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Let S ⊂ Z be a set of integers. A graph G is said to have the S-property if there exists an S-edge-weighting
w : E(G) → S such that any two adjacent vertices have different sums of incident edge-weights. In this paper we
characterise all bridgeless bipartite graphs and all trees without the {0,1}-property. In particular this problem belongs
to P for these graphs while it is NP-complete for all graphs.
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1 Introduction
The problems investigated in this paper are highly related to the well-known 1,2,3-Conjecture formulated
in [2]. One way to approach this conjecture (see for example [3]) has been to study the {a, b}-property of
graphs for two integers a and b defined in the following way: a graph G is said to have the {a, b}-property
if there exists a mapping w : E(G) → {a, b} such that for all pairs of adjacent vertices u and v we have∑

e∈E(v) w(e) 6=
∑

e∈E(u) w(e), where E(v) and E(u) denote the edges incident to v and u respectively.
We call w a neighbour sum-distinguishing edge-weighting of G with weights a and b.

In [4] Lu investigated the problem of determining whether or not a given bipartite graph has the {0, 1}- or
the {1, 2}-property. The restriction to bipartite graphs was motivated by a result by Dudek and Wajc [1]
saying that the problem is NP-complete for general graphs. In particular Lu asked the natural question
whether the problem is polynomial if only bipartite graphs are considered (Problem 1 in [4]). The results
of the present paper answer in the affirmative for bridgeless bipartite graphs and trees. Lu also proved the
following theorem:

Theorem 1. [4] Every 2-connected and 3-edge-connected bipartite graph has the {0, 1}- and the {1, 2}-
property.

In [6] Skowronek-Kaziów investigated the problem of determining whether a graph has a {1, 2}-edge-
weighting such that the following vertex-colouring is proper: for each vertex v, assign the product of
the edge-weights incident to v as v’s colour. This product-property is the same as the {0, 1}-property
and Skowronek-Kaziów verified this for various classes of bipartite graphs, for example bipartite graphs
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of minimum degree at least 3. In [6] Skowronek-Kaziów also asked for a characterization of all bipar-
tite graphs, in particular trees, which have such {1, 2}-edge-weightings, that is, which have the {0, 1}-
property. As mentioned above the results of the present paper give such a characterization for trees and
bridgeless bipartite graphs.
A bipartite graph without the {0,1}-property is said to be bad.
Thomassen, Wu and Zhang [7] gave a complete characterisation of all bipartite graphs without the {1, 2}-
property. Any such graph is an odd multi-cactus defined as follows: Take a collection of cycles of length
2 modulo 4, each of which have edges coloured alternately red and green. Then form a connected simple
graph by pasting the cycles together, one by one, in a tree-like fashion along green edges. Finally replace
every green edge by a multiple edge of any multiplicity. The graph with one edge and two vertices is
also called an odd multi-cactus. It can easily be checked that an odd multi-cactus do not have the {a, b}-
property for any a, b ∈ Z. As mentioned above these graphs characterise the bipartite graphs without the
{1,2}-property:

Theorem 2. [7] G is a connected bipartite graph without the {1, 2}-property if and only if G is an odd
multi-cactus.

Since an odd multi-cactus is recognisable in polynomial-time, this answers the part of Lu’s problem
from [4] concerning the {1, 2}-property. As pointed out in [7], Theorem 2 extends to all positive edge-
weights a and b of distinct parity but not to the edge-weights 0 and 1. In [7] it is also remarked that any
bipartite graph of minimum degree at least 3 has the {a, b}-property for all pairs of non-negative integers
a, b of distinct parity. Thus it remains open to characterise those bipartite graphs with cut-vertices and
minimum degree at most 2 which do not have the {0,1}-property.
In [4], Lu gave the following example of a bad graph with the {1, 2}-property: Two 6-cycles connected
by a path of length 3 and, as noted in [7], we can construct an infinite number bad graphs with the {1, 2}-
property by the following procedure: Take two graphs without the {0, 1}-property and join them by a
path of length 3 modulo 4. We can even generalise this procedure further: Let s ≥ 0 be an integer and
let P be a path of length 1 modulo 4. Join each intermediate vertex in P to s bad graphs by s edges, and
join the end-vertices of P to s + 1 bad graphs (see Figure 1). This will create a new bad graph with the
{1, 2}-property.

· · ·

· · ·

· · ·

v1

v2
vn−1

vn

G2,1 G2,2 G2,s

Gn−1,1 Gn−1,2 Gn−1,s

...

Gn,1

Gn,2

Gn,s+1

...

G1,1

G1,2

G1,s+1

Fig. 1: A construction of bad graphs with the {1,2}-property.

Although the preceding paragraph shows a large class of bipartite graphs without the {0,1}-property, the
list is still not complete. Not even for trees, as demonstrated by the tree in Figure 2.
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Fig. 2: A tree without the {0,1}-property.

Thus there is a large class of bad graphs which are not odd multi-cacti and it seems that the {0,1}-property
is very different from the {1,2}-property. However, note that the above procedure always create bridges.
This gives the hint that the {0,1}-property and the {1,2}-property might behave in a similar way if we
don’t allow bridges. This is indeed true as we prove in Section 2:

Theorem 3. G is a connected bridgeless bipartite graph without the {0, 1}-property if and only if G is
an odd multi-cactus.

As mentioned after Theorem 2, an odd multi-cactus is recognisable in polynomial time so this answers the
part of Lu’s problem from [4] concerning the {0,1}-property for bridgeless bipartite graphs. In Section 3
we provide additional operations for constructing trees without the {0, 1}-property. The class of trees
without the {0, 1}-property we can obtain using these operations we call B and these are all recognisable
in polynomial time. Whilst the class B is difficult to describe we show that this gives a full characterisation
of all bad trees.

Theorem 4. A tree T has the {0,1}-property unless T is a member of B.

Taken together, Theorems 3 and 4 show a marked difference between the {0,1}-problem and the {1,2}-
problem. Indeed for bridgeless bipartite graphs Theorems 3 and 2 show that the class of graphs without
the {0,1}-property and the class of graphs without the {1,2}-property are precisely the same. On the other
hand, Theorems 2 and 4 show that this is far from the case with trees.

2 Bridgeless bipartite graphs without the {0,1}-property
Let G be a bipartite graph. A {0, 1}-weighting of G is a map w : E(G) → {0, 1}. Given a {0, 1}-
weighting w of G and a vertex v of G we call the sum

∑
e∈E(v) w(e) the weighted degree of v or the

induced colour of v (induced by w). For convenience the weighted degree of a vertex v is also denoted
w(v). We say that a {0, 1}-weighting w is neighbour sum-distinguishing or proper if for all pairs of adja-
cent vertices u, v it holds that

∑
e∈E(v) w(e) 6=

∑
e∈E(u) w(e). That is, if the induced vertex-colouring is

proper. If w is a {0, 1}-weighting of G and two adjacent vertices u and v have the same weighted degree,
then we say that the edge uv is a conflict. If two adjacent vertices u, v have the same weighted degree
parity we call the edge uv a parity conflict. Note that a parity conflict is not necessarily a conflict. If
f : V (G) → Zk is a mapping and H is a spanning subgraph of G such that for all vertices v we have
dH(v) ≡ f(v) mod k then we say that H is an f-factor modulo k. These factors play an important role
in the investigations of {a, b}-properties for bipartite graphs, in particular because of the following result
mentioned in [7]:

Lemma 5. [7] Let G be a connected graph. If f : V (G)→ Z2 is a mapping satisfying∑
v∈V (G) f(v) ≡ 0 mod 2, then G contains an f-factor modulo 2.
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As also pointed out in [3], [6] and [7] this immediately implies that all bipartite graphs where one bi-
partition set has even size have the {a, b}-property when a and b are numbers of different parity, since
the weighted degree of all the vertices belonging to the even-sized bipartition set can get odd weighted
degree while all other vertices get even weighted degree. So the problem is reduced to the case where
both bipartition sets have odd size. Another useful tool is Lemma 6 below.

