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A (cyclic) n-bit Gray code is a (cyclic) ordering of all 2n binary strings of length n such that consecutive strings differ

in a single bit. Equivalently, an n-bit Gray code can be viewed as a Hamiltonian path of the n-dimensional hypercube

Qn, and a cyclic Gray code as a Hamiltonian cycle of Qn. In this paper we study (cyclic) Gray codes avoiding a

given set of faulty edges that form a matching. Given a matching M and two vertices u, v of Qn, n ≥ 4, our main

result provides a necessary and sufficient condition, expressed in terms of forbidden configurations for M , for the

existence of a Gray code between u and v that avoids M . As a corollary, we obtain a similar characterization for a

cyclic Gray code avoiding M . In particular, in the case that M is a perfect matching, Qn has a (cyclic) Gray code

that avoids M if and only if Qn − M is a connected graph. This complements a recent result of Fink, who proved

that every perfect matching of Qn can be extended to a Hamiltonian cycle. Furthermore, our results imply that the

problem of Hamiltonicity of Qn with faulty edges, which is NP-complete in general, becomes polynomial for up to

2n−1 edges provided they form a matching.
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1 Introduction

A (cyclic) n-bit Gray code is a (cyclic) ordering of all 2n binary strings of length n such that consecutive

strings differ in a single bit. It is named after Frank Gray, who in 1953 patented a simple scheme to

generate such a cyclic code for every n ≥ 2 [7]. Since then, the research on Gray codes satisfying certain

additional properties has received a considerable attention, and applications have been found in such

diverse areas as data compression, graphics and image processing, information retrieval, signal encoding

or processor allocation in hypercubic networks [13].

Alternatively, an n-bit Gray code can be viewed as a Hamiltonian path of the n-dimensional hypercube

Qn, and a cyclic Gray code as a Hamiltonian cycle of Qn. The applications of hypercubes in parallel

computing [10] inspired the investigation of Hamiltonian paths and cycles in hypercubes avoiding a given

set of faulty edges. Chan and Lee [2] proved that the problem whether Qn contains a Hamiltonian cycle

avoiding a given set F of faulty edges is NP-complete. On the other hand, they showed that if |F| ≤
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2n− 5, n ≥ 3, then such a Hamiltonian cycle exists if and only if each vertex is incident with at least two

nonfaulty edges. This upper bound is sharp in the sense that for any n ≥ 3 there are 2n − 4 faulty edges

in Qn satisfying the above condition, but there is no Hamiltonian cycle avoiding them. Tsai [14] obtained

a similar result for Hamiltonian paths with given endvertices.

A related problem considers Hamiltonian cycles and paths in hypercubes passing through a set of pre-

scribed edges. Caha and Koubek [1] observed that if a set P of prescribed edges extends to a Hamiltonian

cycle, then it induces a subgraph consisting of pairwise vertex-disjoint paths. On the other hand, they

showed that for any n ≥ 3 there is a set of 2n − 2 edges, satisfying this necessary condition, but there

is no Hamiltonian cycle of Qn containing them. This bound is sharp in the sense that if |P| ≤ 2n − 3,

n ≥ 2, the necessary condition is also sufficient for a Hamiltonian cycle of Qn passing through every

edge of P [3]. There is a similar result for Hamiltonian paths with prescribed endvertices if |P| ≤ 2n−4,

n ≥ 5 [4]. A special case of the above problem, posed by Ruskey and Savage [12], is when the prescribed

edges comprise a matching of the hypercube. Kreweras [9] conjectured that every perfect matching of

Qn, n ≥ 2, can be completed to a Hamiltonian cycle. Recently, the conjecture was proved by Fink [5].

In this paper we study (cyclic) Gray codes avoiding a given set of faulty edges that form a matching.

Given a matching M and two vertices u, v of Qn, n ≥ 4, our main result provides a necessary and

sufficient condition for the existence of a Gray code between u and v that avoids M . As a corollary, we

obtain a similar characterization for the existence of a cyclic Gray code avoiding M . In particular, in the

case that M is a perfect matching, Qn has a (cyclic) Gray code that avoids M if and only if Qn − M is a

connected graph.

Note that this complements the above quoted result of Fink. Furthermore, since our necessary and suf-

ficient conditions are decidable in a polynomial time, our results imply that the problem of Hamiltonicity

of Qn with faulty edges, which is NP-complete in general, becomes polynomial for up to 2n−1 edges

provided they form a matching.

After definitions and preliminary results in the next two sections, we study necessary conditions in

Sections 4 and 5. The induction step of our construction is presented in Section 6, while the obtained

results are summarized in Section 7. The study of initial cases n = 3 and n = 4, which involves a rather

elaborate case analysis, can be found in Appendix A and B.

2 Preliminaries

In this text n is always a positive integer and [n] denotes the set {1, 2, . . . , n}. As usual, the vertex and

edge sets of a graph G are denoted by V (G) and E(G), respectively. For a vertex v ∈ V (G) and a set

E ⊆ E(G), let G − v denote the subgraph of G induced by V (G) \ {v}, and let G − E denote the

graph with vertices V (G) and edges E(G) \ E. Similarly, for a pair of vertices x, y ∈ V (G) let G + xy
denote the graph with vertices V (G) and edges E(G)∪{xy}. The distance of vertices u and v is denoted

by d(u, v). The distance d(u, vw) of a vertex u and an edge vw is defined as the minimum of distances

d(u, v) and d(u, w).
A path between a and b, denoted by Pab, is a graph consisting of pairwise distinct vertices a =

x1, x2, . . . , xn = b and edges xixi+1 for all i ∈ [n − 1]. Note that if a = b, then n = 1 and we

obtain the trivial path Paa consisting of a single vertex a. If Pab and Pcd are vertex disjoint paths and b
and c are adjacent vertices, then Pab + Pcd denotes the path between a and d, obtained as a concatenation

of Pab with Pcd. A path P is called a subpath of a path P ′ if P forms a subgraph of P ′. We say that paths

{Pi}
n
i=1 are spanning paths of a graph G if {V (Pi)}

n
i=1 partitions V (G).
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The n-dimensional hypercube Qn is the graph with vertex set V (Qn) = {0, 1}n and edge set E(Qn) =
{uv | |∆(u, v)| = 1} where ∆(u, v) = {i ∈ [n] | ui 6= vi}. The dimension dim(uv) of an edge

uv ∈ E(Qn) is the integer d such that ∆(u, v) = {d}. For a vertex v ∈ V (Qn) let vd denote the vertex

of Qn such that vvd is an edge of dimension d.

All edges of the same dimension d form a layer (of dimension d) in Qn. Note that E(Qn) is partitioned

into n layers, each of size 2n−1. Moreover, for every d ∈ ∆(u, v), each path Puv contains an edge of

dimension d . In other words, vertices u and v are separated by the layer of dimension d.

The parity p(v) of a vertex v ∈ V (Qn) is defined by p(v) = ‖v‖ mod 2 where ‖v‖ =
∑n

i=1 vi. Note

that vertices of each parity form bipartite sets of Qn. Consequently, p(u) = p(v) if and only if d(u, v) is

even. We extend the definition of the parity to edges by putting for uv ∈ E(Qn)

p(uv) =

{

p(u), if ‖u‖ < ‖v‖;

p(v), otherwise.

