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When considering binary strings, it’s natural to wonder how many distinct subsequences might exist in a given string. Given that

there is an existing algorithm which provides a straightforward way to compute the number of distinct subsequences in a fixed

string, we might next be interested in the expected number of distinct subsequences in random strings. This expected value is

already known for random binary strings where each letter in the string is, independently, equally likely to be a 1 or a 0. We

generalize this result to random strings where the letter 1 appears independently with probability α ∈ [0, 1]. Also, we make some

progress in the case of random strings from an arbitrary alphabet as well as when the string is generated by a two-state Markov

chain.
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1 Introduction

This paper uses the definitions for string and subsequence provided in Flaxman et al. (2004). A binary string of length

n is some A = a1a2...an ∈ {0, 1}n, and another string B of lengthm ≤ n is a subsequence ofA if there exist indices

i1 < i2 < ... < im such that

B = ai1ai2 ...aim

We use the notation B � A when B is a subsequence of A.

Now, suppose Tn is a fixed binary string of length n. Then, define ti to be the ith letter of Tn, Ti to be the string

formed by truncating Tn after the ith letter, and φ(Tn) to be the number of distinct subsequences in Tn. If we let Sn

be a random binary string of length n, it was shown in Flaxman et al. (2004) that when Pr[si = 1] = .5 (that is, when

each independently generated letter in Sn is equally likely to be a 0 or a 1), then E[φ(Sn)] ∼ k(32 )
n for a constant k.

Later, Collins improved this result by finding that E[φ(Sn)] = 2(32 )
n − 1 under the same conditions.

In Section 2, we generalize the second result and find a formula for the expected value of φ(Sn) when Pr[si = 1] =
α ∈ (0, 1). Since the cases when Pr[si = 1] is 0 or 1 are trivial, we will then have E[φ(Sn)] when α ∈ [0, 1]. Our

method for finding this formula is very different from that used by Collins. We will define a new property of a string—

the number of new distinct subsequences–and then use these numbers as the entries in a binary tree. Our formula is

then given as a weighted sum of the entries in this tree. In Section 3 we produce recursions for the expected number

of subsequences in two more complicated cases, namely when (i) the string of letters is independently generated in a

non-uniform fashion from an arbitrary alphabet; and (ii) the binary string is Markov-dependent. We also show, using

subadditivity arguments, that the expected number of distinct subsequences in the first case above is asymptotic to cn

for some c, in the sense that

(E[φ(Sn)])
1/n → c (n→ ∞).

Finally, in Section 4 we indicate some important directions for further investigation.
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2 Main Result

In this section, we let Pr[si = 1] = α ∈ [0, 1]. We first consider the trivial cases, when α ∈ {0, 1}.

Proposition 2.1. If α ∈ {0, 1}, then φ(Sn) = n for any string Sn.

Proof: If α ∈ {0, 1}, then either Sn = 11...1 or Sn = 00...0. In either case, there is exactly one distinct subsequence

of each length between 1 and n.

With those cases dispensed with, we will assume for the remainder of this section that α ∈ (0, 1). Before continuing,

we need to establish three new definitions. We recall thatSn is a random variable that equals a fixed string Tn according

to a specified probability distribution.

Definition 2.2. The weight of Tn, a fixed binary string of length n, is φ(Tn) · Pr[Sn = Tn]. That is, the weight of Tn
is the number of distinct subsequences in Tn times the probability that a random length n string is Tn.

Definition 2.3. A new subsequence of Tn is a subsequence contained in Tn but not contained in Tn−1. We will let

ν(Tn) be the number of distinct new subsequences in a string Tn.

Definition 2.4. The new weight of Tn is the product ν(Tn) · Pr[Sn = Tn].

It will be useful to be able to compute the number of new distinct subsequences in a string; to do so we modify a

result from Elzinga et al. (2008).

Lemma 2.5 (Elzinga, Rahmann, and Wang). Given Tn, let l be the greatest number less than n such that tl = tn, and

if no such number exists, let l = 0. Then,

ν(Tn) =







n if l = 0;
n−1∑

i=l

ν(Ti) if l > 0.