Lemma 6. [7] Let q be a natural number such that q ≥ 4. Let G be a connected graph and let A be an
independent set of at most q vertices such that each vertex in A has degree at least q − 1, or, each vertex
in A, except possibly one has degree at least q. Assume that no vertex in A is adjacent to a bridge in G.
Then, for each vertex a of A, there is an edge ea incident with a such that the deletion of all ea, a ∈ A,
results in a connected graph unless |A| = q = 4, all vertices of A have degree 3 and G − A has six
components each of which is joined to two distinct vertices of A.

As can be seen in [7] and later in this paper, Lemma 5 and 6 work well together under some assumptions
in the following way: Let G be a simple bipartite graph with an odd number of vertices in both biparti-
tion sets X and Y , and let w0 be a vertex belonging to X with at least 4 neighbours and which is not a
cutvertex. Assume that no neighbour of w0 has greater degree than w0 (such a vertex w0 is said to have
local maximum degree), and such that no neighbour of w0 having the same degree as w0 is incident to
a bridge in G − w0. Furthermore, assume that we are not in the exceptional case in Lemma 6 when we
remove w0 and choose A to be the neighbours of w0 having the same degree as w0. Now we can find
a proper {0, 1}-weighting of G as follows. We remove w0 and an edge ea incident to each a ∈ A and
maintain connectivity by Lemma 6. We call the resulting graph G′. First consider the case where w0 has
even degree. By Lemma 5 we find a {0, 1}-weighting of G′ such that all vertices in X\{w0} ∪ N(w0)
have odd weighted degree and all vertices in Y \N(w0) have even weighted degree. Now we extend this
{0, 1}-weighting to the whole of G by assigning weight 1 to all edges incident to w0 and weight 0 to all
edges ea. The parity conflicts are between w0 and its neighbours, but because all edges ea have weight 0,
the weighted degree of w0 is strictly greater than that of all its neighbours. In the case where w0 has odd
degree, we find a {0, 1}-weighting of G′ such that all vertices in X\{w0} ∪N(w0) have even weighted
degree and all vertices in Y \N(w0) have odd weighted degree. As before we extend this {0, 1}-weighting
to the whole of G by assigning weight 1 to all edges incident to w0 and weight 0 to all edges ea.
Note that this shows that whenever we consider a vertex w0 which is not a cutvertex, then we can find a
{0, 1}-weighting where all edges incident to w0 have weight 1 and the only parity conflicts are between
w0 and its neighbours.

Before we prove Theorem 3, we will need three facts about simple odd multi-cacti formulated in Lem-
mas 7, 8 and 9 below.
If G is an odd multi-cactus then, by definition, G contains at least two cycles containing two adjacent
vertices with at least three neighbours each in G while the other vertices all have two neighbours in G,
unless G is a single cycle or K2 (possibly with multiple edges). Cycles of this type are called end-cycles
in G.

Lemma 7. Let G 6= K2 be a simple odd multi-cactus. For any vertex v ∈ V (G) there is a {0, 1}-
weighting of G such that v and all vertices in the opposite bipartition set to v get weighted degree 1 and
all other vertices get weighted degree 0 or 2.
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Proof: The proof is by induction on the number of vertices n. It is easy to check that the statement is true
for a single cycle of length 2 modulo 4, so assume n > 6. Let C be an end-cycle in G such that v is not a
vertex in C with only two neighbours. We can assume C is a 6-cycles since subdividing edges with four
vertices preserves the conclusion of the lemma. Thus, say that C = v1v2 · · · v6v1, where v1 and v2 have
at least three neighbours in G. Since v is in G − {v3, v4, v5, v6} we can use the induction hypothesis on
G− {v3, v4, v5, v6} and extend this {0, 1}-weighting to the whole of G.

Let w be a {0, 1}-weighting of G, let v be a vertex of G and let a be a natural number. Finally, let
Cw denote the vertex-colouring induced by w. Let Cw(v, a) denote the colouring obtained from Cw by
replacing the colour Cw(v) of v with the colour Cw(v) + a. If Cw(v, a) is a proper vertex-colouring we
say that w is a proper {0, 1}-weighting of G when the degree of v is increased by a. This may be thought
of as a neighbour sum-distinguishing edge-weighting where the vertex v has some pre-assigned weight.

Lemma 8. Let G 6= K2 be a simple odd multi-cactus. Furthermore, let u, v be any two vertices in G
belonging to the same bipartition set (possibly u = v). There is a proper {0, 1}-weighting of G when the
weighted degrees of both u and v are increased by 1 (if u = v the weighted degree is increased by 2).

Proof: First note that the case u = v follows from Lemma 7, so we assume that u 6= v. The proof is by
induction on the number of vertices n. It is easy to check that the statement holds for a single cycle of
length 2 modulo 4. As in the proof of Lemma 7 we choose and end-cycle C such that one of v and u, say,
u is not a vertex in C with only two neighbours in G and we may assume that C = v1v2 · · · v6v1, where
v1 and v2 have at least three neighbours in G. If v and u are both in G− {v3, v4, v5, v6} then we use the
induction hypothesis on G − {v3, v4, v5, v6} and get a proper {0, 1}-weighting of G − {v3, v4, v5, v6}
if the weighted degree of both u and v are increased by 1. We can easily extend this {0, 1}-weighting
to the whole of G, a contradiction. So we can assume that u is in G − {v3, v4, v5, v6} and v is one of
v3, v5 (the other cases are similar). If u is one of v1, v2, say, v1 and v is v5, then we use Lemma 7 on G−
{v3, v4, v5, v6} choosing v1 as our special vertex. Then we get a {0, 1}-weighting w of G−{v3, v4, v5, v6}
where v1 and all vertices in the opposite bipartition set to v1 get weight 1 and all other vertices get weight
0 or 2. We extend this {0, 1}-weighting to the whole of G by defining w(v1v6) = w(v4v5) = 1 and
w(v2v3) = w(v3v4) = w(v5v6) = 0.
If u = v1 and v is v3, then again we use Lemma 7 on G − {v3, v4, v5, v6} choosing v1 as our special
vertex. As before we get a {0, 1}-weighting w of G − {v3, v4, v5, v6} we can extend to the whole of G
by defining w(v1v6) = w(v3v4) = 1 and w(v2v3) = w(v4v5) = w(v5v6) = 0.
This leaves us with the case where u is in G− C and v is one of {v3, v4, v5, v6}. We can assume that v1
is in the same bipartition set as u and we start by considering the case where v = v3. In this case we use
the induction hypothesis on G−{v3, v4, v5, v6} choosing u and v1 as our special vertices. We extend this
{0, 1}-weighting, letting the edge v1v6 play the role of the extra weight on v1 by defining w(v1v6) = 1
and w(v2v3) = 0. Now v1 and v2 have different weighted degrees by the induction hypothesis so we
can choose the weights on v3v4 and v5v6 to be different such that we avoid conflicts between v6 and v1,
between v3 and v2 and between v4 and v5. Finally we define w(v4v5) = 0 to avoid conflicts between v5
and v6, and between v3 and v4.
The case where v = v5 remains. Here we use Lemma 7 on G − {v3, v4, v5, v6} choosing u as our
special vertex and extend this {0, 1}-weighting to G by defining w(v2v3) = w(v1v6) = w(v3v4) = 0 and
w(v5v6) = w(v4v5) = 1.

Using Lemma 7 and induction as in the proof of Lemma 7 we can easily derive Lemma 9 below.
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Lemma 9. Let G be an odd multi-cactus where the red-green edge-colouring is unique. If G′ is obtained
from G by replacing a red edge with an edge of multiplicity > 1, then G has the {0, 1}-property.

In a graph G, a suspended path or suspended cycle is a path or cycle v1v2...vq such that all intermediate
vertices have degree 2 and the end-vertices v1, vq have degree at least 3. All vertices v1, ..., vq should be
distinct, except that possibly v1 = vq (if it is a suspended cycle).
Having these small facts established we are ready for the proof of Theorem 3. The proof follows the same
approach as the proof of Theorem 2 in [7], but new problems arise which have to be dealt with along the
way. At the end of the proof, the reader is referred to [7].

