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We conjecture Ore and Erdős type criteria for a balanced bipartite graph of order 2n to contain a long cycle C2n−2k,

where 0 ≤ k < n/2. For k = 0, these are the classical hamiltonicity criteria of Moon and Moser. The main two

results of the paper assert that our conjectures hold for k = 1 as well.
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1 Introduction

One of the classical problems of graph theory is the study of sufficient conditions for a graph to contain

a Hamilton cycle. In this paper we are primarily interested in two types of such conditions. Namely, the

ones that put constraints on degree sums of pairs of non-adjacent vertices, and those that combine bounds

on the size of a graph with bounds on its minimal degree. The first approach is due to Ore (see Section 2

for notation):

Theorem 1.1 (Ore, [12]). Let G be a graph of order n ≥ 3, in which

dG(x) + dG(y) ≥ n

for every pair of non-adjacent vertices x and y. Then G contains a Hamilton cycle.

It follows immediately from Ore’s theorem that the minimal size of a graph of order n ≥ 3 that guar-

antees hamiltonicity is
(
n−1

2

)
+ 2. Erdős generalized this condition by adding a bound on the minimal

degree of a graph:
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Theorem 1.2 (Erdős, [9]). Let G be a graph of order n ≥ 3 and minimal degree δ(G) ≥ r, where

1 ≤ r < n/2. Then G contains a Hamilton cycle, provided

‖G‖ > max

{(
n − r

2

)
+ r2,

(
n −

⌊
n−1

2

⌋

2

)
+

⌊
n − 1

2

⌋2
}

.

The above conditions can, of course, be significantly strengthened in case of a balanced bipartite graph.

The following two theorems are bipartite counterparts of Ore and Erdős criteria, respectively.

Theorem 1.3 (Moon and Moser, [11]). Let G be a bipartite graph of order 2n, with colour classes X
and Y , where |X| = |Y | = n ≥ 2. Suppose that dG(x) + dG(y) ≥ n + 1 for every pair of non-adjacent

vertices x ∈ X and y ∈ Y . Then G contains a Hamilton cycle.

Theorem 1.4 (Moon and Moser, [11]). Let G be a bipartite graph of order 2n, with colour classes X and

Y , |X| = |Y | = n ≥ 2, and minimal degree δ(G) ≥ r, 1 ≤ r ≤ n/2. Then G contains a Hamilton cycle,

provided ‖G‖ > n(n − r) + r2.

Our goal is to generalize the above criteria to long cycles, that is, cycles of length 2n − 2k, where

0 ≤ k < n/2. We state the following two conjectures, that include Theorems 1.3 and 1.4 as special cases

(k = 0).

Conjecture A. Let G be a 2-connected balanced bipartite graph of order 2n, with colour classes X and

Y , |X| = |Y | = n ≥ 5, and let k < n/2 be a non-negative integer. If

dG(x) + dG(y) ≥ n − k + 1

for every pair of non-adjacent x ∈ X and y ∈ Y , then G contains a cycle of length 2n − 2k.

Conjecture B. Let G be a balanced bipartite graph of order 2n and minimal degree δ(G) ≥ r ≥ 1,

where n ≥ 2k + 2r and k ∈ Z. If

‖G‖ > n(n − k − r) + r(k + r)

then G contains a cycle of length 2n − 2k.

The main two results of this paper, Theorems A and B (Section 3), assert that our conjectures hold true

for k = 1. We believe the conjectures to be significantly harder in case k ≥ 2.

It should be mentioned here that analogous generalizations to long cycles of Ore’s and Erdős’s theorems

have been studied in ordinary graphs. Woodall [14, Thm. 11] gives a complete list of Erdős type conditions

for a graph of order n to contain a cycle of length n − k for any 0 ≤ k ≤ n−3
2 . The Ore type criterion is

conjectured in [1], and follows from a result of Linial [10] in case k ≤ 1.

Remark 1.5. Both the degree sum condition of Conjecture A and the bound on the size of Conjecture B

are sharp, as can be seen in Example 1.6 below. It is also necessary to assume 2-connectedness in Con-

jecture A (Example 1.7). Finally, a quick look at C6 and C8 shows that Conjecture A would fail for

n < 5.
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Example 1.6. Let G1 be a balanced bipartite graph, with colour classes X and Y , |X| = |Y | = n, where

X = A ∪ B, Y = C ∪ D, |A| = k + r, |B| = n − k − r, |C| = r, and |D| = n − r. Moreover, assume

that NG1(x) = C for all x ∈ A, and NG1(x) = Y for all x ∈ B. Then dG1(x) + dG1(y) = n − k for

every pair x ∈ A and y ∈ D, and, in general, dG1(x) + dG1(y) ≥ n − k for every pair of x ∈ X and

y ∈ Y . If n ≥ 2k + 2r, then δ(G1) = r ≥ 1 and ‖G1‖ = n(n − k − r) + r(k + r), but G1 does not

contain a cycle of length 2n − 2k.