Proof: Fix Tn and suppose l = 0. Then, without loss of generality, assume that Tn consists of n − 1 0s followed

by a 1. The new subsequences contained in Tn are exactly those which contain a 1. There are n such subsequences:

1, 01, 001, ..., 00...0
︸ ︷︷ ︸
n−1

1, so ν(Tn) = n.

Now suppose l > 0 and Uk is a new subsequence of length k in Tn. We assume that the last letter in Uk is tn
because otherwise Uk is clearly not new. If Uk−1 � Tl−1, then we could use tl to complete Uk, so Uk � Tl and Uk

would not be new in Tn. Conversely, if Uk−1 6� Tl−1, then Uk cannot be completed by tl, nor can it be completed

by any other ti before tn, so Uk is a new subsequence in Tn. Therefore, there is one distinct new subsequence in

Tn for every distinct new subsequence found in some Ti with l ≤ i ≤ n − 1. Summing up all of those distinct new

subsequences gives the number of distinct new subsequences in Tn.

Now, let B be a binary tree whose entries are binary strings, and let Bn,m be the mth entry in the nth row of B.

The root of B is the empty string, each left child is its parent with a 1 appended, and each right child is its parent with

a 0 appended. If we call the first row “row 0”, then row n of this tree contains all length n binary strings. Rows 0-3 of

this tree are shown below:

()

1

11

111 110

10

101 100

0

01

011 010

00

001 000
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Next, we form the binary treeB′ withB′
n,m denoting themth entry in the nth row ofB′. Then, we define eachB′

n,m

to be ν(Bn,m) which we can calculate using Lemma 2.5. Finally, for each child B′
n,m we assign the edge between it

and its parentB′
n−1,⌈m

2
⌉ a weight equal to Pr[Sn = Bn,m|Sn−1 = Bn−1,⌈m

2
⌉]. Thus we give each edge going to a left

child the weight α and each edge going to a right child the weight 1− α. Rows 0-3 of B′ are shown below:

0

1

1

1

α

3

1− α

α

2

3

α

2

1− α

1− α

α

1

2

2

α

3

1− α

α

1

3

α

1

1− α

1− α

1− α

It is clear that the value of the root should be 0 and the value of its two children should be 1. Moreover, we can

apply Lemma 2.5 to find that each row begins and ends with a 1. To characterize the remaining entries of B′ we need

two lemmas which together will give us that the portion of each row between the initial and final 1s consists of pairs

of identical numbers. The numbers in every other pair are the sums of the parents of those elements, and the numbers

in the remaining pairs have the same value as their parents. For instance, the first pair of the third row is a pair of 3s

and parents of the elements of this pair are a 1 and a 2 which sum to 3. Then, the second pair of the third row is a pair

of 2s, and the parents of the elements of this pair are also 2s.

Lemma 2.6. Suppose n ≥ 2 and m ≡ 2 (mod 4). Then, B′
n,m = B′

n,m+1 = B′
n−1,m

2
+B′

n−1,m
2
+1.

Proof: Given these restrictions on n andm, bothBn,m andBn,m+1 are grandchildren of the same string Tn−2. Then,

Bn,m = Tn−210 and Bn,m+1 = Tn−201. First, consider the case when Tn−2 consists of only 0s or only 1s, and

without loss of generality, assume it consists of only 0s. Using Lemma 2.5 we get the following equalities:

ν(Tn−210) = ν(Tn−2) + ν(Tn−21) = 1 + (n− 1) = n;

ν(Tn−201) = n;

ν(Tn−20) + ν(Tn−21) = 1 + (n− 1) = n,

so the lemma is proved in this case. Otherwise, there exist k, l > 0 such that k is the greatest integer with tk = 0 and

l is the greatest integer with tl = 1. Then, the following hold, again by Lemma 2.5:

ν(Tn−20) =

n−2∑

i=k

ν(Ti);

ν(Tn−21) =

n−2∑

i=l

ν(Ti);

ν(Tn−201) =

n−2∑

i=l

ν(Ti) + ν(Tn−20) = ν(Tn−21) + ν(Tn−20);

ν(Tn−210) =
n−2∑

i=k

ν(Ti) + ν(Tn−21) = ν(Tn−20) + ν(Tn−21).