Proof of Theorem 3: It suffices to prove that if G is a connected bridgeless bipartite graph without the
{0, 1}-property, then G is an odd multi-cactus.
Suppose the theorem is false and let G be a smallest counterexample. That is, among all bridgeless bi-
partite graphs without the {0,1}-property which are not odd multi-cacti, G has the fewest vertices and
subject to that, the fewest edges. Note that by induction and Lemma 9 we can assume that if there is an
edge uv of multiplicity greater than 1, then uv must have multiplicity 2 and be a bridge in the simple
graph underlying G. Let X and Y be the two bipartition sets of G. By the remark following Lemma 5 we
can assume that both X and Y have odd size.
First note that if v ∈ X is a vertex in G which is only adjacent to one other vertex v′ (since G is bridgeless
the multiplicity of uv is then at least 2), then for any edge e = v′v′′ 6= v′v in G − v incident to v′, the
graph G′ = G − v − e is connected. So by Lemma 5 the graph G′ contains a spanning subgraph H
where all vertices in (X \ {v, v′′}) ∪ {v′} have odd degree and vertices in Y \ {v′} have even weighted
degree. By assigning weight 1 to all edges in E(H)∪ {e} and weight 0 to all other edges we get a proper
{0, 1}-weighting of G, a contradiction. Thus, we can assume that there is no vertex v in G which is only
adjacent to one other vertex v′.
Let B denote an endblock in G. Note that the above implies that there are no multiple edges in B.

Claim 1: B contains no suspended path of length 2.

Assume that y1xy2 is a suspended path of length 2 in B, where x ∈ X and y1, y2 ∈ Y . By Lemma 5
there exists a spanning subgraph H of G′ = G − x such that all vertices in X\{x} have odd degree and
all vertices in Y have even degree. From H we can construct a {0, 1}-weighting wG′ of G′ such that each
vertex in X\{x} has odd weighted degree and each vertex in Y has even weighted degree. We do this
by assigning weight 1 to the edges in H and weight 0 to the edges outside H . We extend this {0, 1}-
weighting to a {0, 1}-weighting wG of the whole graph G by defining wG(xy1) = wG(xy2) = 0. The
only possible conflicts are xy1 and xy2 in the case where wG′(y1) = 0 or wG′(y2) = 0. If we can remove
an edge e1 = y1z1 incident to y1 and an edge e2 = y2z2 incident to y2 in G′ and still have a connected
graph, then we can avoid this situation as follows: using Lemma 5 we redefine H to be a subgraph of
G − x − e1 − e2 such that all vertices in X − x − z1 − z2 ∪ {y1, y2} have odd weighted degree and all
other vertices have even weighted degree. Then define wG′ to be the {0, 1}-weighting assigning weight 1
to all edges in E(H) ∪ {e1, e2} and weight 0 to all other edges. This is a proper {0, 1}-weighting of G,
so we can assume that we cannot remove two edges incident to y1 and y2 respectively in G′ and still have
a connected graph.
There must be a cycle, C, going through y1 and y2 in G′ since otherwise y1 and y2 lie in distinct blocks
of G′, and since the degree of both y1 and y2 is at least 3 and since G is bridgeless it is now possible to
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remove an edge from both y1 and y2 and still have a connected graph, a contradiction. We first look at the
case where wG′(y1) = wG′(y2) = 0. Here we swap all the weights in C (that is, we change all 1-weights
to 0 weights and all 0-weights to 1-weights). This will not change the parity of the weighted degrees and
now y1 and y2 both have weighted degree 2. We redefine wG′ accordingly, put x back and give the edges
xy1 and xy2 weight 0. This gives a proper {0,1}-weighting of G.
Now assume that wG′(y1) = 0 and wG′(y2) ≥ 2. Actually we can assume that wG′(y2) = 2 since
otherwise if wG′(y2) > 2 we just repeat the proof of the previous case (after swapping the weights in
C the weighted degree of both y1 and y2 is at least 2). We can assume that all cycles going through y1
in G′ also go through y2 (otherwise we simply swap the weights in a cycle containing y1 and not y2).
The only possible case is where G− {x, y1, y2} consists of precisely two connected components G1, G2

with bipartition sets Xi, Yi each containing exactly one neighbour of both y1 and y2 (see Figure 3). Let
x1, x2 denote the neighbours of y1 in G1 and G2 respectively and let z1, z2 denote the neighbours of y2
in G1 and G2 respectively. We allow the possibility that x1 = z1 or x2 = z2. If one of X1, X2 has even
size, for example X1, then the subgraph of G1 consisting of all edges weighted 1 under wG′ will have
an odd number of odd degree vertices, which is not possible. So both X1 and X2 have odd size. The
sets Y1 and Y2 must have different parity, in particular one of them, say, Y1 has even size. Furthermore,
if G2 has a proper {0, 1}-weighting wG2

then we can find a proper {0, 1}-weighting of the whole graph
G with weight 0 on y1x2 and y2z2 as follows: If the weighted degrees of x2 and z2 have the same, say,
odd parity under wG2

, then because both bipartition sets in G−G2 have even size, Lemma 5 implies that
there is a proper {0,1}-weighing wG−G2 of G − G2 where y1 and y2 get even weighted degree. We can
now define a proper {0,1}-weighting wG of G by wG(e) = wG2(e) for e ∈ E(G2), wG(e) = wG−G2(e)
for e ∈ E(G − G2) and wG(y1x2) = wG(y2z2) = 0. So the weighted degree of x2 and z2 do not have
the same parity under wG2

. Without loss of generality assume that x2 has even weighted degree under
wG2

and z2 has odd weighted degree under wG2
. As before there is a proper {0,1}-weighting wG−G2

of
G−G2 where all vertices in X1 ∪ {x} get odd weighted degree and all other vertices get even weighted
degree. When extending wG−G2 and wG2 to the whole of G, the only possible conflict that can arise is
y1x2, but we can always avoid this conflict by swapping the weights of the edges in a cycle in G − G2

containing y1. The same kind of argument shows that there is no proper {0, 1}-weighting of G2 where
the weighted degree of both x2 and z2 are increased by 1 (increased by 2 if x2 = z2) since we can let the
edges x2y1 and z2y2 play the roles of the extra weights. By the minimality of G, the subgraph G2 must
either be an odd multi-cactus or contain a bridge. Lemma 8 shows that G2 cannot be an odd multi-cactus
and hence it contains a bridge. Note that this shows that x2 6= z2 and since B is an endblock, one of
x2, z2, say x2, is not a cutvertex in G2. If x1 is also not a cutvertex in G1 we do the following: Weight
G2 − x2 such that all vertices in X2 − {x2} have odd degree and all vertices in Y2 have even degree,
and weight G1 − x1 such that all vertices in X1 − {x1} have odd degree and all vertices in Y1 have even
degree. These two {0, 1}-weightings extend to the whole graph G by assigning weight 0 to all edges
incident to x1, x2 and y1 except that we assign weight 1 to the edges y1x1, and y1x2 and also to y1x.
So x1 must be a cutvertex in G1. Since B is an end-block it follows that z2 is not a cutvertex in G2 and
if z1 is not a cutvertex in G1 we do the same as before (with x1 replaced by z1 and x2 replaced by z2).
The only possibility is that x1 = z1 is a cutvertex. By Lemma 5 there is a {0, 1}-weighting wG1

of G1

where all vertices in X1\{x1} get odd weighted degree and all other vertices get even weighted degree,
and a {0, 1}-weighting wG2 of G2 where all vertices in X2\{x2} get even weighted degree and all other
vertices get odd weighted degree. We extend wG1 and wG2 to a {0, 1}-weighting of the whole of G by
assigning weight 1 to the edges y1x2 and y2x1 and weight 0 to the edges y2x, y1x, y2z2 and y1x1. The



8 Kasper Szabo Lyngsie

only possible conflicts are between y1, y2 and x1 = z1 if x1 has weighted degree 1. If this is the case, then
since x1 is a cutvertex in G1, there is a cycle in G1 containing two edges with weight 0 incident to x1. We
can then swap the weights on such a cycle to avoid conflicts between x1 and y1 and y2. This contradicts
G being a bad graph.

y1

x

y2

G1 G2

x1 x2

z1 z2

Fig. 3: An illustration of the situation in Claim 1.

Claim 2: B contains no suspended path or cycle of length 4.