For every d ∈ [n] let Qd
L and Qd

R denote the subgraphs of Qn induced by the sets {v ∈ V (Qn) | vd =
0} and {v ∈ V (Qn) | vd = 1}, respectively. The symbols L and R stand for ‘left’ and ‘right’, which

corresponds to the presentation of QL and QR in our figures. Note that both Qd
L and Qd

R are isomorphic

to Qn−1. Similarly, for a matching M in Qn put

Md = {e ∈ M | dim(e) = d},

Md
L = M ∩ E(Qd

L), and

Md
R = M ∩ E(Qd

R).

Observe that (Qa
i )b

j = (Qb
j)

a
i and (Ma

i )b
j = (M b

j )a
i for every a, b ∈ [n] and i, j ∈ {L, R}.

Given a set F of faulty edges of Qn, we say that a subgraph of Qn avoids F if it forms a subgraph of

Qn − F .

3 Some fundamental results

A classical result of Lewinter and Widulski [11] describes Hamiltonian paths in hypercubes with one

faulty vertex.

Lemma 1 For any pairwise distinct vertices u, v, w in Qn such that p(u) = p(v) 6= p(w), there exists

a Hamiltonian path of Qn − w between u and v.

There is a similar characterization for hypercubes with at most one faulty edge, which follows from

more general results of Tsai et al. [15]. It should be remarked that the special case of M = ∅ was firstly

observed by Havel [8].

Lemma 2 For every n ≥ 3, vertices u and v of different parities, and a matching M of Qn with |M | ≤ 1,

there exists a Hamiltonian path in Qn − M between u and v.

An extension of the above mentioned Havel’s result was obtained in [3].

Lemma 3 For every distinct vertices u, v, x, y of Qn such that p(u) 6= p(v) and p(x) 6= p(y), there exist

spanning paths Puv, Pxy of Qn.

We shall also employ the following lemma on the existence of a Hamiltonian path passing through a

prescribed edge, which is a special case of more general results of Caha and Koubek [1].
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Lemma 4 For every two vertices u, v and an edge e of Qn such that p(u) 6= p(v) and e 6= uv, there

exists a Hamiltonian path of Qn between u and v passing through e.

We conclude this section with a simple observation.

Proposition 1 For every matching M in Qn with |M | = 2 there exists a dimension d ∈ [n] such that

|Md
L| = |Md

R| = 1.

Proof: We argue by induction on n. Since the case n ≤ 2 is obvious, assume that n ≥ 3 and choose an

arbitrary d ∈ [n] \ {dim(e) | e ∈ M}. If |Md
L| = |Md

R| = 1, we are done. Otherwise it must be the case

that M = Md
i for some i ∈ {L, R} and hence by the induction hypothesis, there exists d′ ∈ [n] \ {d}

such that |Md′

L | = |(Md
i )d′

L | = 1 = |(Md
i )d′

R | = |Md′

R | as required. ✷

4 Half-layers

A matching M in Qn, n ≥ 2, is called a half-layer in Qn if M consists exactly of all edges of dimension

d and parity p for some d ∈ [n] and p ∈ {0, 1}. Observe that each layer is partitioned into two half-layers,

each of size 2n−2. Moreover, if a perfect matching of Qn contains a half-layer, then it actually is a layer

of Qn.

We shall see in the next section that half-layers are obstacles that cannot be overcome. More precisely,

we shall see in Lemma 6 that there is no Hamiltonian cycle avoiding a half-layer. The need to treat

half-layers as a special case motivates the following definitions.

Given a matching M in Qn, we call d ∈ [n]

• a main dimension of M in Qn if Md contains a half-layer in Qn;

• a splitting dimension for M if Md
i does not contain a half-layer in Qd

i for both i ∈ {L, R}.

Now we show that the main dimension is uniquely determined.

Proposition 2 Let d be a main dimension of a matching M in Qn, n ≥ 2. Then,

(i) M contains only edges of dimension d. Consequently, d is the only main dimension of M .

(ii) d is the unique main dimension of Ma
i in Qa

i for every a ∈ [n] \ {d} and i ∈ {L, R} provided

n ≥ 3.

Proof: Since for every edge uv ∈ E(Qn) of dimension d′ 6= d we have p(u) 6= p(v), it follows that at

least one of u, v must be incident with an edge of Md. Hence uv 6∈ M and consequently, Md
L = Md

R = ∅.

This, together with the fact that Md contains a half-layer and therefore must be nonempty, verifies part (i).
To see why (ii) holds, note that if n ≥ 3, then a half-layer in Qn contains a half-layer in both Qa

L and

Qa
R by definition. It follows that d is a main dimension of Ma

i in Qa
i while the uniqueness follows from

part (i). ✷

A matching M in Qn is called aligned if there exists a dimension d ∈ [n] such that |Md
L| ≤ 1 and

|Md
R| ≤ 1. Otherwise, it is called unaligned. Note that a matching containing a half-layer is always

aligned by Proposition 2(i). For aligned matchings our problem is easy, as we shall see in the next

section. But this is not the case with unaligned matchings. For them, we use the following lemma.
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Lemma 5 If M is an unaligned matching in Qn, n ≥ 4, then there are at least two splitting dimensions

for M .

Proof: First note that if every a ∈ [n] is a splitting dimension for M , we are done. Hence we can assume

that this is not the case, i. e., there exist distinct a, b ∈ [n] such that b is the main dimension of Ma
L in Qa

L.

Case 1: b is not a splitting dimension for M . Then there exist i ∈ {L, R} and d ∈ [n] \ {b} such that d
is the main dimension of M b

i . Assume that d 6= a. Then Proposition 2 (ii) implies that d is also the main

dimension of (M b
i )a

L in (Qb
i )

a
L. It follows that (Ma

L)b
i = (M b

i )a
L contains a half-layer. On the other hand,

as b is the main dimension of Ma
L, Proposition 2 (i) reveals that Ma

L contains only edges of dimension b
and therefore (Ma

L)b
i = ∅. This, however, leads to a contradiction since a half-layer is always nonempty.

Hence we conclude that d = a.

Now choose an arbitrary c ∈ [n] \ {a, b} and j ∈ {L, R} and suppose that M c
j contains a half-layer

in Qc
j . Using Proposition 2 (ii) again, a and b are the main dimensions of (M b

i )c
j and (Ma

L)c
j in (Qb

i )
c
j

and (Qa
L)c

j , respectively. Since (M b
i )c

j = (M c
j )b

i and (Ma
L)c

j = (M c
j )a

L, part (ii) of Proposition 2 implies

that a and b are also main dimensions of M c
j in Qc

j , while part (i) then reveals that a = b, which is a

contradiction with our assumption. Hence c must be a splitting dimension for M . It follows that there

exist n − 2 ≥ 2 splitting dimensions in this case.

Case 2: b is a splitting dimension for M . In this case we need to show that there exists another splitting

dimension for M , different from b. Assume, by way of contradiction, that this is not the case. Then

for any c ∈ [n] \ {b} there exists i ∈ {L, R} such that M c
i contains a half-layer. Recall that b is the

main dimension of Ma
L in Qa

L. If c 6= a, then Proposition 2 (ii) implies that b is the main dimension of

(Ma
L)c

i = (M c
i )a

L in (Qa
L)c

i and therefore b is also the main dimension of M c
i in Qc

i . Hence we conclude

that for any c ∈ [n] \ {b} there exists i ∈ {L, R} such that b is the main dimension of M c
i in Qc

i .