Since Tn−21 = Bn−1,m
2

and Tn−20 = Bn−1,m
2
+1, this completes the proof.

Lemma 2.7. Suppose n ≥ 2, m ≡ 0 (mod 4), and m 6= 2n. Then B′
n,m = B′

n,m+1 = B′
n−1,m

2

= B′
n−1,m

2
+1
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Proof: We will proceed by induction on n. As a base case, note that when n = 2, the hypotheses of Lemma 2.7 are

never satisfied, so it is true.

Now, suppose Lemma 2.7 holds for n < p, and consider B′
p,m where m satisfies the hypotheses of the lemma.

Since m ≡ 0 (mod 4), it follows that Bp,m = Bp−1,m
2
0, and Bp−1,m

2
also ends in 0. Then, m + 1 ≡ 1 (mod

4), so Bp,m+1 = Bp−1,m
2
+11, and Bp−1,m

2
+1 also ends in 1. Therefore, by Lemma 2.5, B′

p,m = B′
p−1,m

2
and

B′
p,m+1 = B′

p−1,m
2
+1. Now, B′

p−1,m
2

and B′
p−1,m

2
+1 are consecutive elements and m

2 is even. If m
2 ≡ 2 (mod 4),

then B′
p−1,m

2
= B′

p−1,m
2
+1 by Lemma 2.6, and if m

2 ≡ 0 (mod 4), then B′
p−1,m

2
= B′

p−1,m
2
+1 by the induction

hypothesis. In either case, the proof is finished by induction.

Now, the original question about distinct subsequences can reinterpreted as a question about the tree B′. In partic-

ular, if we find the path from each node B′
n,m to the root and call the product of the weights of all the edges on that

path pn,m, we find that pn,m = Pr[Sn = Bn,m], and that

E[φ(Sn)] = E

[ n∑

i=1

ν(Si)

]

=

n∑

i=1

E[ν(Si)] =

n∑

i=1

2i∑

j=1

B′
i,j · pi,j (1)

The first equality comes from the fact that each subsequence in Sn is new exactly once, the second equality holds by

linearity of expectation, and the third equality rewrites E[ν(Si)] using the definition of expectation.

Now, recall the definition of new weight and note that the combined new weight of all the strings in row i of B is

given by

2i∑

j=1

B′
i,j · pi,j . With i fixed, we define the quantity ai to be the total new weight of left children, i.e., strings

ending in 1, in row i of B and bi to be the total new weight of right children, i.e., strings ending in 0, in row i of B.

We now find two simultaneous recurrence relations that describe ai and bi.

Lemma 2.8. The sequences {ai} and {bi} satisfy the following recurrence relations:

ai = ai−1 + αbi−1; bi = bi−1 + (1 − α)ai−1.

Proof: Consider the left children in row i of B′. First consider the left children whose parents are also left children.

Each of these has the same value as its parent by Lemma 2.7, so the combined new weight of all of them is α · ai−1.

Now consider the left children whose parents are right children. By Lemma 2.6, each of these has a value which is

the sum of the values of its parent, a right child, and this parent’s sibling, a left child. In this way, each right child in

row i − 1 contributes its new weight times α to its left child in row i − 1. Meanwhile, each left child in row i − 1
contributes to the left child of its sibling its new weight times 1−α since its path to the root contains one fewer edges

labelled 1 − α than the path from the row i left child to the root, but both paths contain the same number of edges

labelled α. Thus we get:

ai = αai−1 + αbi−1 + (1 − α)ai−1 = ai−1 + αbi−1

The second recurrence relation follows by the same argument. The right children of row i − 1 contribute their new

weight times 1 − α to their own right children, and also contribute their new weight times α to the right children of

their siblings. Meanwhile, the left children of row i− 1 contribute their new weight times 1−α to their right children,

and so we get:

bi = bi−1 + (1− α)ai−1,

which completes the proof.