Assume that y1x1y2x2y1 is a suspended cycle of length 4 in B. By Lemma 5 there is a proper {0, 1}-
weighting of G−{x1, y2, x2} where all vertices in X\{x1, x2} get even weighted degree and all vertices
in Y \{y2} get odd weighted degree. This proper {0, 1}-weighting can now be extended to the whole
graph by assigning weight 1 to the edges y1x1 and x2y1 and weight 0 to the edges x1y2 and y2x2, a
contradiction.
The case where y1x1y2x2y3 is a suspended path of length 4 in G is treated in the same way as the sus-
pended path of length 2 in the proof of the previous claim (here we just choose the graph G−x1−y2−x2

as our G′).

Claim 3: G contains no suspended path or cycle of length at least 5.

Suppose that y1x1y2x2y3x3 is a path in G where x1 ∈ X and where the degree in G of each of
x1, y2, x2, y3 is 2. Now delete each of x1, y2, x2, y3 and add an edge y1x3 if there is not already such
an edge. If the resulting graph is not an odd multi-cactus it has a proper {0, 1}-weighting by the minimal-
ity of G. This {0, 1}-weighting can now be used to find a proper {0,1}-weighting of G: we put back the
vertices x1, y2, x2, y3. If y3x3 was not originally in G we give y1x1 and y3x3 the same weight as y1x3

and delete that edge. We give y2x2 the opposite colour. Then we give x1y2 and x2y3 distinct colours.
Since y1 and x3 have different colours, there are two choices for this and one of them will give a proper
{0, 1}-weighting. If y1x3 was in G to begin with we assign weight 0 to the edges y1x1 and y3x3. We
give y2x2 weight 1. Then we give x1y2 and x2y3 distinct colours. Again, there are two choices for this
and one of them will give a proper {0, 1}-weighting, a contradiction. So we can assume that G′ is an
odd multi-cactus. Since G is not an odd multi-cactus the only possibility is that G is obtained from an
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odd multi-cactus by subdividing a green edge joining two vertices of degree at least 3 by four vertices. In
this case we can find another path y′1x

′
1y
′
2x
′
2y
′
3x
′
3 where the degree in G of each of x′1, y

′
2, x
′
2, y
′
3 is 2 and

define G′ from that such that G′ is not an odd multi-cactus, unless G consists of two vertices joined by
s ≥ 3 paths of length 5. In this case it is easy to check that G has a proper {0, 1}-weighting.

By Claims 1, 2, 3 all degree-2 vertices in the endblocks of G lie on a suspended path of length 3. In
G we replace all suspended paths of length 3 with an edge to form a multi-graph G∗. Edges arising from
suspended paths will be called blue edges. Note that G∗ is bridgeless and the minimum degree in any
endblock is at least 3. Now let B be an endblock of G∗. Possibly G∗ = B. If B 6= G∗, then we let x0

be the unique cutvertex of G∗ contained in B. If the deletion of some pair of neighbouring vertices in B
disconnects G∗, then we define a graph B′ as follows: we select an edge y0z0 in B such that G∗−y0−z0
is disconnected and such that some component, H , not containing x0 of G∗−y0−z0 is smallest possible.
Possibly x0 is one of z0 and y0. The union of that component, H , and y0, z0 together with all edges
connecting them is called B′. Otherwise, if the deletion of any pair of adjacent vertices in B leaves a
connected graph we define B′ = H = B. Note that in this case we must have B′ = H = B = G∗, since
the deletion of x0 together with any of its neighbours disconnects G∗.

Claim 4: There is an end-block B of G∗ such that all vertices in H have degree 3 in G∗.

The overall strategy for proving this claim is to find a vertex w0 in H with local maximum degree, and
then use the procedure explained in the remark following Lemma 6 to find a proper {0, 1}-weighting of
G where all edges incident to w0 have weight 1.

Case 1: We can choose B to be an end-block whose cutvertex is adjacent to only one other block.

Suppose the claim is false and let w0 ∈ V (H) (if B′ = B choose w0 distinct from x0) be a vertex
having maximum degree. We want to choose w0 such that when we remove w0 we avoid the exceptional
case in Lemma 6 (when A is set to be the neighbours of w0 having the same degree as w0). If d(w0) ≥ 5
then this exceptional case cannot occur. If d(w0) = 4 and some neighbour of w0 has degree 3 then the
exceptional case is also avoided. Such a w0 is possible to choose unless all vertices in H have degree 4.
If it is impossible to avoid the exceptional case then it must be that whenever we remove a vertex w0 in
H and its four neighbours the resulting graph has six components each having exactly two neighbours in
N(w0). If this is the case we choose w0 to be such that the component arising when deleting w0 and its
neighbours (there are six components) containing y0 or z0 is maximal. The other components are easily
seen to be isolated vertices (otherwise we redefine w0 to be a neighbour of w0 not joined to the component
containing y0 or z0 and this will contradict the choice of w0). But these isolated vertices must have degree
2, a contradiction. This shows that we can always find a w0 of maximum degree in H and avoid the
exceptional case in Lemma 6 (when A is set to be the neighbours of w0 having the same degree as w0).
We now choose such a w0. When we have found and defined w0 we go back to considering the original
graph G. We will look at three different subcases:

1. w0 is not a neighbour of z0 or y0.

2. w0 is a neighbour of z0 and z0 6= x0.
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3. w0 is a neighbour of x0.

Subcase 1: This subcase is dealt with as described in the remark following Lemma 6. By the minimality
of H , none of the neighbours of w0 are incident to a bridge in G− w0.

Subcase 2: We can assume that z0 has degree strictly greater than that of w0 since otherwise we do
the same as in Subcase 1. This implies that the degree of z0 is at least 5. We can assume that all vertices
in H having maximum degree are adjacent to z0 or y0, since otherwise we can redefine w0 and go to
Subcase 1. Note that this implies that we can never be in the exceptional case in Lemma 6 when we delete
a vertex v in H of maximum degree and define A to be the neighbours of v with the same degree as v.
We can assume that z0 has precisely one neighbour in each component other than H in B−y0− z0, since
otherwise we do the same as in Subcase 1 except we now also remove two edges from z0 that go to the
same component of B − y0 − z0 other than H . If we then end up with a colour-conflict between w0 and
z0 we have made sure that we can swap the weights in a cycle avoiding H that contains two edges with
weight 0 incident to z0. This will then avoid the conflict between w0 and z0 and give a proper {0, 1}-
weighting of G. So z0 has precisely one neighbour in each component other than H in B − y0 − z0. We
can also assume that there is at most one component C other than H in B − y0 − z0 which contains a
neighbour of z0 since otherwise we can remove two edges incident to z0 going to two different compo-
nents distinct from H and use the same weight-swapping argument as before to avoid a conflict between
z0 and w0 (this time the cycle will also go through y0).
If z0 has no neighbour in any component of G− z0 − y0 other than H , then since G− y0 − z0 is discon-
nected it must be the case that y0 = x0. If this is the case we redefine w0 to be z0 and go to Subcase 3.
So we assume that there is such a component C other than H in G − z0 − y0 containing a neighbour of
z0. We start by doing the same as before giving w0 maximum weighted degree and assigning 0 to at least
one edge ea incident to each neighbour a of w0 which has the same degree as w0. We also assign weight
0 to the unique edge z0z1 joining z0 to the component C. Actually, since w0 and all the neighbours of w0

have the same weighted degree-parity, each of these neighbours of w0 with the same degree as w0 will be
incident to at least two edges weighted 0. We can assume that w0 and z0 have the same weighted degree
and the edge z0y0 has weight 1 (otherwise we can swap the weights in a cycle using the edges z0z1 and
z0y0 to avoid the conflict between w0 and z0). If we swap the weights in a cycle in G − w0 containing
two edges incident to z0 with the same weight, then the only conflicts we can create are between w0 and
a neighbour v of w0 with the same degree as w0, and these conflicts can only arise when the cycle goes
through the only two edges incident to v with weight 0. If v is a neighbour of w0 with the same degree
as w0 and incident to only two edges with weight 0, then we call this pair of weight 0-edges a forbidden
pair of edges.
We will now show that we can always find a cycle in G − w0 containing two edges incident to z0 with
the same weight that does not use any forbidden pair of edges. Note that all neighbours of w0 which are
incident with a forbidden pair of edges have the same degree as w0 and are therefore neighbours of y0.
Let v1, ..., vm denote these neighbours of w0. Since z0 has weighted degree strictly greater than 3, there
is a vertex z2 6= w0 in N(z0)∩V (H). It suffices to find a path P from y0 to a vertex z′ in N(z0)∩V (H)
in the connected graph G− z0 − w0 (connected by the minimality of H) not using any forbidden pair of
edges, since then we can define our cycle to be P ∪ {z0y0, z′z0} if the weight on z0z

