yx) ∩ X0 = {x}. Set Y = {yx : x ∈ NG(u

′) ∩ X0}, and for each y ∈ Y , write

NG(y) ∩ X0 = {xy}. Note that {xy : y ∈ Y } ⊆ NG(u
′) ∩ X0 and yxy

= y for each y ∈ Y . Since

|Y | = |NG(u
′)∩X0| ≥ R(k, ℓ), there exists a clique Y1 ⊆ Y with |Y1| = k or an independent set Y2 ⊆ Y

with |Y2| = ℓ. Recall that Y ⊆ N i
G(a)−NG[U ], and so NG(u

′)∩Y = ∅. If there exists a clique Y1 ⊆ Y
with |Y1| = k, then the subgraph of G induced by Y1 ∪ {xy : y ∈ Y1} is isomorphic to K∗

k ; if there exists
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an independent set Y2 ⊆ Y with |Y2| = ℓ, then the subgraph of G induced by {u′} ∪ {xy : y ∈ Y2} ∪ Y2

is isomorphic to S∗
ℓ . In either case, we obtain a contradiction. ✷

Recall that X0 dominates N i
G(a) − NG[U ]. Hence U ∪ X0 dominates N i

G(a). Furthermore, by the

definition of U and Claim 2.1,

|U ∪X0| = |U |+ |X0| ≤ gk,ℓ(i) + (R(k, ℓ)− 1)gk,ℓ(i) = fk,ℓ(i).

Thus Û = U ∪X0 is a desired set. ✷

Proof of Theorem 1.1: We first prove the “only if”part. Let H be a set of connected graphs satisfying

(A1). Then there exists a constant c = c(H) such that γ(G) ≤ c for every connected H-free graph G.

Since we can easily verify that γ(K∗
c+1) = γ(S∗

c+1) = γ(P3c+1) = c+1, none of K∗
c+1, S∗

c+1 and P3c+1

is H-free. This implies that H ≤ {K∗
c+1, S

∗
c+1, P3c+1}, as desired.

Next we prove the “if” part. Let H be a set of connected graphs such that H ≤ {K∗
k , S

∗
ℓ , Pm} for

some positive integers k, ℓ and m. Choose k, ℓ and m so that k + ℓ + m is as small as possible. Then

k, ℓ and m are uniquely determined. In particular, the value 1 +
∑

2≤i≤m−2 fk,ℓ(i) only depends on H.

Furthermore, every H-free graph is also {K∗
k , S

∗
ℓ , Pm}-free. Thus it suffices to show that every connected

{K∗
k , S

∗
ℓ , Pm}-free graph G satisfies γ(G) ≤ 1 +

∑

2≤i≤m−2 fk,ℓ(i). Let a ∈ V (G). Since G is Pm-

free, N i
G(a) = ∅ for all i ≥ m − 1. Since G is connected, this implies that V (G) =

⋃

0≤i≤m−2 N
i
G(a).

Since G is {K∗
k , S

∗
ℓ }-free, it follows from Lemma 2.2 that for each i with 2 ≤ i ≤ m − 2, there exists

a set Ûi ⊆ V (G) with |Ûi| ≤ fk,ℓ(i) that dominates N i
G(a). Since {a} dominates N0

G(a) ∪ N1
G(a),

{a} ∪ (
⋃

2≤i≤m−2 Ûi) is a dominating set of G, and so

γ(G) ≤ |{a}|+
∑

2≤i≤m−2

|Ûi| ≤ 1 +
∑

2≤i≤m−2

fk,ℓ(i),

as desired.

This completes the proof of Theorem 1.1. ✷

3 Concluding remark

In this paper, we characterized the sets H of connected graphs satisfying (A1). For similar problems

concerning many domination-like invariants, we can use the sets appearing in Theorem 1.1.

Let µ be an invariant of graphs, and assume that

(D1) there exist two constants c1, c2 ∈ R
+ such that c1γ(G) ≤ µ(G) ≤ c2γ(G) for all connected graphs

G.

Note that many important domination-like invariants (for example, total domination number γt, paired

domination number γpr, Roman domination number γR, rainbow domination number γrk, etc.) satisfy

(D1). Furthermore, we focus on the condition that

(A’1) there exists a constant c′ = c′(µ,H) such that µ(G) ≤ c for every connected H-free graph G.

We first suppose that a set H of connected graphs satisfies (A’1). Note that
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• µ(K∗
⌈(c′+1)/c1⌉

) ≥ c1γ(K
∗
⌈(c′+1)/c1⌉

) = c1 · ⌈(c′ + 1)/c1⌉ ≥ c′ + 1,

• µ(S∗
⌈(c′+1)/c1⌉

) ≥ c1γ(S
∗
⌈(c′+1)/c1⌉

) = c1 · ⌈(c′ + 1)/c1⌉ ≥ c′ + 1, and

• µ(P3⌈(c′+1)/c1⌉+1) ≥ c1γ(P3⌈(c′+1)/c1⌉+1) = c1 · ⌈(c′ + 1)/c1⌉ ≥ c′ + 1.

Thus, by similar argument to the proof of “only if” part of Theorem 1.1, we have H ≤ {K∗
k , S

∗
ℓ , Pm} for

some positive integers k, ℓ and m.

On the contrary, suppose that a set H of connected graphs satisfies H ≤ {K∗
k , S

∗
ℓ , Pm} for some

positive integers k, ℓ and m. Then by Theorem 1.1, (A1) holds, and hence for a connected H-free graph

G, we have

µ(G) ≤ c2γ(G) ≤ c2 · c(H).

Consequently (A’1) holds (for c′ = c2 · c(H)). Therefore, we obtain the following theorem.

Theorem 3.1 Let µ be an invariant for graphs satisfying (D1), and let H be a set of connected graphs.

Then H satisfies (A’1) if and only if H ≤ {K∗
k , S

∗
ℓ , Pm} for positive integers k, ℓ and m.
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