Since M is an unaligned matching, there must exist i ∈ {L, R} such that M b
i contains two distinct

edges e1, e2. Note that both dim(e1) and dim(e2) are different from b. By Proposition 1 there must be a

dimension d ∈ [n]\{b} such that |Md
j ∩{e1, e2}| = 1 for each j ∈ {L, R}. But then each Md

j contains an

edge of dimension distinct from b, which by Proposition 2 (i) means that b cannot be the main dimension

of Md
j , contrary to the conclusion of the previous paragraph. ✷

5 Admissible configurations

A nonempty matching M is called an almost-layer (of dimension d) in Qn if there exist vertices u, v ∈ Qd
L

of different parities such that M consists of all edges of dimension d except uud and vvd. Pairs {u, v}
and {ud, vd} are called the free pairs of M .

The next lemma gives necessary conditions for a Gray code avoiding a given matching.

Lemma 6 Let M be a matching and u, v vertices of Qn. If there exists a Hamiltonian path in Qn − M
between u and v, then

(i) p(u) 6= p(v);

(ii) for every d ∈ ∆(u, v) there exists an edge e ∈ E(Qn) \M of dimension d such that d(u, e) is odd;

(iii) for every d ∈ [n] \∆(u, v) there exist two edges in E(Qn) \M of dimension d of different parities;

(iv) M contains no almost-layer with a free pair {u, v}.
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Proof: Claims (i)–(iii) follow from the facts that in a hypercube the number of vertices of odd parity

equals the number of vertices of even parity, and that the parity of vertices on every path alternates. To

verify (iv), observe that if M is an almost-layer with a free pair {u, v} ⊆ V (Qd
L), then every path Puv in

Qn − M avoids either all vertices of V (Qd
L) \ {u, v}, or all vertices of V (Qd

R), and therefore cannot be

Hamiltonian. ✷

We say that a triple (u, v, M) is a configuration in Qn if M is a matching in Qn and u and v are

vertices of different parities, i. e., condition (i) of Lemma 6 holds. Since we do not need to distinguish be-

tween vertices u and v, we consider the configurations (u, v, M) and (v, u,M) to coincide. If, moreover,

conditions (ii)–(iv) of Lemma 6 hold, we say that the configuration (u, v, M) is admissible.

The conditions (ii) and (iii) of Lemma 6 can be unified into one condition using a slight modification

of the concept of a half-layer. Note that since a half-layer contains only edges of the same parity, the

distances of a given vertex to edges of a given half-layer must also have the same parity. If the distance of

a vertex u to edges of a half-layer M in Qn is odd, we say that M is an odd half-layer for the vertex u.

Proposition 3 A configuration (u, v,M) is admissible if and only if the following holds

(i) M contains no odd half-layer for u or v; and

(ii) M contains no almost-layer with a free pair {u, v}.

The next lemma shows that these conditions are also sufficient for the existence of a Hamiltonian path

in Qn, n ≥ 4, provided that M is aligned.

Lemma 7 Let M be an aligned matching, and let u and v be vertices of Qn, n ≥ 4 . If (u, v, M) is an

admissible configuration, then Qn − M contains a Hamiltonian path between u and v.

Proof: Since M is an aligned matching, there exists d ∈ [n] such that |Md
L| ≤ 1 and |Md

R| ≤ 1. Without

a loss of generality assume that u ∈ V (Qd
L) and consider the following two cases:

Case 1: v ∈ V (Qd
R). Since (u, v, M) is an admissible configuration, there exists a vertex w ∈ V (Qd

L)
such that p(u) 6= p(w) and wwd 6∈ M . Note that then also p(wd) 6= p(v). Now, by Lemma 2, there exist

Hamiltonian paths Puw of Qd
L − Md

L and Pwdv of Qd
R − Md

R. Then Puv := Puw + Pwdv is the required

Hamiltonian path.

Case 2: v ∈ V (Qd
L). Here, we consider the following subcases.

Subcase 2.1: Md
L = ∅. Since (u, v,M) is an admissible configuration, there are vertices x, y ∈ V (Qd

L)
such that p(x) 6= p(y), xxd 6∈ M , yyd 6∈ M , and {u, v} 6= {x, y}. Apply Lemma 2 to obtain a

Hamiltonian path Pxdyd of Qd
R − Md

R. Note that as p(u) 6= p(v) and p(x) 6= p(y), we can assume that

also p(u) 6= p(x) and p(v) 6= p(y), interchanging x and y if necessary.

We conclude the subcase with the following construction. If {u, v} ∩ {x, y} = ∅, then apply Lemma 3

to obtain spanning paths Pux and Pvy of Qd
L and put Puv := Pux + Pxdyd + Pyv . Otherwise it must be

the case that |{u, v} ∩ {x, y}| = 1. Assume without a loss of generality that v = x and u 6= y. Then

apply Lemma 1 to obtain a Hamiltonian path Puy of Qd
L − v and put Puv := Puy + Pydxd + Pxx. In both

cases we obtained the required Hamiltonian path.

Subcase 2.2: Md
L = {e}. If e 6= uv, then put xy = e and apply the construction of Subcase 2.1.

So, we may assume that e = uv. Since (u, v, M) is an admissible configuration, there is a vertex y ∈
V (Qd

L) \ {u, v} such that yyd 6∈ M . Assume without a loss of generality that p(u) 6= p(y). Finally, put

x = v and apply the construction of Subcase 2.1 in order to conclude this case. ✷
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Note that the above lemma does not hold for n = 3, see e. g. configurations (e), (f) or (g) in Figure 1.

The case of small dimensions is analyzed separately in Appendix A and B.

6 Gray codes in hypercubes of higher dimensions

In this section we use AL(u, v,M,Qn) to denote the fact that a matching M contains an almost-layer in

Qn with a free pair {u, v}. Recall that if AL(u, v,M,Qn) holds, then there exists d such that Md consists

of all edges of dimension d except uud and vvd. The following simple observation is used later.

Proposition 4 Let M be a matching which contains an almost-layer A with a free pair {u, v} in Qn,

n ≥ 4.

(i) If AL(u, w,M,Qn) holds, then v = w.

(ii) If at least one of vertices x, y is incident with an edge of A, then AL(x, y, M,Qn) does not hold.

Note that the assumption n ≥ 4 is for part (ii) essential, as it fails to hold in the case that M is the

perfect matching of Q3 depicted in Figure 2(10). Now we are ready to resolve the case of matchings not

containing a half-layer.

Lemma 8 Let u, v ∈ V (Qn), n ≥ 4, such that p(u) 6= p(v) and let M be a matching in Qn containing

no half-layer. Then Qn − M contains a Hamiltonian path between u and v unless M is an almost-layer

in Qn with a free pair {u, v}.

Proof: We argue by induction on n. Since the case n = 4 is settled by Lemma 14 in Appendix B,

assume that n > 4. If M is aligned, the statement follows from Lemma 7. If M is unaligned, then by

Lemma 5, there is d ∈ [n] such that Md
i contains no half-layer in Qd

i for both i ∈ {L, R}. Without a loss

of generality assume that u ∈ V (Qd
L). To obtain the desired Hamiltonian path Puv of Qn − M , consider

the following two cases:

Case 1: v ∈ Qd
R. Since M does not contain a half-layer, there is a vertex w ∈ V (Qd

L) such that

p(u) 6= p(w) and wwd 6∈ M . (1)

Notice that also p(wd) 6= p(v). We claim that w can be chosen so that neither AL(u, w,Md
L, Qd

L) nor

AL(wd, v,Md
R, Qd

R) holds. Indeed, if Md
L contains an almost-layer A in Qd

L with a free pair {u, w},

then each edge of A contains one vertex that can play the role of w in (1). Hence there are still |A| =
2n−2 − 2 > 2 choices for w, and Md

R may contain an almost-layer in Qd
R with a free pair {wd, v} for no

more than one of them by Proposition 4(i).
It remains to apply the induction to obtain Hamiltonian paths Puw and Pwdv of Qd

L−Md
L and Qd

R−Md
R,

respectively, and finally put Puv := Puw + Pwdv to conclude this case.