′ is 1, or P ∪ Pc,
where Pc is a path from z0 to y0 in G − H − z0y0 if the weight on z0z

′ is 0. See Figure 4. Since the
graph G− z0 −w0 is connected, there is a path P1 from z2 to y0. We can assume that this uses forbidden
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pairs of edges. Without loss of generality let av1 and v1b be the first forbidden pair of edges P1 uses when
starting from z2. Since v1 is adjacent to y0 it follows that b = y0, since otherwise we can find a path from
y0 to z2 not using any forbidden pair of edges. This shows that there is some path from y0 to a vertex in
N(z0) ∩ V (H) only using one forbidden pair of edges. Now we look at all such paths only using one
pair of forbidden edges y0vi and via (for i ∈ {1, ...,m}) and choose a path P among those which goes
through the most neighbours of w0. Let y0vi and via be the pair of forbidden edges P contains. Since
y0vi and via is a forbidden pair, the vertex vi has a neighbour v′i 6= w0 in H such that viv′i has weight 1.
Since G− w0 − vi is connected it has a path P ′ from v′i to a vertex in N(z0) ∩ V (H). The path P ′ must
use a forbidden pair of edges, otherwise the graph induced by E(P )∪E(P ′) contains a desired path from
y0 to a vertex in N(z0) ∩ V (H) avoiding forbidden pairs of edges. Let the first pair of forbidden edges
P ′ uses when starting from v′i be bv and vc. The subpath P ′1 of P ′ from v′i to v must be disjoint from P ,
since otherwise the graph induced by E(P ) ∪ E(P ′1) contains a desired path from y0 to N(Z0) ∩ V (H)
avoiding forbidden pairs of edges. Furthermore, we must have that c = y0 since otherwise the path P ′′

defined to be y0v together with the subpath of P ′ from v to v′i followed by v′ivi and the subpath of P from
vi to N(z0) ∩ V (H) is a desired path from y0 to N(z0) ∩ V (H) avoiding forbidden pairs of edges. Now
the path P ′′ contradicts the maximality of P .
This takes care of Subcase 2 if z0 has a neighbour in some component C other than H in G− z0 − y0. If
this is not the case then, as noted above, we can go to Subcase 3 redefining w0 to be z0.

z1

z0

y0

0

1
1

1

1

v2 v3

w0

v1

z2

H

1

1

Fig. 4: An illustation of a situation in the proof of Claim 4. Dashed edges indicate pairs of forbidden edges.

Subcase 3: The situation is more or less the same as in Subcase 2 except now z0 = x0. If some vertex
w ∈ N(w0)\{x0} has the same degree as w0, then we can assume that we are in the exceptional case
in Lemma 6 when we remove w and define A to be the set of neighbours of w with the same degree as
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w (otherwise we redefine w0 to be w and go to Subcase 1 or 2). So in this case the degree of both w0

and w is 4 and so is the degree of all neighbours of w. Choose w in H to be a non-neighbour of x0 with
the same degree as w0 such that the component arising when deleting w and its neighbours (there are six
components) containing y0 or z0 is maximal. The other components are easily seen to be isolated vertices,
and this contradicts that the minimum degree in H is 3.
So we can assume that w0 is a strict local degree maximum in V (B)\{x0} and x0 has strictly greater
degree than w0 in G. This implies that x0 has degree at least 5. Let Y denote the bipartition set containing
w0 and let X denote the opposite bipartition set. As before we find a {0, 1}-weighting of G where all
edges incident to w0 have weight 1, all vertices in X have the same weighted degree parity as w0, and
all vertices in Y \{w0} have weighted degree parity different from w0. Now we can only have a conflict
between x0 and w0. Recall that x0 is only incident with two blocks B and B1. There must be precisely
two neighbours w1 and w2 of x0 in B1, since otherwise we can avoid the conflict between x0 and w0 by
swapping weights in a cycle in B1 using two edges incident to x0 with the same weight. By the same ar-
gument we can assume that the weights on the two edges x0w1 and x0w2 are different. Since d(x0) ≥ 5,
this implies that x0 must have at least two neighbours w3 and w4 in B − w0 joined to x0 by an edge
weighted 1. The graph B − x0 − w0 is connected by the minimality of H so we can find a cycle in B
through the two edges x0w3 and x0w4 avoiding w0. We swap the weights on this cycle and thereby avoid
the conflict between x0 and w0.
This completes Case 1.

Since we can now assume that we are not in Case 1 we can go to Case 2 below by considering a longest
path in the block-tree of G∗.

Case 2: We can choose B to be an end-block incident to endblocks B1, ..., Bn where n ≥ 1, and the
union of all other blocks B−1 satisfies that B−1 − x0 is connected.

In this case the proofs in Subcases 1 and 2 are exactly the same as before (the situation is now only
different when w0 is incident to x0). For i = −1, ..., n define Gi = Bi − x0. As before let Y denote
the bipartition set containing w0 and let X denote the opposite bipartition set. For i = 0, ..., n let wi

denote the vertex defined in the same way as w0 just in Bi instead of in B. As before we can assume
that all neighbours of wi different than x0 have strictly lower degree than that of wi and, furthermore,
that x0 has precisely two neighbours vi,1 and vi,2 in each G−1, ..., Gn. We can assume that wi = vi,1 for
i = 0, 1, ..., n and that the degree of vi,2 is at most that of wi, since otherwise we redefine wi to be vi,2.
For each i = −1, ..., n, let Xi and Yi denote the part of Gi belonging to X and Y respectively. We can
assume that we will get a conflict between x0 and wi whenever we weight as before giving wi maximal
weighted degree. As noted above, x0 will get precisely weight 1 from each Gj for j 6= i. So, for each
i = 0, ..., n, the degree of wi is either n+ 2 or n+ 3. We look at five different subcases:

(a) d(w0) = n+ 2 and d(w1) = n+ 3 and n is even.

(b) d(w0) = n+ 2 and d(w1) = n+ 3 and n is odd.

(c) d(wi) = n+ 2 for i = 0, 1, ..., n.

(d) d(wi) = n+ 3 for i = 0, 1, ..., n and n is even.
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(e) d(wi) = n+ 3 for i = 0, 1, ..., n and n is odd.

(a): In this subcase n is at least 2. Recall that when weighting G as before giving w0 weighted degree
n + 2 the vertex x0 will have precisely one edge weighted 1 going to each G−1, G0, ..., Gn, and when
weighting G as before giving w1 weighted degree n + 3, the vertex x0 will get precisely weight 1 from
all G−1, G0, G2, G3, ..., Gn and weight 2 from G1. The {0, 1}-weighting giving w0 maximum weighted
degree implies that all the sets Y−1, Y1, Y2, ..., Yn have odd size and Y0 has even size, since otherwise if
Yi has even size for i = −1, 1, 2, ..., n or if Y0 has odd size, then the subgraph of Gi consisting of the
edges with weight 1 has an odd number of vertices of odd degree. Similarly the {0, 1}-weighting giving
w1 maximum weighted degree implies that all the sets X−1, X0, X1, X2, X3, ..., Xn have odd size. We
find a proper {0, 1}-weighting of G as follows. For i = −1, 1, 2, 3, ..., n we weight each Bi by Lemma 5
such that all vertices in Xi ∪ x0 get odd weighted degree and all vertices in Yi get even weighted degree.
We also find a {0, 1}-weighting of B0 such that all vertices in Y0 get odd weighted degree and all vertices
in X0 ∪ {x0} get even weighted degree. We can assume that x0 gets weighted degree 2 (if the weighted
degree of x0 is 0 we swap the weights on a cycle containing the two edges incident to x0). The union of
these {0, 1}-weightings gives a {0, 1}-weighting of G such that the only parity conflicts are between x0

and its neighbours in B0. However, the weighted degree of x0 is n+ 3 while the neighbours of x0 in B0

have degree at most n+ 2.