Now, we solve for ai as follows:

αbi−1 = ai − ai−1

α(1− α)ai−1 = αbi − αbi−1

α(1− α)ai−1 = ai+1 − ai − (ai − ai−1)

ai+1 = 2ai − (1− α(1 − α))ai−1

The quadratic x2 = 2x − (1 − α(1 − α)) has two real solutions:
(

1 +
√

α(1− α)
)

and
(

1 −
√

α(1 − α)
)

, so

ai = c1

(

1 +
√

α(1 − α)
)i

+ c2

(

1−
√

α(1 − α)
)i

where c1 and c2 are constants. Inspecting the tree B′ gives that
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a1 = α and a2 = 2α − α2, and it is straightforward to verify that the following is an explicit formula of the correct

form satisfying the initial conditions:

ai =
1

2

((

α−
√

α(1 − α)
)(

1−
√

α(1 − α)
)i−1

+
(

α+
√

α(1 − α)
)(

1 +
√

α(1− α)
)i−1)

To find an explicit formula for bi, we simply note that if we substitute ai for bi, bi for ai, and α for 1 − α, we obtain

the recurrence that we just solved. Thus, making the reverse substitutions, we get that

bi =
1

2

((

1− α−
√

α(1− α)
)(

1−
√

α(1 − α)
)i−1

+
(

1− α+
√

α(1 − α)
)(

1 +
√

α(1 − α)
)i−1)

and combining these two expressions gives the total new weight in row i as

ai + bi =
1

2

((

1− 2
√

α(1 − α)
)(

1−
√

α(1 − α)
)i−1

+
(

1 + 2
√

α(1 − α)
)(

1 +
√

α(1− α)
)i−1)

As suggested by (1), the final step will be to find the sum

n∑

i=0

(ai + bi). This follows from the geometric sum formula,

and we get

n∑

i=0

(ai + bi) =

((

1− 2
√

α(1 − α)
)(

1−
(

1−
√

α(1 − α)
)n)

+
(

1 + 2
√

α(1− α)
)((

1 +
√

α(1− α)
)n

− 1
)

2
√

α(1 − α)

We have now derived the main theorem of this section.

Theorem 2.9. Suppose Pr[si = 1] = α ∈ [0, 1] for all 1 ≤ i ≤ n. Then we have

φ(Sn) =







n if α = 0, 1,
(
1−2

√
α(1−α)

)(
1−

(
1−

√
α(1−α)

)n)
+
(
1+2

√
α(1−α)

)((
1+

√
α(1−α)

)n
−1

)

2
√

α(1−α)
if α 6= 0, 1.

Since this formula is rather unwieldy for α ∈ (0, 1), we also give the following asymptotic result.

Corollary 2.10. Suppose Pr[si = 1] = α ∈ (0, 1) for all 1 < i < n. Then there exists a constant k such that

φ(Sn) ∼ k
(
1 +

√

α(1 − α)
)n
.

Proof: We take the limit of the quantity in Theorem 2.9. Since
(
1 −

√

α(1 − α)
)
< 1, it follows that lim

n→∞

(
1 −

√

α(1 − α)
)n

= 0. Therefore

lim
n→∞

φ(Sn)
(
1 +

√

α(1 − α)
)n · 2

√

α(1 − α)
(
1 + 2

√

α(1 − α)
) = 1,

as asserted.

3 Variations: Larger Alphabets, Markov Chains, and Growth Rates

In the previous section, we looked at strings on a binary alphabet generated by a random process in which the proba-

bility that any given element was 1 was fixed at α. In this section, we generalize this in two ways. First, we consider

strings on the alphabet {1, 2, ..., d} = [d] where each letter is independently j with probability αj for all j ∈ [d].
After that, we return to binary strings, but this time they will be generated according to a two-state Markov chain; in

particular, if a letter follows a 1, then it is 1 with probability α, but if it follows a 0, then it is 1 with probability β. In

both these cases, we will find recurrences for the expected new weight contributed by the nth letter, which will lead

to explicit matrix equations for that expected new weight. Unfortunately, we will not be able to find a closed-form

formula for the total expected number of subsequences like we did in Section 2.
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3.1 A Larger Alphabet

In this section, we consider strings on the alphabet [d]. In Section 2, Tn was a fixed length-n string on the alphabet

{0, 1}; here we let Tn be a fixed length-n string on the alphabet [d]. Similarly, Sn is now a random length-n string on

the alphabet [d] where, independently, Pr[si = j] = αj for all i ∈ [n], j ∈ [d] (note that
∑d

j=1 αj = 1).