Case 2: v ∈ V (Qd
L). Consider the following subcases.

Subcase 2.1: AL(u, v,Md
L, Qd

L) holds. Since Md
L contains an almost-layer A with 2n−2−2 > 3 edges,

Proposition 4(ii) implies that there must be an edge xy ∈ A such that Md
R contains no almost-layer in

Qd
R with a free pair {xd, yd}. Thus, by the induction hypothesis, there are Hamiltonian paths Puv and

Pxdyd of Qd
L − (Md

L \ {xy}) and Qd
R − Md

R, respectively. Note that by Lemma 6, the path Puv passes

through the edge xy, and hence there are subpaths Pux and Pyv of Puv such that Puv = Pux + Pyv . It

remains to put Puv := Pux + Pxdyd + Pyv to complete this subcase.
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Subcase 2.2: AL(u, v,Md
L, Qd

L) does not hold. First apply the induction hypothesis to obtain a Hamil-

tonian path PL
uv of Qd

L − Md
L. Next, distinguish the following two possibilities.

Subcase 2.2.1: {xxd, yyd} ∩ M = ∅ for some pair x, y of neighbors on PL
uv . We claim that vertices x

and y can be chosen so that AL(xd, yd, Md
R, Qd

R) does not hold. To verify the claim, suppose, by way of

contradiction, that Md
R contains an almost-layer A in Qd

R with a free pair {xd, yd}. Denote by S the set

of vertices z of Qd
L such that zd is incident with an edge of A. Then

|S| = 2|A| = 2n−1 − 4 > 2n−2 = |V (Qd
L)|/2 = |V (PL

uv)|/2

and hence there exist x, y ∈ S that are neighbors on PL
uv . Then, it follows by Proposition 4(ii) that

AL(xd, yd, Md
R, Qd

R) does not hold.

As in Subcase 2.1, it remains to apply the induction to obtain a Hamiltonian path Pxdyd of Qd
R−Md

R and

put Puv := Pux +Pxdyd +Pyv , where Pux and Pyv are the subpaths of PL
uv satisfying PL

uv = Pux +Pyv .

Subcase 2.2.2: {xxd, yyd} ∩ M 6= ∅ for each pair x, y of neighbors on PL
uv . By Lemma 5 there exists

another splitting dimension d′ 6= d and we claim that Subcase 2.2.2 for d′ cannot occur. To verify the

claim, first observe that

|Md| ≥ |V (PL
uv)|/2 = 2n−2. (2)

If this inequality is strict, then |M | ≤ 2n−1 implies that |Md′

| < 2n−2, contrary to (2), and hence the

claim holds. Thus we can assume that

|Md| = |Md′

| = 2n−2. (3)

This means that |Md| = |V (PL
uv)|/2, which together with the assumption of this subcase implies that

|{xxd, yyd} ∩ Md| = 1 for each pair x, y of neighbors on PL
uv . Since the parity of consecutive vertices

on PL
uv alternates, it follows that if uud ∈ Md, then xxd ∈ Md for each vertex x ∈ V (PL

uv) with

p(u) = p(x). However, this would mean that M contains a half-layer, contrary to our assumption. Since

the same reasons apply to the endvertex v, we conclude that neither u nor v are incident with an edge of

Md. Applying the same argument to the dimension d′, it follows that

|Md| + |Md′

| ≤ |V (Qn) \ {u, v}|/2 = 2n−1 − 1,

contrary to (3). ✷

7 The main results

Now we are ready to formulate the necessary and sufficient conditions for (cyclic) Gray codes avoiding a

given matching. Note that the conditions are expressed in terms of half-layers and almost-layers, which

were defined in Sections 4 and 5, respectively.

Theorem 1 Let M be a matching, and let u and v be vertices of Qn, n ≥ 4. Then Qn has a Gray code

between u and v that avoids M if and only if M contains no odd half-layer for u or v and no almost layer

with a free pair {u, v}.

Proof: Recall that (u, v,M) is an admissible configuration if and only if the left side of the equivalence

holds, by Proposition 3. The necessity is settled by Lemma 6. The sufficiency follows from Lemma 7 in

the case M contains a half-layer, and from Lemma 8 otherwise. ✷
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It should be noted that for n = 3 the problem is fully described by Lemma 9 in Appendix A, and for

n ≤ 2 it is trivial.

Corollary 1 Let M be a matching in Qn, n ≥ 4. Then Qn has a cyclic Gray code that avoids M if and

only if M does not contain a half-layer.

Proof: Observe that the following two equivalences hold.

• Qn − M contains a Hamiltonian cycle ⇐⇒ Qn − M contains a Hamiltonian path Puv for some

edge uv ∈ E(Qn);

• there exists an admissible configuration (u, v,M) for some edge uv ∈ E(Qn) ⇐⇒ M does not

contain a half-layer.

The corollary now follows from Theorem 1. ✷

Corollary 2 Let M be a perfect matching in Qn. Then the following three statements are equivalent:

(i) Qn has a Gray code avoiding M ;

(ii) Qn has a cyclic Gray code avoiding M ;

(iii) Qn − M is connected.

Proof: First observe that clearly (ii) =⇒ (i) and (i) =⇒ (iii). Hence it only remains to prove that

(iii) =⇒ (ii). To that end, notice that for any perfect matching M of Qn,

M contains a half-layer in Qn ⇐⇒ M forms a layer of Qn ⇐⇒ Qn − M is disconnected.

The validity of the implication (iii) =⇒ (ii) for n ≥ 4 now follows from Corollary 1, the case n = 3
may be verified by inspection of parts (9) and (10) of Figure 2, and the case n ≤ 2 is trivial. ✷

Appendix A: Gray codes in Q3

At this point it only remains to settle the initial cases n = 3 and n = 4. Note that we were able to

use computer search to verify the main result of this part, namely Lemma 14, which is needed for the

induction basis in the proof of Lemma 8. However, considering the difficulties in independently verifying

computer-aided proofs, here we provide arguments that may be verified without a computer assistance.

This involves a rather elaborate case analysis, but we believe that in this case it is indispensable.

A configuration (u, v, M) in Qn is good if there is a Hamiltonian path of Qn − M between u and v.

Otherwise it is bad. In this terminology, our aim is to characterize all good configurations.

A configuration (u, v,M1) contains a configuration (u, v, M2) if M1 ⊇ M2. A bad configuration is

minimal if it does not contain any other bad configuration. An admissible configuration is maximal if it is

not contained in any other admissible configuration. Similarly, a matching is maximal if it is not contained

in any other matching.

We start with the list of all minimal bad configurations in Q3.

Lemma 9 Let u and v be vertices of different parity and let M be a matching in Q3. Then there is a

Hamiltonian path of Q3 − M between u and v unless (u, v,M) contains one of the bad configurations

depicted in Figure 1.
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uv

v

v

v

(a) (b) (c) (d) (e) (f) (g)

u v u vv u u u u

Fig. 1: The minimal bad configurations in Q3.

Proof: First observe that each configuration (u, v, M) in Figure 1 is bad. Note that M is presented with

dashed lines. Moreover, observe that there are no two configurations in Figure 1 such that the first one

contains the other one.

Now we show that the configuration (u, v, M) is either good or contains one of the bad configurations

in Figure 1. The hypercube Q3 has 10 non-isomorphic matchings, including the empty one, depicted in

Figure 2(1)-(10). Note that in this figure the edges of the matchings are presented with dashed lines. So

M is one of the following cases in Figure 2.