(b): In this subcase n is at least 3. By the same argument as in Subcase (a), all the sets X−1, X1, X2, ..., Xn

have odd size, X0 has even size and all the sets Y−1, Y0, Y1, Y2, ..., Yn have odd size. We find a proper
{0, 1}-weighting of G as follows. For i = −1, 1, 2, 3, ..., n we weight each Bi by Lemma 5 such that all
vertices in Xi ∪ x0 get odd weighted degree and all vertices in Yi get even weighted degree. We also find
a {0, 1}-weighting of B0 such that all vertices in Y0 ∪ {x0} get even weighted degree and all vertices in
X0 get odd weighted degree. As in Subcase (a) we can assume that the weighted degree of x0 is 2. The
union of these {0, 1}-weightings gives a proper {0, 1}-weighting of G (analogously to Subcase (a)).

(c): First assume that n is even. Then n is at least 2. As before we deduce from the {0, 1}-weighting of
G where w0 gets weighted degree n+2 that all the sets Y−1, Y1, Y2, ..., Yn have odd size and Y0 has even
size. The same argument for the {0, 1}-weighting of w1 shows that all the sets Y−1, Y0, Y2, ..., Yn have
odd size and Y1 has even size, a contradiction. An analogous argument holds when n is odd.

(d): In this subcase n is at least 2 and all the sets X−1, X0, X1, X2, X3, ..., Xn have odd size. We weight
each Bi for i = 0, 1, 2 such that wi gets maximum weighted degree, x0 gets weighted degree 2 and there
are only parity conflicts around w0. In all other blocks Bj , j 6= i, we weight such that all vertices in
Xj ∪ {x0} get odd weighted degree and all other vertices get even weighted degree. The union of these
{0, 1}-weightings gives a proper {0, 1}-weighting of G.

(e): In this subcase n is at least 1 and all the sets Y−1, Y0, Y1, Y2, ..., Yn have odd size. One of the
sets X−1, X0, ..., Xn must have even size. If X−1 has even size we weight as follows: In B−1 we weight
such that all vertices in X−1 get odd weighted degree and all vertices in Y−1 ∪ {x0} get even weighted
degree and, furthermore, such that x0 has weighted degree 2. In B0 we weight such that w0 gets max-
imum weighted degree and all vertices in X0 ∪ {w0, x0} get even weighted degree and all vertices in
Y0 − {w0} get odd weighted degree and, furthermore, such that the degree of x0 is 2. In all other blocks
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Bj , j 6= −1, 0 we weight such that all vertices in Yj ∪{x0} get odd weighted degree and all other vertices
get even weighted degree. The union of these {0, 1}-weightings gives a proper {0, 1}-weighting of G.
Hence we can assume that X−1 has odd size. One of X0, X1, ..., Xn, say, X0 has even size and we now
weight as follows: In B0 we weight such that all vertices in X0 get odd weighted degree and all vertices
in Y0 ∪ {x0} get even weighted degree and, furthermore, such that x0 has weighted degree 2. In B1 we
weight such that:

• w1 gets maximum weighted degree.

• All vertices in X1 ∪ {w1, x0} get even weighted degree.

• All vertices in Y1 − {w0} get odd weighted degree.

• The weighted degree of x0 is 2.

In B−1 we weight such that all vertices in X−1 ∪ {x0} get odd weighted degree and all vertices in Y−1
get even weighted degree. In all other blocks Bj , j /∈ {−1, 0, 1} we weight such that all vertices in
Yj ∪ {x0} get odd weighted degree and all other vertices get even weighted degree. The union of these
{0, 1}-weightings gives a proper {0, 1}-weighting of G.

This completes the proof of Claim 4.

If the removal of any pair of adjacent vertices leaves a connected graph we must have that G∗ is 3-regular
and we will simply work in G∗ from now on. Otherwise we choose to work in an endblock B of G∗

and the subgraph H of B defined before Claim 4. By Claim 4, all vertices of H have degree 3. Suppose
first that all vertices in H are adjacent to z0 or y0. A small argument shows that unless B is isomorphic
to K3,3, there is a vertex w0 ∈ V (H), such that removing w0 and all the neighbours w0 would leave a
connected graph. In this case we can find a proper {0, 1}-weighting of G by Lemma 5. If B is isomorphic
to K3,3 we remove all vertices in B except x0. The resulting subgraph of G has an odd number of vertices
so by Lemma 5 it has a proper {0, 1}-weighting without parity-conflicts. Some edges in B may be blue,
but it can be checked that no matter how these blue edges are arranged in B this {0, 1}-weighting can be
extended to the whole of G. So we can assume that there is some vertex in H not adjacent to x0 or z0.

The rest of the proof is as that of Theorem 2 in [7] (choose w0 to be a non-neighbour of z0 and y0,
in H). This completes the proof of the theorem.

3 Trees without the {0,1}-property
In this section we will give a complete characterisation of all bad trees. The characterisation consists of
a recursive construction using three other classes of trees with certain properties, and immediately gives
a polynomial-time algorithm for recognising bad trees. We begin by defining these properties for general
bipartite graphs. The first of these three classes is described as follows. Let v be a vertex in a connected
bipartite graph G with an even number of vertices in each bipartition set. We say that G is a Gv(−)-graph
if there is no proper {0,1}-weighting of G when the weighted degree of v is increased by 1. This definition
is motivated by the following easy proposition.
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Proposition 10. Let G be a graph and let v be a vertex in G. Let G′ be the graph obtained from G by
adding two vertices v1 and v2 and the the edges vv1 and v1v2. The graph G is a Gv(−)-graph if and only
if G′ is bad.

The following two lemmas show a recursive way to construct new bad bipartite graphs from other bad
bipartite graphs with vertices of degree 1. These two results hold for all bipartite graphs and not just for
trees.

Lemma 11. Let G be a simple connected bipartite graph without the {0, 1}-property. If v is a vertex of
degree 1, and v′ is the unique neighbour of v, then all edges incident to v′ are bridges in G.

Proof: By Lemma 5 there is a {0, 1}-weighting of G − v with no parity conflicts. The only problem we
can have in extending this {0, 1}-weighting to G is that the weighted degree of v′ might be 0. If v′ is
contained in a cycle we would always be able to avoid this.

Lemma 12. Let G be a simple connected bipartite graph and assume that v is a vertex of degree 1. Let
v′ denote the neighbour of v and let e0, e1, ..., en be the edges incident to v′ where e0 = vv′. Assume that
all edges incident to v′ are bridges and for each i > 0, let Gi be the unique component of G − ei not
containing v. For each i > 0, let G′i denote the connected graph obtained from Gi by adding the vertices
v, v′ and the edges e0, ei. The graph G is bad if and only if all the graphs G′1, ..., G

′
n are bad.

Proof: Figure 5 shows an illustration of the situation. For i ∈ {1, ..., n}, let vi be the vertex of Gi which
is adjacent to v′ in G′i. If all G′1, ..., G

′
n are bad then by Proposition 10 each Gi is a Gvi(−)-graph. It

follows that in any proper {0, 1}-weighting of G, each edge ei must receive weight 0. But now v and v′

have the same weighted degree. Thus no such {0, 1}-weighting of G exists, that is, G is bad.
Now assume that G is bad. Let X,Y denote the bipartition sets of G such that v ∈ X, v′ ∈ Y and for
each i = 1, ..., n, let Xi, Yi denote the bipartition sets of Gi. By Lemma 5 we can assume that both X
and Y have odd size. By Lemma 5 there is a {0, 1}-weighting of G − v with no parity conflicts, where
all vertices in X − v get odd degree and all vertices in Y get even degree. The only problem we can have
in extending this {0, 1}-weighting to G is that the weight of v′ can be 0. If this is the case then all Xi

have even size. There must be an even number m of the sets Yi which have an odd number of vertices. If
m ≥ 2, say Y1, ..., Ym have even size, then by Lemma 5 there is a proper {0, 1}-weighting of G where
v′ gets weighted degree m + 1 (apply Lemma 5 to G − v to find a {0, 1}-weighting of G − v where all
vertices in Y \{v′} get odd weighted degree and all vertices in (X−{v})∪{v′} get even weighted degree.
In such a weighting the weights on all the edges e1, ..., em are 1 and the weights on the other ei’s are zero.
Now extend this weighting to the whole of G by assigning weight 1 to e0 = vv′.) This contradicts that
G is bad. So all Yi’s have even size. By Proposition 10 each G′i is bad if and only if Gi is bad when the
weight on the vertex incident to ei is increased by 1. So for a contradiction assume that there is a proper
{0, 1}-weighting of some Gi when the weight on the vertex incident to ei is increased by 1. By use of
Lemma 5 this proper {0, 1}-weighting can now easily be extended to G, a contradiction.
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Fig. 5: An illustration of the situation explained in Lemma 12.