Example 1.7. Let G2 = (X, Y ;E) be a balanced bipartite graph obtained from the disjoint union of

H1 = K⌊n/2⌋,⌊n/2⌋ and H2 = K⌈n/2⌉,⌈n/2⌉ by adding a single edge joining a vertex of H1 with a vertex

of H2. Then dG2(x)+ dG2(y) ≥ n for every pair of non-adjacent vertices x ∈ X and y ∈ Y , nonetheless

G2 contains no cycle of length 2n − 2. In fact, G2 contains no long cycle whatsoever.

The next section contains the inventory of basic definitions and results used throughout the paper.

In Section 3 we state our main results, Theorems A and B, and their consequences. In particular, by

combining Theorems A and B, we obtain a complete Erdős type characterisation of balanced bipartite

graphs that do not contain cycles of length 2n − 2 (Theorem 3.6). The last two sections are devoted to

proofs of the two main results.

2 Notation and tools

All graphs considered are undirected, have no loops and no multiple edges. Given a graph G, we denote

by ‖G‖ the size (i.e., number of edges) of G, and by V (G) the vertex set of G. A bipartite graph is often

denoted by G = (X, Y ;E), where X and Y are the two colour classes of G, and E = E(G) is the edge

set of G. When |X| = |Y |, we say that G is balanced. Given a vertex x ∈ V (G), NG(x) denotes the set

of vertices adjacent to x in G, dG(x) the degree of x in G (i.e., dG(x) = |NG(x)|), and δ(G) the minimal

vertex degree in G. If L ⊂ V (G) is a vertex subset of G, then G − L denotes the subgraph of G induced

by V (G) \ L, and NG(L) is the set of neighbours of all the vertices in L. Given distinct vertices x and y
of G, an x − y path is a path in G with endvertices x and y. We denote by Cl a cycle of length l, and by

Kn,n a complete balanced bipartite graph of order 2n. Finally, recall that a graph is called 2-connected if

the removal of any single vertex does not disconnect G.

In this section we have gathered results used in the proofs of Theorems A and B. First of all, we recall

two hamiltonicity criteria obtained by Moon and Moser [11].

Theorem 2.1 (Moon and Moser, [11]). Let G be a balanced bipartite graph of order 2n ≥ 4, with

δ(G) ≥
n + 1

2
. Then G contains a Hamilton cycle.

Theorem 2.2 (Moon and Moser, [11]). Let G = (X, Y ;E) be a balanced bipartite graph of order 2n,

and let Sm = {x ∈ X : dG(x) ≤ m}, Tm = {y ∈ Y : dG(y) ≤ m} for m ∈ Z. If, for every

1 ≤ m ≤ n/2, the sets Sm and Tm are of cardinalities less than m, then G is hamiltonian.

We shall need the following strengthening of Theorem 1.4.

Theorem 2.3 (Wojda and Woźniak, [13]). Let G(n, r) denote a bipartite graph with colour classes X =
P ∪ Q and Y = R ∪ S such that |P | = |R| = r, |Q| = |S| = n − r, NG(n,r)(x) = R for all x ∈ P , and

NG(n,r)(x) = Y for all x ∈ Q. Let G be a balanced bipartite graph of order 2n ≥ 4, minimal degree

δ(G) ≥ r ≥ 1, and size ‖G‖ ≥ n(n − r) + r2. Then G contains a Hamilton cycle, else r ≤ n/2 and G
is isomorphic to G(n, r).
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A bipartite graph of order 2n is called bipancyclic if it contains cycles of lengths 2k for all 2 ≤ k ≤ n.

Theorem 2.4 (Bagga and Varma, [5]). Let G = (X, Y ;E) be a balanced bipartite graph of order 2n ≥ 8.

If dG(x)+dG(y) ≥ n+1 for every pair of non-adjacent vertices x ∈ X and y ∈ Y , then G is bipancyclic.

Theorem 2.5 (Entringer and Schmeichel, [8]). Let G be a hamiltonian bipartite graph of order 2n ≥ 8.

If ‖G‖ > n2/2, then G is bipancyclic.

We will also need to know the cycle structure of an n/2-regular hamiltonian bipartite graph G of order

2n. Notice that then ‖G‖ = n2/2, so the above theorem does not apply. We then have:

Theorem 2.6 (J. Adamus, [2]). Let G be an n/2-regular hamiltonian bipartite graph of order 2n. Then

G contains a cycle C of length 2n − 2. Moreover, if C can be chosen to omit a pair of adjacent vertices,

then G is bipancyclic.

Given a balanced bipartite graph G = (X, Y ;E), one defines a k-biclosure BClk(G) of G as the graph

obtained from G by succesively joining pairs of non-adjacent vertices x ∈ X and y ∈ Y , with degree sum

of at least k, until no such pair remains. Closely related to this construction is the notion of k-bistability:

A property P defined on all balanced bipartite graphs of order 2n is called k-bistable when, whenever

G + xy has the property P and dG(x) + dG(y) ≥ k, then G itself has the property P .