(1), (2): In these cases M has at most one edge, thus the configuration (u, v,M) is good by Lemma 2.

(3), (6): Observe that if u ∈ {u1, u2} and v ∈ {v1, v2}, then the configuration (u, v,M) is good. Other-

wise it contains a configuration of type (a), (b), or (c) in Figure 1.

(4): Observe that the configuration (u, v,M) is good unless it equals (u1, v1, M) or (u2, v2, M)
which are of type (d) in Figure 1.

(5): Observe that the configuration (u, v,M) is good unless it equals (u1, v1, M), (u1, v2, M), or

(u2, v2, M) which are of type (e) or (f) in Figure 1.

(7): In this case Q3 − M − xy is a Hamiltonian cycle. Thus the configuration (u, v,M) is good if

uv is an edge on this cycle. Furthermore, if the configuration (u, v, M) equals (u1, v1, M) or

(u2, v2, M), observe that it is also good. Otherwise it contains a configuration of type (e) or (f)

in Figure 1.

v1

u1

v1 u1

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

u2

v2

v1

u1

u2

v2

u2 v2

u1 v2

v1u2

u1

v1

v1 u1

v2

u2

x y

Fig. 2: All matchings in Q3 up to isomorphism.
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(8): Observe that if uv ∈ M , then the configuration (u, v, M) is good. Furthermore, it is also good if

d(u, v) = 3 and {u, v} 6= {u1, v1}. Otherwise it contains a configuration of type (e), (f), or (g)

in Figure 1.

(9): In this case Q3 −M is disconnected so (u, v, M) is a bad configuration. Observe that it contains

a configuration of type (a), (b), or (c) in Figure 1.

(10): In the last case Q3 − M is a Hamiltonian cycle. Thus the configuration (u, v,M) is good if uv
is an edge on this cycle. Otherwise it contains a configuration of type (e) or (f) in Figure 1.

This completes the analysis of all cases and establishes the lemma. ✷

The following two lemmas will be useful for inquiry of Q4 in the next section. The first lemma applies

typically for configurations (u, v, M) such that both u and v belong to a same subcube Qd
L or Qd

R which

contains at most 2 edges of M .

Lemma 10 Let u and v be vertices of different parity and let e1 and e2 be distinct edges in Q3. Then

there is a Hamiltonian path of Q3 between u and v that

(i) contains exactly one of e1 and e2; or

(ii) avoids both e1, e2 but contains an edge xy such that x ∈ e1 and y ∈ e2.

Proof: Suppose first that u and v are at distance 3. From Figure 3(1) it is obvious that all Hamiltonian

paths between u and v are isomorphic. Moreover, each of them contains one edge of the upper level, one

edge of the lower level, and five edges of the middle level. Considering few cases, regarding the levels

that contain e1 and e2, it is easy to find a suitable path.

Suppose now that uv is an edge of Q3. We distinguish three cases:

Case 1: Edges e1 and e2 are adjacent at some vertex x. If x = u, then assume that e1 = uy 6= uv
and apply Lemma 1 to find a Hamiltonian path of Q3 − u between y and v. Extending this path with the

edge e1 = uy we obtain a Hamiltonian path of Q3 between u and v that contains e1 and avoids e2. If

x = v, then proceed similarly. Otherwise we have x /∈ {u, v}. The Hamiltonian path between u and v
that avoids e1 from Lemma 2 contains e2 since it passes through the vertex x.

Case 2: Edges e1 and e2 are at distance 1. If the edge uv is adjacent to both e1 and e2, then we have

two non-isomorphic cases in Figures 3(2)-(3) with desired Hamiltonian paths. Otherwise, we may assume

that x ∈ e1, y ∈ e2, and y /∈ {u, v} for some edge xy. The Hamiltonian path between u and v that avoids

e1 from Lemma 2 contains e2 or xy since it passes through the vertex y.

u vuu v

v

e1e1

e2

e2

(3)(2)(1)

Fig. 3: An illustration for Lemma 10.
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b f

e c

a d

Fig. 4: The configuration of Lemma 11.

u

vv u

u

v

u

v

v u

u

v

u

vu

u

u v v

u

u v v

u

v

u

v v

Fig. 5: Hamiltonian paths in Lemma 11 for each pair {u, v} of endvertices.

Case 3: Edges e1 and e2 are at distance 2. If e1 = uv, apply Corollary 4 to find a Hamiltonian

path between u and v that contains edge e2. If e2 = uv, proceed similarly. Otherwise the configuration

(u, v, {e1, e2}) is bad since it is of type (a), (b), or (c) in Figure 1. Thus the Hamiltonian path between u
and v that avoids e1 from Lemma 2 contains e2. This completes the analysis of all cases. ✷

The second lemma applies for example when Md
R = {ab, cd} as in Figure 4 and Qd

L contains a path

between vertices bd and cd. The extra edge bc represents this path.

Lemma 11 Let a, b, c, d, e, f be vertices of Q3 as depicted in Figure 4 and u, v ∈ V (Q3) be any two

vertices of different parity. Then Q3 + bc has a Hamiltonian path between u and v that contains the edge

bc and avoids {ab, cd} unless {u, v} = {b, c} or {u, v} = {e, f}.

Proof: By exhausting all 14 possibilities for {u, v}, as it is presented in Figure 5, one can verify the

validity of the lemma. ✷

Appendix B: Gray codes in Q4

If M is aligned in Q4, we can use Lemma 7 which holds for every n ≥ 4. Thus, it remains to consider

admissible configurations (u, v, M) only with an unaligned matching M . We start with the list of all

maximal unaligned matchings in Q4.

Let m(M) denote the maximum number of edges of M of the same dimension, i. e., m(M) =
maxd∈[n] |M

d|.

Lemma 12 Let M be a maximal unaligned matching in Q4. Then m(M) ∈ {2, 3, 4} and M is isomor-

phic to one of the matchings in Figures 6-8.

Proof: Let d ∈ [4] be a dimension with the maximal number of edges of M , i. e., |Md| = m(M).
Since M is unaligned, we have |Md

L| ≥ 2 or |Md
R| ≥ 2, say |Md

L| ≥ 2. Thus among eight vertices of
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(1) (2) (3)

(4) (5)

RM = {4, 4, 0, 0} RM = {4, 2, 2, 0} RM = {4, 4, 0, 0}

RM = {4, 2, 2, 0} RM = {4, 1, 1, 1}

Fig. 6: All maximal unaligned matchings M of Q4 with m(M) = 4.

a1

(1) (2) (3)

(4) (5)

RM = {3, 2, 1, 1}RM = {3, 3, 1, 0} RM = {3, 3, 1, 0}

RM = {3, 2, 1, 1} RM = {3, 2, 1, 1}

a2 a4

a3

b2 b4

b1b3

a1

a2

b2

b1b3

b4

a4

a3

a1

a2

a3

a4

b2

b1

b4

b3

Fig. 7: All maximal unaligned matchings M of Q4 with m(M) = 3.

(1) (2)

(3) (4)

RM = {2, 2, 2, 2}

RM = {2, 2, 2, 0}

RM = {2, 2, 2, 2}

RM = {2, 2, 2, 0}

a1 a2
a3

a4

b1 b2 b4b3

Fig. 8: All maximal unaligned matchings M of Q4 with m(M) = 2.
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(1) (2) (3)

Fig. 9: All sets Md with 4 edges in a maximal unaligned matching M of Q4.