We now describe the second and third class of trees we will use to characterise all bad trees. They are
special cases of the graphs defined as follows.
Let v be a vertex in a connected bipartite graph G with an odd number of vertices and let a, b be two
non-negative integers. We say that G is a Gv(a, b)-graph if v must get weighted degree a in all proper
{0, 1}-weightings of G and v must get weighted degree b in all proper {0, 1}-weightings of G where the
weight of v is increased by 1.
The classes of Gv(s, s + 1)- and Gv(s, s + 3)-trees where s is a non-negative integer are two interest-
ing special cases when we want to characterise all bad trees. We will need the following two lemmas
describing the local structure around v in a Gv(s, s+ 1)- and a Gv(s, s+ 3)-tree.

Lemma 13. Let s be a non-negative integer and let G be a Gv(s, s + 3)-tree. Then G is obtained from
the disjoint union of a Gv1(s + 1, s + 2)- and a Gv2(s + 1, s + 2)-tree together with a number of trees
of type Gv3(−), Gv4(−), ..., Gvm(−) and bad trees Gm+1, ..., Gm+s by adding a vertex v and all edges
vv1, vv2, ..., vvm and also an edge from v to all the bad trees Gm+1, ..., Gm+s.

Proof: Figure 6 illustrates the situation. Assume that s is even (the case where s is odd is similar). Let
X,Y be the bipartition sets of G where v ∈ Y . Let e1, ..., en denote the edges incident to v and let
G1, ..., Gn denote the corresponding components of G − v. Let Xi, Yi denote the bipartition sets of Gi.
Let s′ denote the number of trees with an odd number of vertices in both bipartition sets and let m′ denote
the number trees with an even number of vertices in both bipartition sets among G1, ..., Gn. Let n1 denote
the number of trees among G1, ..., Gn that have an even number of vertices in their X-bipartition and an
odd number of vertices in their Y -bipartition, and assume that the ordering of G1, ..., Gn is such that
G1, ..., Gn1

denote these trees. Let n2 be the number of trees among G1, ..., Gn that have an odd number
of vertices in their X-bipartition and an even number of vertices in their Y -bipartition and assume that
the ordering of G1, ..., Gn is such that Gn1+1, ..., Gn1+n2 denote these trees. Furthermore assume that
the trees Gn1+n2+1, ..., Gn1+n2+s′ have an odd number of vertices in both bipartition sets and that the
trees Gn1+n2+s′+1, ..., Gn1+n2+s′+m′ = Gn have an even number of vertices in both bipartition sets. For
i = 1, ..., n let vi be the neighbour of v in Gi.
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Since |V (G)| is odd, one of |X|, |Y | is even. However, if |Y | is even, then by Lemma 5, G has a
proper {0, 1}-weighting such that v gets odd weighted degree. This contradicts G being a Gv(s, s + 3)-
tree. Thus |X| is even and |Y | is odd, and G has a {0, 1}-weighting such that all vertices in Y get even
weighted degree and all vertices in X get odd weighted degree. In such a {0, 1}-weighting all the edges
vv1, ..., vvn1

must get weight 0, since otherwise if say vv1 is weighted 1, then the subgraph consisting
of edges weighted 1 in G1 has an odd number of odd degree vertices. By a similar argument, all the
edges vvn1+1, ..., vvn1+n2

get weight 1, all the edges vvn1+n2+1, ..., vvn1+n2+s′ also get weight 1 and
all the edges vvn1+n2+s′ , ..., vvn get weight 0. It follows that n2 + s′ = s. By Lemma 5, there is
also a {0, 1}-weighting of G where all vertices in Y \{v} get odd weighted degree and all vertices in X
get even weighted degree. This means that there is a {0, 1}-weighting of G where all vertices in Y get
odd weighted degree and all vertices in X get even weighted degree when the weight on v is increased
by 1. We argue as before and see that in such a {0, 1}-weighting all the edges vv1, ..., vvn1

must get
weight 1, all the edges vvn1+1, ..., vvn1+n2

get weight 0, all the edges vvn1+n2+1, ..., vvn1+n2+s′ get
weight 1 and all the edges vvn1+n2+s′ , ..., vvn get weight 0. Since G is a Gv(s, s+3)-tree it follows that
n1 + s′ + 1 = s+ 3 and hence n1 = n2 + 2.
We start by showing that all the trees Gn1+n2+s′+1, ..., Gn must be trees of type Gvj (−). Assume that
this is not the case and let Gj be a tree among Gn1+n2+s′+1, ..., Gn such that there is a {0, 1}-weighting
of G[V (Gj) ∪ {v}] where the weight on vvj is 1 and the only possible conflict is between v and vj . Now
we weight G − Gj as before such that all vertices in Y − Yj get odd weighted degree and all vertices
in X −Xj get even weighted degree when the weight on v is increased by 1. We now put back Gj and
let vvj play the role of the extra weight on v which then has weight s + 3. The only possible conflict is
between v and vj , and since G is a Gv(s, s+3)-tree we must have a conflict, so vj will also get weighted
degree s + 3. Now we weight G − Gj such that all vertices in Y − Yj get even weighted degree and all
vertices in X −Xj get odd weighted degree. Now we put back Gj and let vvj play the role of an extra
weight on v and we also increase the weight 1 on v. The weight on v is then s+2 and we have no conflicts
anywhere, a contradiction. So all the trees Gn1+n2+s′+1, ..., Gn must be trees of type Gvj (−). Similar
arguments show all the trees Gn1+n2+1, ..., Gn1+n2+s′ must be bad trees.
It remains to show that n1 = 2 and n2 = 0, and that the two graphs G1 and G2 are trees of type
Gv1(s+ 1, s+ 2) and Gv2(s+ 1, s+ 2). We start by showing that n1 = 2 and n2 = 0. Clearly n1 ≥ 2.
First assume that n1 > 2 is even. For any j = 1, ..., n1 there is a {0, 1}-weighting of G where the
weight on vvj is 1, the weight on all vvi for i 6= j and i ∈ {1, ..., n1} is 0 and the weight on all edges
vvn1+1, ..., vv2n1−1 is 1 and the only possible conflict when the weight on v is increased by 1 is vvj . So
for each Gi, i = 1, ..., n1 the weight of vi must be s′ + n2 + 2 = s′ + n1 when the weight on vi is
increased by 1, otherwise there is a proper {0, 1}-weighting of G where the weight on v is increased by 1
up to s′+n1. But now there is a proper {0, 1}-weighting of G with weight 1 on all edges vv1, ..., vvn1+n2

such that v gets weighted degree s′ + n1 + n2, and this contradicts G being a Gv(s, s+3)-tree. The case
where n1 > 2 and n1 is odd is similar.
We conclude that n1 = 2 and n2 = 0 and it remains to show that G1 and G2 are trees of type Gv1(s +
1, s+2) and Gv2(s+1, s+2). By Lemma 5 there is a {0, 1}-weighting of G such that the weight on the
edges vv2, ..., vv2+s′ is 1 and the weight on the other edges incident to v is 0, and where the only possible
conflict is between v and v1. This must be a conflict since G is a Gv(s, s+3)-tree. So the weighted degree
of v1 in any proper {0, 1}-weighting of G1 must be s+1. If we use the same {0, 1}-weighting, except we
now swap the weighted degree parities in the trees G3, ..., Gn and increase the weighted degree of v by
1 we can similarly conclude that the weighted degree of v2 in any proper {0, 1}-weighting of G2 where
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the degree of v2 is increased by 1 must be s+2. Interchanging G1 and G2 in the argument above implies
that the weighted degree of v2 in any proper {0, 1}-weighting of G2 must be s+ 1 and that the weighted
degree of v1 in any proper {0, 1}-weighting of G1 where the degree of v1 is increased by 1 must be s+2.
Hence G1 and G2 are trees of type Gv1(s+ 1, s+ 2) and Gv2(s+ 1, s+ 2).

v

G1 G2

v1 v2

· · ·

G3

G4

Gm

v3

v4

vm

· · ·

vm+1

vm+2

vm+s

Gm+1

Gm+2

Gm+s

Fig. 6: An illustration of the situation explained in Lemma 13.