Theorem 2.7 (Bondy and Chvátal, [7]). A balanced bipartite graph G of order 2n is hamiltonian if and

only if its (n + 1)-biclosure BCln+1(G) is so.

Theorem 2.8 (Amar, Favaron, Mago and Ordaz, [4]). The property of containing a cycle of length 2n−2
is (n + 2)-bistable on balanced bipartite graphs of order 2n.

3 Long cycles in balanced bipartite graphs

Suppose we want to know whether a balanced bipartite graph G = (X, Y ;E) has the property of con-

taining a long cycle C2n−2k for some 0 ≤ k < n/2. Given Theorem 1.3 of Moon and Moser, a natural

question arises: Can one impose such a property by decreasing the bound on the degree sum of non-

adjacent vertices by k? We believe the answer to this question be positive (Conjecture A). As shown in

Example 1.6, any lower bound on the degree sum of non-adjacent vertices x ∈ X and y ∈ Y which

ensures C2n−2k ⊂ G is at least n− k + 1. On the other hand, decreasing the bound below n + 1 imposes

additional assumptions on the graph. Interestingly enough, without the 2-connectedness constraint the

graph could contain no long cycles at all (see Example 1.7). The following result gives a positive answer

to the above question in case k = 1.

Theorem A. Let G = (X, Y ;E) be a 2-connected balanced bipartite graph of order 2n ≥ 4, such that

dG(x) + dG(y) ≥ n for every pair of non-adjacent vertices x ∈ X and y ∈ Y . Then G contains an even

cycle of length at least 2n − 2.

We postpone the proof of the theorem to Section 4. Right now we will show that Theorem A implies

Conjecture A for k = 1.

Corollary 3.1. Conjecture A holds for k = 1.
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Proof: Let G = (X, Y ;E) be a balanced bipartite graph of order 2n that satisfies the assumptions of

Conjecture A. By Theorem A above, G contains an even cycle of length at least 2n − 2, so without loss

of generality one may assume that G is hamiltonian.

Let x ∈ X , say, be a vertex of minimal degree δ(G) in G. Then Y contains precisely n− δ(G) vertices

non-adjacent to x, each of degree at least n − δ(G) (as dG(x) + dG(y) ≥ n for xy /∈ E). Counting the

edges incident with Y , we get

‖G‖ ≥ (n − δ(G))·(n − δ(G)) + δ(G)·δ(G) .

Observe that (n − δ(G))2 + δ(G)2 > n2/2 iff δ(G) 6= n/2. Hence ‖G‖ > n2/2, provided δ(G) 6= n/2,

and thus G contains C2n−2, by Theorem 2.5. If, in turn, δ(G) = n/2, then the result follows from

Theorem 2.6.

Let us now turn to Erdős type criteria. In [3], the second author conjectured the following sufficient

condition for a balanced bipartite graph to contain a long cycle C2n−2k (proved in [3] under considerably

stronger assumptions).

Conjecture 3.2 (L. Adamus, [3]). Let G be a balanced bipartite graph of order 2n, where n ≥ 2k + 2,

k ∈ Z. If ‖G‖ > n(n − k − 1) + k + 1, then G contains a cycle of length 2n − 2k.

Notice that both assumptions of the conjecture are weakest possible, as shown by the following two

examples.

Example 3.3. Consider a graph G1 of Example 1.6, with r = 1. This graph has precisely n(n−k− 1)+
k + 1 edges, and it contains no cycle of length greater than 2n − 2k − 2.

Example 3.4. Let G3 = (X, Y ;E) be a balanced bipartite graph, with colour classes of the form X =
A ∪ B, Y = C ∪ D, where |A| = |D| = k + 1, |B| = |C| = n − k − 1. Fix a vertex y0 in C, and let

NG3(x) = C for all x ∈ A, and NG3(x) = D ∪ {y0} for all x ∈ B. Then ‖G3‖ > n(n− k − 1) + k + 1
for k +3 ≤ n ≤ 2k +1, yet G3 contains no cycle of length greater than 2n− 2k− 2. Hence the necessity

of the assumption n ≥ 2k + 2.

Interestingly, a similar graph was recently shown in [6] to be a counterexample to Győri’s conjecture

on C2l-free bipartite graphs.

In light of Example 3.3 above, we ask: By how much can we decrease the lower bound on the size of a

given graph G ensuring the existence of a cycle of length 2m − 2k, knowing that the minimal degree of

G is greater than 1? We address this question in Conjecture B. Certain special cases of Conjecture B are

known true: k = 0 is Theorem 1.4, k = r = 1 is done in [3]. The following theorem (proved in Section 5

below) shows that the conjecture also holds for k = 1 and arbitrary r.

Theorem B. Let G = (X, Y ;E) be a balanced bipartite graph of order 2n and minimal degree δ(G) ≥
r ≥ 1, where n ≥ 4 and n ≥ 2r + 1. Let

g(n, r) = n(n − 1 − r) + r(1 + r) + 1.