We begin by stating a generalization of Lemma 2.5. The first paragraph of the proof is the same as in the proof of

the original lemma, but is included for completeness.

Lemma 3.1. Given Tn, let l be the greatest number less than n such that tl = tn, and if no such number exists, let

l = 0. Then,

ν(Tn) =







n−1∑

i=1

ν(Ti) + 1 if l = 0,

n−1∑

i=l

ν(Ti) if l > 0.

Proof: Suppose l > 0 and Uk is a subsequence of length k in Tn. We assume that the last letter in Uk is tn because

otherwise Uk is clearly not new. If Uk−1 � Tl−1, then we could use tl to complete Uk, so Uk � Tl and Uk would not

be new in Tn. Conversely, if Uk−1 6� Tl−1, then Uk cannot be completed by tl, nor can it be completed by any other ti
before tn, so Uk is a new subsequence in Tn. Therefore, there is one distinct new subsequence in Tn for every distinct

new subsequence found in some Ti with l ≤ i ≤ n− 1. Counting up all of those distinct new subsequences gives the

number of distinct new subsequences in Tn.

Now suppose l = 0 and Uk is a subsequence of length k in Tn. As before, we can assume that the last letter of

Uk is tn, but this time every subsequence of length ending in tn is new in Tn. Therefore, there is nearly a bijection

between the subsequence which appeared by Tn−1 and the ones which are new in Tn given by mapping a subsequence

appearing by Tn−1 to itself with tn appended. This is not exactly a bijection because the single-element sequence tn is

a new subsequence in Tn even though the empty set is not counted as a subsequence in Tn−1. Therefore, the number

of new subsequences is the sum of the number of subsequences which have appeared previously, plus one.

Just like in the previous section, we are interested in the expected new weight of Sn. As before, we find it useful to

refer to a tree B, but in this case it is a d-ary tree where the root is labelled with the empty string, and the j th child of

a node is labelled with the parent’s label with j appended. The following figure shows rows 0-2 and part of row 3 of

B when d = 3.

()

1

111213

2

212223

3

3132

321322323

33

331332333

Again like in the previous section, we will also use the tree B′ where each node Tn of B has been replaced by

ν(Tn).
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0

1

122

1

212

1

22

423

1

331

We now need to generalize Lemmas 2.6 and 2.7.

Definition 3.2. A (j, k)-grandchild is a string whose final two letters are j and k; equivalently, a (j, k)-grandchild is

a string which is formed by appending jk to its grandparent.

Lemma 3.3. Suppose n ≥ 2 and Tn is a (j, k)-grandchild with j 6= k whose grandparent is Tn−2; then ν(Tn) =
ν(Tn−2j) + ν(Tn−2k).

Proof: As in Lemma 3.1, let lj and lk be the greatest numbers less than or equal to n− 2 with tlj = j and tlk = k (or

0 if no such t exist). Suppose that lk 6= 0. By Lemma 3.1, we have that

ν(Tn) =

n−1∑

i=lk

ν(Ti) = ν(Tn−2j) +

n−2∑

i=lk

= ν(Tn−2j) + ν(Tn−2k).

Otherwise, lk = 0 and by Lemma 3.1, we have that

ν(Tn) =

n−1∑

i=1

ν(Ti) + 1 = ν(Tn−2j) +

n−2∑

i=1

ν(Ti) + 1 = ν(Tn−2j) + ν(Tn−2k).

This completes the proof.

Lemma 3.4. Suppose n ≥ 2 and Tn is a (j, j)-grandchild whose grandparent is Tn−2. Then, ν(Tn) = ν(Tn−2j).

Proof: Since Tn = Tn−2jj and Tn−1 = Tn−2j, the statement follows immediately from Lemma 3.1.