(2)(1)

Fig. 10: All maximal matchings of G in Subcase 1.2.

Qd
L there are at most four vertices that are not matched by Md

L. Hence m(M) ≤ 4. On the other hand,

every maximal matching in Q4 contains at least 6 edges [6], hence at least 2 edges from M are of a same

dimension. This implies that m(M) ≥ 2. So m(M) ∈ {2, 3, 4}.

Let GL and GR be the graphs obtained from Qd
L and Qd

R, respectively, by removing all vertices incident

with Md. Note that GL and GR are isomorphic, so let us write simply G when it is clear from the context

for which of the graphs we speak. Since M is maximal, both Md
L and Md

R are maximal matchings of G.

To show that M is one of the matchings in Figures 6-8, we first consider the set Md and then the com-

bination of sets Md
L and Md

R. The matchings Md, Md
L and Md

R in the following figures are represented

by dashed lines, the edges of the graph G are bold, and the remaining edges are dotted.

Note that in the following figures the isomorphic graphs GL and GR are presented in a mirrored way,

so the matchings Md
R and the maximal matchings of G are also presented in a mirrored way.

Case 1: m(M) = 4. Since M is unaligned, there are three non-isomorphic combinations of four edges

in Md; see Figure 9. We consider now three possibilities.

Subcase 1.1: Md is as in Figure 9(1). Obviously, there is only one maximal matching of G. Thus Md
L

and Md
R are uniquely determined and the matching M is as in Figure 6(1).

Subcase 1.2: Md is as in Figure 9(2). There are two maximal matchings of G depicted in Figure 10.

By symmetry, we may assume that Md
L is as in Figure 10(1). Now, if Md

R is also as in Figure 10(1),

the matching M corresponds to Figure 6(3). And, if Md
R is as in Figure 10(2), then M corresponds to

Figure 6(2).

Subcase 1.3: Md is as in Figure 9(3). There are two maximal matchings of G depicted in Figure 12.

By the maximality of M , it follows that Md
L and Md

R are not both as in Figure 12(2). Now, if both of them

are as in Figure 12(1), we infer Figure 6(4). Finally, if one of them is as in Figure 12(1), and the other one

as in Figure 12(2), we infer Figure 6(5).

Case 2: m(M) = 3. Since M is unaligned, there are two non-isomorphic combinations of three edges

in Md which are depicted in Figure 11. Consider now these two cases separately.

Subcase 2.1: Md is as in Figure 11(1). There are three maximal matchings of G depicted in Figure 13.

By symmetry, we may assume that if Md
L is as in Figure 13(x), then Md

R is as in Figure 13(y) where

1 ≤ x ≤ y ≤ 3. Moreover, since M is a maximal matching, we infer x 6= y. We have the following



Gray Codes Avoiding Matchings 137

(1) (2)

Fig. 11: All sets Md with 3 edges in a maximal unaligned matching M of Q4.

(2)(1)

Fig. 12: All maximal matchings of G in Subcase 1.3.

(1) (2) (3)

Fig. 13: All maximal matchings of G in Subcase 2.1.

(1) (2) (3) (4)

Fig. 14: All maximal matchings of G in Subcase 2.2.
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possibilities for the pair (x, y):

(1, 3): The matching M is as in Figure 7(1);

(2, 3): The matching M is as in Figure 7(2);

(1, 2): This case is isomorphic to the case (1, 3). Indeed, consider the isomorphism of Q4 that inter-

changes vertices ai and bi in Figure 7(1) for every i ∈ [4] and fixes all other vertices.

Subcase 2.2: Md is as in Figure 11(2). There are four maximal matchings of G depicted in Figure 14.

By symmetry, we may assume that if Md
L is as in Figure 14(x), then Md

R is as in Figure 14(y) where

1 ≤ x ≤ y ≤ 4. Moreover, since M is a maximal matching, it follows that x 6= y. Thus, we have the

following possibilities for the pair (x, y):

(1, 4): The matching M is as in Figure 7(3);

(2, 4): The matching M is as in Figure 7(4);

(3, 4): The matching M is as in Figure 7(5);

(1, 2): This case does not occur since M is a maximal matching;

(1, 3) and (2, 3): These cases are isomorphic to the cases (2, 4) and (1, 4), respectively. Indeed, consider

the isomorphism of Q4 that interchanges vertices ai and bi in Figures 7(4) and 7(3) for every

i ∈ [4] and that fixes all other vertices.

Case 3: m(M) = 2. Let k(M) be the minimal distance of distinct edges of M of a same dimension,

i. e.,

k(M) = min{d(e1, e2) | e1, e2 ∈ M i for some i ∈ [4] and e1 6= e2}.

We assume that Md contains edges at distance k(M), otherwise choose d accordingly. For each k(M) ∈
[3] we have Md in Figure 15.

Subcase 3.1: k(M) = 3. Thus Md is as in Figure 15(1). There are five maximal matchings of G
depicted in Figure 16. Observe that neither Md

L nor Md
R is as in Figures 16(3)-(5) since k(M) = 3.

Moreover, ML
d and MR

d are not both as in Figure 16(1), or both as in Figure 16(2) since k(M) = 3.

Thus, one of them is as in Figure 16(1), and the other one as in Figure 16(2). Hence M corresponds to

Figure 8(1).

Subcase 3.2: k(M) = 2. Thus Md is as in Figure 15(2). There are seven maximal matchings of G
depicted in Figure 17. Observe that neither Md

L nor Md
R is as in Figures 17(6)-(7) since k(M) = 2.

Furthermore, neither Md
L nor Md

R is as in Figure 17(5) since all matchings of G in Figures 17(1)-(5)

contain at least one edge of e1 or e2 and k(M) = 2. By symmetry, we may assume that if Md
L is as in

Figure 17(x), then Md
R is as in Figure 17(y) where 1 ≤ x ≤ y ≤ 4. Moreover, x 6= y since M is a

maximal matching. We have the following possibilities for the pair (x, y):

(1, 2): The matching M is as in Figure 8(4);

(3, 4): This case is isomorphic to the case (1, 2). Indeed, consider the isomorphism of Q4 that inter-

changes vertices ai and bi in Figure 8(4) for every i ∈ [4] and fixes all other vertices.

(1, 3), (1, 4), (2, 3), and (2, 4): These cases do not occur since M is a maximal matching.
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(1) (3)(2)

Fig. 15: All sets Md with 2 edges in a maximal unaligned matching M of Q4.

(1) (2) (3) (4) (5)

Fig. 16: All maximal matchings of G in Subcase 3.1.

(1) (2) (3) (4) (5) (6) (7)

e2

e1

Fig. 17: All maximal matchings of G in Subcase 3.2.

(1) (2) (3) (4) (5)

Fig. 18: All maximal matchings of G in Subcase 3.3.
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Subcase 3.3: k(M) = 1. Thus Md is as in Figure 15(3). There are five maximal matchings of

G depicted in Figure 18. Observe that neither Md
L nor Md

R is as in Figure 18(5) since m(M) = 2.

By symmetry, we may assume that if Md
L is as in Figure 18(x), then Md

R is as in Figure 18(y) where

1 ≤ x ≤ y ≤ 4. We have the following possibilities for the pair (x, y):

(1, 2): The matching M is as in Figure 8(2);

(3, 4): The matching M is as in Figure 8(3);

(1, 1), (1, 3), (1, 4), (2, 2), (2, 3), and (2, 4): These cases do not occur since m(M) = 2;

(3, 3) and (4, 4): These cases do not occur since M is a maximal matching.