Then G contains a cycle of length 2n − 2, provided ‖G‖ ≥ g(n, r).

Notice that Theorems 2.1 and 1.4 can be put together as follows:
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Theorem 3.5. Let G be a balanced bipartite graph of order 2n ≥ 4, with minimal degree δ(G) ≥ r.

Then G contains a Hamilton cycle, provided

(1) n ≤ 2r − 1 or

(2) n ≥ 2r and ‖G‖ > n(n − r) + r2 .

Along the same lines, we combine Theorem 2.4 and Theorems A and B to prove the following criterion

for cycles of length 2n − 2.

Theorem 3.6. Let G = (X,Y ;E) be a balanced bipartite graph of order 2n ≥ 8, with minimal degree

δ(G) ≥ r ≥ 1. Then G contains a cycle of length 2n − 2, provided

(1) n ≤ 2r − 1 or

(2) n = 2r and ‖G‖ ≥ 2r2 + r + 1 or

(3) n ≥ 2r + 1 and ‖G‖ ≥ n(n − 1 − r) + r(1 + r) + 1 .

Remark 3.7. The lower bounds of conditions (2) and (3) are sharp: For an extremal graph for (2),
consider the graph G3 from Example 3.4 with k + 1 = r; for (3), consider G1 from Example 1.6 with

k = 1.

Proof of Theorem 3.6:

(1) Since n ≤ 2r − 1 iff r ≥ (n + 1)/2, then the degree sum is greater than or equal to n + 1 for every

pair of vertices in G (in particular, for non-adjacent ones). By Theorem 2.4, G is then bipancyclic.

(2) The bound on the size of G together with δ(G) ≥ r = n/2 force 2-connectedness. Also, the degree

sum is at least 2r = n for every pair of vertices in G. Hence, by Corollary 3.1, G contains C2n−2.

(3) This is Theorem B.

4 Proof of Theorem A

As 2-connectedness of a graph G implies δ(G) ≥ 2, the assertion of the theorem holds true for n ≤ 3,

by Theorem 2.1. Suppose then there exists n ≥ 4 for which the assertion fails. Let G = (X, Y ;E)
be a maximal 2-connected balanced bipartite graph of order 2n, in which dG(x) + dG(y) ≥ n for all

non-adjacent x ∈ X , y ∈ Y , without a cycle of length at least 2n − 2. By maximality of G, G + xy
contains a cycle of length at least 2n− 2, and hence G contains an x− y path of length 2n− 3 or 2n− 1
for every pair of non-adjacent x ∈ X , y ∈ Y .

We shall show first that G contains a Hamilton path. Suppose not. Let x ∈ X , y ∈ Y be non-adjacent

vertices and let P be an x − y path in G of length 2n − 3; say, P = u1v1u2v2 . . . un−1vn−1, where

X = {u1, . . . , un}, Y = {v1, . . . , vn}, u1 = x and vn−1 = y. Put IP = {1 ≤ i ≤ n − 1 | u1vi ∈ E}
and JP = {1 ≤ i ≤ n − 1 | uivn−1 ∈ E}. Then IP ∩ JP = ∅, for if i0 ∈ IP ∩ JP , then G contains a

cycle u1vi0ui0+1 . . . vn−1ui0vi0−1 . . . v1u1 of length 2n − 2; a contradiction.
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As |IP | = dG[V (P )](x) and |JP | = dG[V (P )](y), we obtain

dG[V (P )](x) + dG[V (P )](y) = |IP | + |JP | = |IP ∪ JP | ≤ n − 1 ,

where G[V (P )] denotes the subgraph of G induced by the vertex set of P . This shows that at least one of

the vertices u1 and vn−1 has a neighbour among the remaining vertices un, vn of G−P ; say, vn−1un ∈ E.

Notice that then unvn /∈ E, for otherwise u1 . . . vn−1unvnu1 would be a Hamilton path. Similarly,

u1vn /∈ E. Hence, in particular, IP contains indices of all the neighbours of u1 in G, so |IP | = dG(u1).
Let now KP = {1 ≤ i ≤ n − 1 | uivn ∈ E}. Then |KP | = dG(vn), and as dG(u1) + dG(vn) ≥ n, it

follows that there exists i0 ∈ IP ∩ KP . Then vnui0vi0−1 . . . u1vi0ui0+1 . . . vn−1un is a Hamilton path

in G; a contradiction.

Let now x ∈ X and y ∈ Y be a pair of non-adjacent vertices such that G contains a Hamilton x − y
path P ; say, P = u1v1 . . . unvn, where X = {u1, . . . , un}, Y = {v1, . . . , vn}, x = u1 and y = vn. Put

IG = {1 ≤ i ≤ n | u1vi ∈ E} and JG = {1 ≤ i ≤ n | uivn ∈ E}. Then |IG| = dG(x), |JG| = dG(y)
and IG ∩ JG = ∅, for if i0 ∈ IG ∩ JG, then u1vi0ui0+1 . . . vnui0vi0−1 . . . v1u1 is a Hamilton cycle in G.