Similarly to what we did in the proof of Lemma 13 we can describe the local structure around v in a
Gv(s, s+ 1)-tree.

Lemma 14. If G is a Gv(s, s+ 1)-tree, then either

(a) G is obtained from the disjoint union of a Gv1(s − 1, s + 2)- and a Gv2(s, s + 1)-tree together
with a number of trees of type Gv3(−), Gv4

(−), ..., Gvm(−) and bad trees Gm+1, ..., Gm+s−1 by
adding a vertex v and all edges vv1, vv2, ..., vvm and also an edge from v to all the bad trees
Gm+1, ..., Gm+s−1, or

(b) G is obtained from the disjoint union of s bad graphs B1, ..., Bs and a number of graphs of type
Gv1(−), Gv2(−), ..., Gvn(−) by adding a vertex v and all edges vv1, vv2, ..., vvn and also bridges
joining v to each of the bad graphs.
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v

G1 G2

v1 v2

· · ·

G3

G4

Gm

· · ·

Gm+1

Gm+2

Gm+s−1

v3

v4

vm

vm+1

vm+2

vm+s−1

Case (a)

v

Case (b)

· · ·

G1 G2 G3 Gn

· · ·

B1 B2 B3 Bs

v3

Fig. 7: An illustration of the two possible situations explained in Lemma 14.

Lemma 15. Any bad tree distinct from K2 is obtained from either:

(a) a Gv(s, s + 1)-tree where s > 1 by adding a vertex v′ joined to v by an edge and to s K2-graphs
by bridges, or

(b) from two bad trees G1 and G2 by gluing together two edges v′1v
′
2 and v′′1 v

′′
2 in G1 and G2 respec-

tively where both v′1 and v′′1 have degree 1 in G1 and G2 respectively and both v′2 and v′′2 have
degree 2 in G1 and G2 respectively.

Proof: Suppose the lemma is false and look at a smallest counterexample G. It is easy to check that the
statement holds for all bad trees of diameter at most 3. So we can assume that the diameter of G is at least
4 and by Lemma 12 we can also assume that all vertices of degree 1 are adjacent to vertices of degree 2.
We let v be the fourth last vertex in a longest path in G and let v′ be the third last vertex. Then the two
subtrees obtained by removing the edge vv′ form the desired construction of G.

We list a recursive way to construct bad trees below in Figures 8, 9, 10 and 11. The class of bad trees
which can be obtained in this way starting with K2 as the smallest bad graph is denoted B.



20 Kasper Szabo Lyngsie

Construction of Gv(s, s+ 3)-trees

Two Gv(s+ 1, s+ 2)-trees:

v1 v2

G1 G2

Some Gv′(−)-trees:

v3 v4

G3 G4

· · · vm

Gm

s bad trees:

B1 B2

· · ·

Bs

v1

v2

G1

G2

v3 v4

G3 G4

· · · vm

Gm

B1 B2

· · ·

Bs

v

Fig. 8: This illustrates a recursive way how to construct all Gv(s, s+ 3)-trees.

Construction of Gv(−)-trees

One bad tree with a vertex of degree1 joined to a vertex of degree 2:

G1
v G1

v

Fig. 9: This illustrates how to obtain all Gv(−)-trees from bad trees with 2 more vertices.
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Construction of Gv(s, s+ 1)-trees

One Gv(s, s+ 1)-tree:

v1

G1

Some Gv′(−)-trees:

v3 v4

G3 G4

· · · vm

Gm

s− 1 bad trees:

B1 B2

· · ·

Bs−1

v1

v2

G1

G2

v3 v4

G3 G4

· · · vm

Gm

B1 B2

· · ·

Bs−1

v

One Gv(s− 1, s+ 2)-tree:

v2

G2

Or

s bad trees:

B1 B2

· · ·

Bs

Some Gv′(−)-trees:

v3 v4

G3 G4

· · · vm

Gm

v3 v4

G3 G4

· · · vm

Gm

B1 B2

· · ·

Bs

v

Fig. 10: This illustrates a recursive way how to construct all Gv(s, s+ 1)-trees.
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Construction of bad trees

One Gv(s, s+ 1)-tree:

v1

G1

A vertex joined to s K2-graphs:

· · ·

v2

v1

G1

v2

Or

v

v′

G1

G′
1

v

v′

G2

G′
2

· · ·

v

v′

Gn

G′
n

Some bad trees:

· · ·
G1

G2

G3
G4

Gn

v

v′

· · ·

Fig. 11: This illustrates a recursive way how to construct all bad trees.

The above constructions do indeed describe all bad trees:

Proof of Theorem 4: Suppose the theorem is false and let G be a smallest bad tree which cannot be
constructed by the above recursion. It is easy to check that the diameter of G must be at least 4. Let n
be the number of vertices in G. By Proposition 10 and Lemmas 13 and 14 we can assume that all trees
of type Gv(−) with at at most n − 4 vertices and all trees of type Gv(s, s + 1) and Gv(s, s + 3) with
at most n − 3 vertices can be constructed using the above recursion. Furthermore, since G is a smallest
counterexample all bad trees with fewer vertices can also be constructed by the recursion. Lemma 12
implies that G cannot have a vertex of degree 1 which is adjacent to a vertex of degree at least 3. So by
Lemma 15 our counterexample G is obtained from a Gv(s, s+1)-tree G′ where s > 0 and a vertex joined
to s K2-graphs by bridges. But G′ has at most n − 3 vertices so G′ can be constructed by the recursion,
and then so can G, a contradiction.
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4 Concluding remarks
We have provided a characterisation of all bridgeless bipartite graphs without the {0,1}-property and all
trees without the {0,1}-property. Actually, since the {0,1}-property is equivalent to the {0, a}-property
for any non-zero integer a these characterisations extend to the {0, a}-property. The characterisations also
provide polynomial time algorithms checking the {0, a}-property. This, together with Theorem 2 from
[7], answers Problem 1 in [4] except for bipartite graphs with bridges. So it remains to characterise all
the bipartite graphs with bridges and without the {0,1}-property. It would be interesting to investigate
whether the methods used in Section 3 can be extended to characterise all bipartite graphs without the
{0,1}-property.

Acknowledgements
The author would like to thank Carsten Thomassen for advice and helpful discussions, as well as Thomas
Perret for careful reading of the manuscript.

References
[1] A. Dudek and D. Wajc. On the complexity of vertex-colouring edge-weightings. Discrete Mathemat-

ics and Theoretical Computer Science, 13:347–349, 2011.

[2] M. Karonski, T. Łuczak, and A. Thomason. Edge weights and vertex colours. J. Combinatorial
Theory Ser. B, 91:151–157, 2004.

[3] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone, and B. Stevens. Vertex-colouring edge-
weightings with two edge weights. Discrete Mathematics and Theoretical Computer Science, 14:1:
1–20, 2012.

[4] H. Lu. Vertex-colouring edge-weighting of bipartite graphs with two edge weights. Discrete Mathe-
matics and Theoretical Computer Science, 17:1–12, 2016.

[5] B. Seamone. The 1-2-3 conjecture and related problems: a survey. ArXiv: 1211.5122.

[6] J. Skowronek-Kaziów. Graphs with multiplicative vertex-coloring 2-edge-weightings. J. of Combi-
natorial Optimization, 33:333–338, 2017.

[7] C. Thomassen, Y. Wu, and C.-Q. Zhang. The 3-flow conjecture, factors modulo k, and the 1-2-3-
conjecture. J. Combinatorial Theory Ser. B, 121:308–325, 2016.


	1 Introduction
	2 Bridgeless bipartite graphs without the {0,1}-property
	3 Trees without the {0,1}-property
	4 Concluding remarks