Note that the choice of the dimension d was not determined uniquely. Therefore, to conclude the proof,

we need to verify that the matchings in Figures 6-8 are non-isomorphic.

Define the mark of M to be the collection RM = {|Md|}d∈[n]. Clearly, matchings with different marks

are not isomorphic. So we need to examine only matchings with different marks in Figures 6-8. This can

be easily verified by the reader. ✷

Lemma 13 Let (u, v, M) be a maximal admissible configuration in Qn with an unaligned matching M .

Then M is maximal with respect to inclusion.

Proof: Suppose on the contrary that M is not maximal, i. e., M ∪ {e} is a matching for some edge

e ∈ E(Qn) \M . Let d be the dimension of e. Since M is unaligned, we have |Md
L| ≥ 2 or |Md

R| ≥ 2, so

we may assume that Md
L contains edges x1x2 and x3x4. Let ei = xix

d
i for i ∈ [4].

Since d(e1, e2) is odd, d(e3, e4) is odd, e1, e2, e3, e4 are not in M ∪ {e}, and (u, v, M) is admissible,

it follows from the definition that (u, v, M ∪ {e}) is also admissible. But this contradicts the assumption

that (u, v,M) is a maximal admissible configuration. ✷

Now we are ready to find a Hamiltonian path of Q4 − M between u and v if (u, v, M) is admissible

configuration. The following lemma serves as a basis of induction in the next section.

Lemma 14 Let M be a matching in Q4 and u, v ∈ V (Q4). If (u, v,M) is admissible, then there is a

Hamiltonian path of Q4 − M between u and v.

Proof: If M is aligned, we can use Lemma 7 which holds for every n ≥ 4. Thus, it remains to consider

admissible configurations (u, v,M) only with unaligned matching M .

Assume that (u, v, M) is a maximal admissible configuration, otherwise introduce new edges in M .

Notice that with this procedure M stays unaligned. By Lemma 13, the matching M is maximal. Thus

m(M) ∈ {2, 3, 4} and M corresponds to one of the matchings in Figures 6-8 by Lemma 12.

Let d ∈ [4] be a dimension with the maximal number of edges from M , i. e., |Md| = m(M). Now, as d
is fixed, for the sake of simplicity, let us omit d in the notions of Qd

L, Qd
R, Md

L, and Md
R. Furthermore, for

x ∈ V (QR) and y ∈ V (QL) let xL and yR denote their corresponding vertices in the opposite subcube,

i. e., xL = xd and yR = yd. We say that vertices u and v are separated if u ∈ V (QL) and v ∈ V (QR) or

vice versa.
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In what follows, we distinguish three cases regarding m(M). In each case we consider good/bad

configurations in QL and QR. Then, regarding the position of vertices u and v, we look separately in QL

and QR for paths that can be combined into a Hamiltonian path of Q4 − M between u and v.

Case 1: m(M) = 4. Applying Lemma 9, observe that Figure 20(1)-(5) shows all bad configurations

in QL or QR for each of the five maximal unaligned matchings M with m(M) = 4 depicted in Figure 6,

respectively. Vertices u and v that form a bad configuration (u, v,ML) in QL or (u, v,MR) in QR

are encompassed by a solid elliptic curve, the matching M is represented by dashed edges, whereas

other edges of Q4 are omitted for the sake of clarity. For example, in Figure 20(2) we have two bad

configurations in QL and two bad configurations in QR.

Subcase 1.1: Vertices u and v are separated. Assume that u ∈ V (QL) and v ∈ V (QR). We distinguish

the following two possibilities.

1.1.1: M is as in Figure 20(1) and u or v is incident with Md. By symmetry, we may assume that

u = a. Observe in Figure 21 that the statement of the lemma holds for each v ∈ V (QR) of different

parity than u. The Hamiltonian paths are presented by bold edges.

1.1.2: M is as in Figure 20(2)-(5) or none of u and v is incident with Md. Let w ∈ V (QL) be a

vertex of different parity than u such that it is incident with ML. Then, v and wR are also of different

parities. Observe in Figure 20(2)-(5) that the vertices w and wR are in no bad configuration in QL and

QR, respectively. Thus the configurations (u, w,ML) and (v, wR, MR) are good.

Hence there is a Hamiltonian path Puw of QL −ML, and a Hamiltonian path PwRv of QR −MR. The

desired Hamiltonian path of Q4 − M is Puw + PwRv .

Subcase 1.2: Both vertices u and v are in QL. Note that ML is of size 2, thus denote by e1, e2 these

two edges. By Lemma 10, there is a Hamiltonian path Puv that either contains precisely one of e1 and

e2, or avoids both e1, e2 but contains an edge adjacent to both e1, e2. Let xy ∈ E(QL) be that contained

edge. Observe in Figure 20(1)-(5) that there is no bad configuration (w, z, MR) in QR such that wL and

zL are both incident with e1 or e2. Thus the configuration (xR, yR, MR) is good.

Hence there is a Hamiltonian path PxRyR
of QR − MR. The desired Hamiltonian path of Q4 − M is

Pux + PxRyR
+ Pyv where Pux and Pyv are disjoint subpaths of Puv , assuming that x is closer to u on

Puv than y.

Subcase 1.3: Both vertices u and v are in QR. If M is as in Figure 20(1)-(4), we have symmetry to the

previous subcase. However, if M is as in Figure 20(5), then MR contains only one edge e1. Then just put

e2 = bc and proceed symmetrically as in Subcase 1.2.

Case 2: m(M) = 3. Applying Lemma 9 observe that Figure 19(1)-(5) shows all bad configurations in

QL or QR for each of the five maximal unaligned matchings M with m(M) = 3 depicted in Figure 7,

respectively. We consider the following possibilities.

Subcase 2.1: Vertices u and v are separated. Again, assume that u ∈ V (QL) and v ∈ V (QR). We

distinguish the following two possibilities.

2.1.1: M is as in Figure 19(1) and u is not incident with ML. Observe in Figure 22 that for each

u ∈ V (QL) that is not incident with ML, there are spanning paths PuwL
and PbLcL

of Q4 − ML. By

Lemma 11, there is a Hamiltonian path Pwv of QR + bc that contains the edge bc and avoids MR.

Hence a desired Hamiltonian path of Q4 − M is PuwL
+ Pwb + PbLcL

+ Pcv where Pwb and Pcv are

disjoint subpaths of Pwv , assuming that b is closer to w on Pwv than c.

2.1.2: M is as in Figure 19(2)-(5) or u is incident with ML. Let x, y ∈ V (QL) be vertices of different

parity than u that are incident with ML. We can always choose such x, y since |ML| = 2. Observe in

Figure 19(1) that each bad configuration in QL includes at most one vertex incident with ML. Similarly,
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b f

e c

(4) (5)

Fig. 19: All bad configurations in QL or QR for each maximal unaligned matching M in Q4 with m(M) = 3.
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(1) (2) (3)
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c

b

Fig. 20: All bad configurations in QL or QR for each maximal unaligned matching M in Q4 with m(M) = 4.
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v

u
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Fig. 21: Hamiltonian paths for Subcase 1.1.1.
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observe in Figure 19(2)-(5) that each bad configuration in QL includes no vertex incident with ML.

Thus both configurations (u, x,ML) and (u, y, ML) are good. Moreover, observe in Figure 19(1)-(5) that

for at most one z ∈ V (QL), if z is incident with ML, then zR is in a bad configuration in QR. Hence

at most one of configurations (v, xR, MR) and (v, yR, MR) is bad. Let w ∈ {x, y} be such that the

configuration (v, wR, MR) is good.