Hence

n ≥ |IG ∪ JG| = |IG| + |JG| = dG(x) + dG(y) ≥ n,

so that, for every 1 ≤ i ≤ n,

either ui ∈ NG(y) or else vi ∈ NG(x). (⋆)

Let d = dG(y). Denote by x1, . . . , xd those of the vertices u1, . . . , un that are adjacent to y, ordered

according to the orientation of P (from x to y). Let y1, . . . , yd be the vertices of Y that lie on P next to

the respective x1, . . . , xd; then yd = y.

Observe that if x1 = ui with i < n − d + 1, then there exists 1 ≤ j ≤ d − 1 such that yj = vl, where

ul+1 /∈ NG(y). Then vl+1 ∈ NG(x) and we obtain a cycle u1vl+1ul+2 . . . vnulvl−1 . . . v1u1 of length

2n − 2 in G; a contradiction.

Therefore x1 = un−d+1, and hence NG(y) coincides with the set {un−d+1, . . . , un}, call it U . Then

{y1, . . . , yd} coincides with V := {vn−d+1, . . . , vn}, and by (⋆), NG(x) = Y \ V .

Suppose now that, for every v ∈ V , NG(v) ⊂ U . Then, for all u ∈ X \ U and v ∈ V , u and v are

non-adjacent, hence NG(u) ⊂ Y \ V . Consequently, dG(ui) ≤ n − d (i ≤ n − d), and dG(vj) ≤ d
(j ≥ n − d + 1). But ui and vj being non-adjacent, we also have dG(ui) + dG(vj) ≥ n, which implies

that dG(ui) = n − d and dG(vj) = d, and hence

NG(ui) = Y \ V and NG(vj) = U for all i ≤ n − d, j ≥ n − d + 1.

Thus G contains a complete bipartite graph Kd,d spanned on the vertices of U and V , and a complete

bipartite Kn−d,n−d spanned on X \ U and Y \ V .

Now, G being 2-connected, it must contain two independent edges ui1vj1 and ui2vj2 for some i1, i2 ≥
n−d+1 and j1, j2 ≤ n−d. One immediately verifies that such a graph contains a cycle of length 2n−2,

again contradicting the choice of G.

We can therefore conclude that there exists a vertex vj , with n − d + 1 ≤ j ≤ n − 1, adjacent to a ui,

where i ≤ n−d. Then u1vi . . . ujvnun . . . vjuivi−1 . . . v1u1 is a Hamilton cycle in G. This contradiction

completes the proof of the theorem.
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5 Proof of Theorem B

Throughout this section we will frequently refer to the exceptional graph G(n, r) of Theorem 2.3. Recall

that by G(n, r) we denote a balanced bipartite graph of order 2n, with colour classes X = P ∪ Q and

Y = R∪S, where |P | = |R| = r, |Q| = |S| = n−r, NG(n,r)(x) = R for all x ∈ P , and NG(n,r)(x) = Y
for all x ∈ Q.

Let, as before, g(n, r) = n(n − 1 − r) + r(1 + r) + 1. We shall first show the following lemma.

Lemma 5.1. Let G = (X, Y ;E) be a balanced bipartite graph of order 2n and minimal degree δ(G) ≥
r ≥ 1, where n ≥ 4 and n ≥ 2r +1. Let ‖G‖ ≥ g(n, r), and assume there exists a pair of vertices x ∈ X
and y ∈ Y such that dG(x) + dG(y) ≤ n and δ(G − {x, y}) ≥ r. Then G contains a cycle of length

2n − 2.

Proof: Suppose G contains no cycle of length 2n−2. Then G−{x, y} contains no such cycle either, and

as δ(G − {x, y}) ≥ r, Theorem 2.3 implies that

‖G − {x, y}‖ ≤ (n − 1)(n − 1 − r) + r2 = n2 − 2n − nr + r2 + r + 1.

On the other hand,

‖G − {x, y}‖ ≥ g(n, r) − (dG(x) + dG(y)) ≥ n2 − 2n − nr + r2 + r + 1.

Hence dG(x) + dG(y) = n, the vertices x and y are non-adjacent, G − {x, y} equals G(n − 1, r), and

r ≤ (n − 1)/2. Without loss of generality, we may assume that x belongs to the colour class of G
containing P ∪ Q of G(n − 1, r).

Now, either dG(x) ≥ r + 1 or dG(x) = r. In the first case, x must have at least two neighbours in S
or else at least one neighbour in both S and R. One easily verifies that then G contains a cycle of length

2n − 2, omitting y and a single vertex of P ; a contradiction.

If, in turn, dG(x) = r, then dG(y) = n − r and y must have neighbours in both P and Q, since

r ≤ (n − 1)/2 < n/2. Consequently, G contains a cycle of length 2n − 2, omitting x and a vertex of S,

which again contradicts the choice of G.

We are now in position to prove Theorem B.

For a proof by contradiction, consider a graph G satisfying the assumptions of Theorem B, that does

not contain a cycle of length 2n−2. Observe first that ‖G‖ > n2/2. Indeed, the difference g(n, r)−n2/2
is always positive. Hence, by Theorem 2.5, G is not hamiltonian. Consequently, Theorem 2.2 implies that

there exists a positive integer m ≤ n/2 such that at least one of the sets Sm = {x ∈ X : dG(x) ≤ m},

Tm = {y ∈ Y : dG(y) ≤ m} has cardinality greater than or equal to m.

Let l be the least such m. Without loss of generality, we may assume that l is realized in X; i.e.,

|{x ∈ X : dG(x) ≤ l}| ≥ l. Order the vertices of X = {x1, . . . , xn} so that r ≤ dG(x1) ≤ · · · ≤
dG(xn). Then, by minimality of l, we have l = min{i : dG(xi) ≤ i}. Of course, r ≤ l ≤ n/2. Put

L = {x1, . . . , xl}.

The rest of the proof proceeds in two cases, depending on l being equal to or greater than r.
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Case 1:

l = r. We will first show that all the vertices of Y have degrees greater than r. Suppose to the contrary

that there exists y1 ∈ Y with dG(y1) = r. Then

‖G − {x1, y1}‖ ≥ g(n, r) − 2r = n2 − n − nr + r2 − r + 1,

and δ(G − {x1, y1}) ≥ r − 1. On the other hand, by Theorem 2.3,

‖G − {x1, y1}‖ ≤ (n − 1)(n − r) + (r − 1)2 = n2 − n − nr + r2 − r + 1.

Hence dG(x1)+dG(y1) = 2r so that x1y1 /∈ E and G−{x1, y1} equals G(n−1, r−1). By comparison of

degrees, one readily verifies that x1 belongs to that colour class of G that contains P∪Q of G(n−1, r−1);
in fact, L = {x1} ∪ P . Consider the sets R and S of the other colour class of G(n − 1, r − 1). As

|NG(x1)| = r > |R| and x1y1 /∈ E, it follows that either x1 has neighbours in both R and S or else it has

at least two neighbours in S. In any case, as in the proof of Lemma 5.1, one easily finds a cycle of length

2n − 2 in G, omitting y1 and a vertex of P ; a contradiction. Thus dG(y) ≥ r + 1 for every y ∈ Y .

Next observe that every vertex of Y has a neighbour in L. Suppose otherwise, and let y1 ∈ Y be

such that NG(y1) ⊂ X \ L. Notice that all vertices of X \ L have degrees greater than r, for otherwise

g(n, r) ≤ ‖G‖ ≤ (r + 1)r + (n − r − 1)n = g(n, r) − 1. Consequently, by removing y1 and a vertex

of L, say x1, we do not decrease the minimal degree in the remainder of G. But, as NG(y1) ⊂ X \ L,

we have dG(y1) ≤ n − r, hence dG(x1) + dG(y1) ≤ r + (n − r) = n, and by Lemma 5.1, G contains a

cycle of lenth 2n − 2; a contradiction.

Consider the graph G − L. Notice that

‖G − L‖ ≥ g(n, r) − r2 = n2 − n − nr + r + 1.

Moreover, we claim that dG−L(x) + dG−L(y) ≥ n for every pair of non-adjacent x ∈ X \ L and y ∈ Y .

For if dG−L(x) + dG−L(y) ≤ n − 1 for a pair of non-adjacent x ∈ X \ L and y ∈ Y , then, by the above

inequality,

‖(G − L) − {x, y}‖ ≥ n2 − 2n − nr + r + 2 > (n − r − 1)(n − 1),

which contradicts (G − L) − {x, y} being a bipartite graph with colour classes of cardinality n − r − 1
and n − 1.

Taking into account that every vertex in Y has a neighbour in L, we now obtain that

dG(x) + dG(y) ≥ n + 1 for all non-adjacent y ∈ Y and x ∈ X \ L.

Let G̃ be the bipartite graph obtained from G by joining all the non-adjacent vertices of Y and X \ L.

As |X \ L| = n − r and every y ∈ Y has a neighbour in L, we get that d eG(y) ≥ n − r + 1 for all

y ∈ Y . Hence d eG(x) + d eG(y) ≥ n + 1 for every pair of non-adjacent vertices x ∈ X and y ∈ Y .

Therefore, joining all the non-adjacent vertices of X and Y in G̃ with degree sum of at least n + 1 yields

a complete bipartite graph Kn,n. As G̃ was obtained from G also by joining certain non-adjacent vertices

of X and Y with degree sum of at least n + 1, this shows that the (n + 1)-biclosure of G equals Kn,n.