Therefore, there is a Hamiltonian path Puw of QL − ML, and a Hamiltonian path PwRv of QR − MR.

Finally, the desired Hamiltonian path is Puw + PwRv .

Subcase 2.2: Vertices u and v are both in QL or both in QR. We distinguish the following two

possibilities.

2.2.1: M is as in Figure 19(1) and both u and v are in QR. If {u, v} = {b, c} or {u, v} = {e, f},

observe in Figure 23 that the statement of the lemma holds. Otherwise, by Lemma 11, there is a Hamil-

tonian path Puv of QR + bc that contains the edge bc and avoids MR. Observe in Figure 19(1) that the

configuration (bL, cL, ML) is good.

Thus there is a Hamiltonian path PbLcL
of QL − ML. The desired Hamiltonian path of Q4 − M is

Pub + PbLcL
+ Pcv where Pub and Pcv are disjoint subpaths of Puv , assuming that b is closer to u on Puv

than c.

2.2.2: M is as in Figure 19(1) and both u and v are in QL, or M is as in Figure 19(2)-(5). We proceed

similarly as in Subcase 1.2. Assume that u, v ∈ V (QL), otherwise interchange the roles of QL and QR.

Let ML = {e1, e2}. By Lemma 10, there is a Hamiltonian path Puv that either contains precisely one

of e1 and e2, or avoids both e1, e2 but contains an edge adjacent to both e1, e2. Let xy be that contained

edge. Observe in Figure 19(1)-(5) that there is no bad configuration (w, z, MR) in QR such that wL and

zL are both incident with e1 or e2. Thus the configuration (xR, yR, MR) is good.

Hence there is a Hamiltonian path PxRyR
of QR − MR. The desired Hamiltonian path of Q4 − M is

Pux + PxRyR
+ Pyv where Pux and Pyv are disjoint subpaths of Puv , assuming that x is closer to u than

y on the path Puv .

Case 3: m(M) = 2. Applying Lemma 9 observe that Figure 24(1)-(4) shows all bad configurations in

QL or QR for each of the four maximal unaligned matchings M with m(M) = 2 depicted in Figure 8,

respectively.

Subcase 3.1: Vertices u and v are separated. Assume that u ∈ V (QL) and v ∈ V (QR). We distinguish

the following three possibilities.

3.1.1: M is as in Figure 24(1) and u or v is incident with Md. Assume that u = a, the other case is

symmetric. Observe in Figure 25 that the statement holds for each v ∈ V (QR) of different parity than u.

3.1.2: M is as in Figure 24(4) and {u, v} = {d, e}. Observe in Figure 26 that the statement holds.

3.1.3: The remaining possibilities; that is, M is as in Figure 24(1) and none of u and v is incident with

Md, or M is as in Figure 24(2)-(4) and {u, v} 6= {d, e}. A vertex w ∈ V (QL) is free if it has a different

parity than u and is not incident with Md.

We claim that there is a free vertex w ∈ V (QL) such that the configurations (u, w,ML) and (v, wR, MR)
are good.

Suppose first that M is as in Figure 24(1)-(3). Observe from the same figure that the configuration

(u, x,ML) is bad for at most one free vertex x. Similarly, the configuration (v, yR, MR) is bad for at

most one free vertex y. Since there are three free vertices, the claim holds in this case.

Suppose now that M is as in Figure 24(4). If u and d have different parity, then we have two free

vertices and both of them satisfy the claim. If u and d have the same parity, we have four free vertices.
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Fig. 22: Spanning paths of QL for Subcase 2.1.1.

u

v

v

u

Fig. 23: Hamiltonian paths for Subcase 2.2.1.
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Fig. 24: All bad configurations in QL or QR for each maximal unaligned matching M in Q4 with m(M) = 2.



Gray Codes Avoiding Matchings 145

u u

uu

v

v

v

v

Fig. 25: Hamiltonian paths for Subcase 3.1.1.

u

v

Fig. 26: A Hamiltonian path for Subcase 3.1.2.
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Fig. 27: Hamiltonian paths for Subcase 3.2.1.
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Fig. 28: Hamiltonian paths for Subcase 3.2.2.
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Fig. 29: Hamiltonian paths for Subcase 3.2.3.
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Observe in Figure 24(4) that the configurations (u, x,ML) or (v, xR, MR) are bad for at most three

free vertices x, since {u, v} 6= {d, e}. Hence the claim holds in all cases.

Therefore, there is a Hamiltonian path Puw of QL − ML, and a Hamiltonian path PwRv of QR − MR.

The desired Hamiltonian path of Q4 − M is Puw + PwRv .

Subcase 3.2: Vertices u and v are both in QL or both in QR. Assume that u, v ∈ V (QL), the case

u, v ∈ V (QR) is symmetric. We distinguish the following five possibilities.

3.2.1: M is as in Figure 24(1) and the configuration (u, v, ML) is bad. We have three non-isomorphic

cases: both, precisely one, or none of u and v is incident with ML. Observe in Figure 27 that the statement

holds for each of these three possibilities.

3.2.2: M is as in Figure 24(1) and the configuration (u, v, ML) is good. We have two non-isomorphic

cases: uv ∈ ML and uv /∈ ML. Observe in Figure 28 that the statement holds for both of these cases.

3.2.3: M is as in Figure 24(2) and {u, v} = {b, c} or {u, v} = {x3, x4}. Observe in Figure 29 that the

statement holds.

3.2.4: M is as in Figure 24(2)-(4), the configuration (u, v,ML) is good, and {u, v} 6= {x3, x4}. Then

there is a Hamiltonian path Puv of QL − ML.

We claim that Puv contains an edge xy ∈ Puv such that xxR /∈ Md, yyR /∈ Md, and the configuration

(xR, yR, MR) is good.

First, if M is as in Figure 24(3) or 24(4), put x = x1 or x = x2, respectively, and choose y to be any

neighbor of x on Puv . Observe in Figure 24(3)-(4) that x is in no bad configuration in QL, also xR is in

no bad configuration in QR, xxR /∈ Md, and yyR /∈ Md. Thus the claim holds in this situation.

Now M is as in Figure 24(2). Since {u, v} 6= {x3, x4}, we have x3 /∈ {u, v} or x4 /∈ {u, v}, say

x3 /∈ {u, v}. Thus the Hamiltonian path Puv contains the edge x3x4. Put x = x3 and y = x4 and observe

in Figure 24(2) that the claim is established.

Hence, by the claim, there is a Hamiltonian path PxRyR
of QR −MR. Finally, the desired Hamiltonian

path of Q4 −M is Pux + PxRyR
+ Pyv where Pux and Pyv are disjoint subpaths of Puv , assuming that x

is closer to u than y on the path Puv .

3.2.5: The remaining possibility; that is, M is as in Figure 24(2)-(4), the configuration (u, v,ML) is

bad, and {u, v} 6= {b, c}. Choose an edge xy ∈ ML such that the configurations (u, v,ML \ {xy}) and

(xR, yR, MR) are good. Observe in Figure 24 and Figure 1 that such an edge exists.

Thus there is a Hamiltonian path PxRyR
of QR − MR. Since the configuration (u, v,ML) is bad but

the configuration (u, v,ML \ {xy}) is good, there is a Hamiltonian path Puv that contains edge xy and

avoids ML \ {xy}. The desired Hamiltonian path of Q4 −M is Pux + PxRyR
+ Pyv where Pux and Pyv

are disjoint subpaths of Puv , assuming that x is closer to u than y on the path Puv . This completes the

proof of the lemma. ✷
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