Thus, by Theorem 2.7, G contains a Hamilton cycle, which, as we observed at the begining of this proof,

is impossible.
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Case 2:

l ≥ r + 1. In this case n ≥ 2r + 2 (as l ≤ n/2) and r ≥ 2 (for otherwise l = r = 1, by minimality);

hence |L| ≥ 3. Moreover, dG(xl−1) = dG(xl) = l, by minimality of l.

Suppose first that dG(x) + dG(y) ≥ n + 2 for every pair of non-adjacent x ∈ X \ L and y ∈ Y . Let

G′ be the bipartite graph obtained from G by joining all the non-adjacent vertices of X \ L and Y . We

claim that every y ∈ Y has a neighbour in L (in G′). Suppose otherwise, and let y1 ∈ Y be such that

NG′(y1) ⊂ X\ L. Then dG′(y1) ≤ n−l, hence dG′(x1)+dG′(y1) ≤ n. Moreover, δ(G′−{x1, y1}) ≥ r,

as all the vertices in X \ L have degrees of at least l ≥ r + 1, and dG′(y) ≥ n − l ≥ l ≥ r + 1 for all

y ∈ Y . Then Lemma 5.1 implies that G′ contains a cycle of length 2n − 2, and hence, by Theorem 2.8,

so does G; a contradiction.

Notice that G′ was obtained from G by joining only pairs of vertices with degree sum of at least n + 2.

Also, as every vertex y ∈ Y has a neighbour in L (in G′), we have dG′(y) ≥ n − l + 1. Recall that

dG′(xl) = dG(xl) = l and dG′(xl−1) = dG(xl−1) = l. Hence

dG′(xl) + dG′(y) ≥ n + 1 and dG′(xl−1) + dG′(y) ≥ n + 1 for all y ∈ Y.

Let G(2) be the graph obtained from G′ by joining xl and xl−1 with all the vertices of Y . Then dG(2)(y) ≥
n − l + 2 for all y ∈ Y , and as dG(2)(xl−2) = dG(xl−2) ≥ l − 1 (by minimality of l), we get that

dG(2)(xl−2) + dG(2)(y) ≥ n + 1 for all y ∈ Y.

Let now G(3) be the graph obtained from G(2) by joining xl−2 with all the non-adjacent vertices of Y . In

general, let G(m) (m ≥ 3) be obtained from G(m−1) by joining xl−m+1 with all the non-adjacent vertices

of Y . Then G(l) = Kn,n, and G(m) is obtained from G(m−1) by joining only pairs of vertices with degree

sum of at least n + 1. Thus G(l) = BCln+1(G), so that the (n + 1)-biclosure of G is a complete bipartite

graph. Now Theorem 2.7 implies that G contains a Hamilton cycle, which again leads to contradiction.

To complete the proof, it remains to consider the case when there is a pair of non-adjacent x0 ∈ X \ L
and y0 ∈ Y with dG(x0) + dG(y0) ≤ n + 1. This however can only happen when n = 2r + 2 or

n = 2r +3. For let us suppose that n ≥ 2r +4, and put f(l) = l2 +(n− l− 1)(n− 1)+n+2. We show

‖G‖ < f(l) and f(l) ≤ g(n, r), and thus obtain a contradiction with the assumption ‖G‖ ≥ g(n, r). If G
contains a pair of non-adjacent vertices x ∈ X \ L and y ∈ Y with dG(x) + dG(y) ≤ n + 1, then

‖G‖ ≤ |L| · l + |X \ (L ∪ {x})| · |Y \ {y}| + dG(x) + dG(y) ≤ f(l) − 1.

As the derivative of f equals f ′(l) = −n + 2l + 1, it follows that f(l) is decreasing for l ≤ (n − 1)/2,

and hence maximal at l = r + 1. One immediately verifies that f(r + 1) ≤ g(n, r) for n ≥ 2r + 4. If,

on the other hand, l > (n − 1)/2, then l = n/2 (since l ≤ n/2), and it is again immediate to check that

f(n/2) ≤ g(n, r) for n ≥ 2r + 4.

Subcase 2.1:

n = 2r + 2. Then r + 1 ≤ l ≤ n/2 yields l = r + 1, and we obtain

∥∥G − {x0, y0}
∥∥ ≥ g(2r + 2, r) − (2r + 3) = 3r2 + 3r . (1)
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On the other hand,

∥∥G − {x0, y0}
∥∥ ≤ |L| · l + |X \ (L ∪ {x0})| · |Y \ {y0}| = 3r2 + 3r + 1 . (2)

Hence

3r2 + 3r ≤
∥∥G − {x0, y0}

∥∥ ≤ 3r2 + 3r + 1 and 2r + 2 ≤ dG(x0) + dG(y0) ≤ 2r + 3 .

Suppose first that
∥∥G − {x0, y0}

∥∥ = 3r2 + 3r + 1. Then, by (2), dG(x) = l for all x ∈ L, and

NG(y0)∩L = ∅; in particular, dG(x1)+dG(y0) ≤ l+(n− l) = n. Moreover, NG(y) ⊃ X \ (L∪{x0})
for all y ∈ Y \ {y0}, and dG(x) ≥ r + 1 for all x ∈ X , so that δ(G− {x1, y

0}) ≥ r, and by Lemma 5.1,

G contains a cycle of length 2n − 2; a contradiction.

Therefore we may assume that
∥∥G − {x0, y0}

∥∥ = 3r2 + 3r. By (1), dG(x0) + dG(y0) = 2r + 3,

and what’s more, dG(x) + dG(y) ≥ 2r + 3 for all non-adjacent x ∈ X \ L and y ∈ Y . Indeed, if

dG(x1) + dG(y1) ≤ 2r + 2 for some non-adjacent x1 ∈ X \ L and y1 ∈ Y , then by (1) and (2),∥∥G − {x1, y1}
∥∥ = 3r2 + 3r + 1, which leads to contradiction, as above.

We will now show that |NG(L)| > r + 1. Suppose otherwise, that is, suppose |NG(L)| = l = r + 1.

Then NG(y0) ∩ L = ∅, for else NG(L) ∋ y0 implies

∥∥G − {x0, y0}
∥∥ ≤ |L| · (l − 1) + |X \ (L ∪ {x0})| · |Y \ {y0}| = 3r2 + 2r ,

which is impossible. Therefore dG(y0) = n − l − 1 = r; in particular, dG(x1) + dG(y0) ≤ l + r < n.

Notice that, as G−{x0, y0} only has one edge less than the right-hand side of (2), every neighbour of y0

in G has degree at least n − 2 = 2r, and every neighbour of x1 has at least l − 1 = r other neighbours

in L (x1 being the only vertex whose degree could be less than l). Thus δ(G− {x1, y
0}) ≥ r, and we get

a contradiction, by Lemma 5.1. Thus |NG(L)| > r + 1.

It is now not difficult to see that BCln+1(G) = Kn,n: Recall that we have verified that dG(x) +
dG(y) ≥ 2r + 3 = n + 1 for all non-adjacent x ∈ X \ L and y ∈ Y . Let G′ be the graph obtained

from G by joining all the non-adjacent vertices of X \ L and Y . Next observe that, by minimality of

l = r + 1, dG′(xr+1) = dG(xr+1) = r + 1, and as |NG(L)| > r + 1, at least one non-neighbour of

xr+1, say y′, has a neighbour among the other vertices of L. Hence |NG′(y′)| ≥ |X \ L| + 1, so that

dG′(xr+1) + dG′(y′) ≥ (r + 1) + (r + 2) = n + 1. Let G(2) be obtained from G′ by joining xr+1

with y′, and hence increasing the degree of xr+1 to r + 2. Then dG(2)(xr+1) + dG(2)(y) ≥ n + 1 for all

y ∈ Y . Let G(3) be obtained from G(2) by joining xr+1 with all the non-adjacent vertices of Y . Now

dG(3)(y) ≥ r + 2 for all y ∈ Y . By minimality of l again, dG(3)(xr) = dG(xr) = r + 1, and hence

dG(3)(xr) + dG(3)(y) ≥ 2r + 3 for all y ∈ Y . Let G(4) be obtained from G(3) by joining xr with all the

non-adjacent vertices of Y . Then dG(4)(y) ≥ r + 3 for all y ∈ Y , and hence, as δ(G(4)) ≥ δ(G) ≥ r,

dG(4)(x) + dG(4)(y) ≥ 2r + 3 for all non-adjacent x ∈ X and y ∈ Y . Joining all the non-adjacent pairs

x ∈ X , y ∈ Y of G(4) with degree sum of at least n + 1 we thus obtain Kn,n. Since at each stage we

only joined pairs of vertices with degree sum of at least n + 1, this shows that Kn,n = BCln+1(G). By

Theorem 2.7, G contains a Hamilton cycle; a contradiction.
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Subcase 2.2:

n = 2r + 3. Again, r + 1 ≤ l ≤ n/2 yields l = r + 1, and we have

∥∥G − {x0, y0}
∥∥ ≥ g(2r + 3, r) − (2r + 4) = 3r2 + 6r + 3 ,

and, on the other hand,

∥∥G − {x0, y0}
∥∥ ≤ |L| · l + |X \ (L ∪ {x0})| · |Y \ {y0}| = 3r2 + 6r + 3 .

Therefore both inequalities must, in fact, be equalities; in particular, dG(x1) = l and dG(x) ≥ r + 1 for

all x ∈ X , NG(y0)∩L = ∅, so that dG(y0) ≤ n− l, and finally |NG(y)| ≥ |X \ (L∪{x0})| = r +1 for

all y ∈ Y \ {y0}. Thus, again, G with the vertices x1, y0 satisfies the assumptions of Lemma 5.1, hence

G contains a cycle of length 2n − 2; a contradiction. This completes the proof of Theorem B.
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