We want to be able to calculate the total new weight in each row of the tree B′. As in Section 2 it will be convenient

to break up that new weight by the final letter of the string it comes from. For each n ∈ Z
+ and j ∈ [d], let aj,n be the

total new weight of the length-n strings ending in j. Using Lemmas 3.3 and 3.4 we find that a typical element Tn−2j
contributes its weight times αk to Tn−2jk (for all k ∈ [d]) and also contributes its weight times αk to Tn−2kj for all

k ∈ [d] \ {j}. Therefore, we obtain the recurrences

aj,n =
d∑

k=1

αjak,n−1 +
∑

k 6=j

αkaj,n−1 = aj,n−1 +
∑

k 6=j

αjak,n−1.

Using these d recursions and the fact that the aj,1 = αj for all j, we find that the vector [a1,n, a2,n, ..., ad,n]
T is

given by the matrix equation:










a1,n
a2,n
a3,n

...

ad,n










=










1 α1 α1 . . . α1

α2 1 α2 . . . α2

α3 α3 1 . . . a3
. . .

αd αd αd . . . 1










n−1 








α1

α2

α3

...

αd










,
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and therefore the total new weight in row n is

[
1 1 1 . . . 1

]










1 α1 α1 . . . α1

α2 1 α2 . . . α2

α3 α3 1 . . . a3
. . .

αd αd αd . . . 1










n−1 








α1

α2

α3

...

αd










.

Therefore, we have a way to compute the expected value of φ(Sn) in this general alphabet case, as expressed in the

following theorem.

Theorem 3.5. Let Sn be a random length-n string on the alphabet [d] where Pr[si = j] = αj for all i, j. Then,

E[φ(Sn)] =
[
1 1 1 . . . 1

]










n−1∑

i=0










1 α1 α1 . . . α1

α2 1 α2 . . . α2

α3 α3 1 . . . a3
. . .

αd αd αd . . . 1










i

















α1

α2

α3

...

αd










.

3.2 Strings from Markov Processes

We now return to binary strings, but now the probability of seeing a particular letter will depend on the letter before

(we assume that strings are generated from left to right). In the random string Sn, Pr[si = 1|si−1 = 1] = α and

Pr[si = 1|si−1 = 0] = β. Of course, we will need some other rule for Pr[s1 = 1]; one logical choice is to take

Pr[s1 = 1] = γ where γ is the steady-state probability of a 1 occurring, which in this case gives γ = β
1+β−α . Unlike

in the previous subsection, we don’t need any new lemmas to discuss this case. Instead, the key will be to categorize

the new weight in each row by the last two letters of the strings which contribute it, rather than just by the last single

letter.

To that end, let an be the total new weight of n-letter strings ending in 11, let bn be the total new weight of n-letter

strings ending in 10, let cn be the total new weight of n letter strings ending in 01, and let dn be the total new weight

of n-letter strings ending in 00. We apply Lemmas 2.6 and 2.7 in much the same manner that we did in Section 2 to

find the recurrences:

an+1 = α(an + cn);

bn+1 = (1− α)(an + cn) + αbn +
β(1 − α)

1− β
dn;

cn+1 = β(bn + dn) + (1− β)cn +
(1 − α)β

α
an;

dn+1 = (1− β)(bn + dn).

Again, these recurrences lead to a matrix equations







an
bn
cn
dn






=







α 0 α 0

1− α α 1− α β(1−α)
1−β

(1−α)β
α β 1− β β
0 1− β 0 1− β







n−1 





a1
b1
c1
d1






,

and

E[φ(Sn)] =
[
1 1 1 . . . 1

]








n−1∑

i=0







α 0 α 0

1− α α 1− α β(1−α)
1−β

(1−α)β
α β 1− β β
0 1− β 0 1− β







i−1












a1
b1
c1
d1






.

While we could define Pr[s1 = 1] = γ (recalling that γ = β
1+β−α ) it will make our formula work out more nicely if

we pretend that there exists a letter s0 which does not add to any subsequences but which determines Pr[s1 = 1]. If

we take Pr[s0 = 1] = γ, then we have a1 = γα, b1 = γ(1 − α), c1 = (1 − γ)β, d1 = (1 − γ)(1 − β), and so the

definition of the formula is complete.
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3.3 Exponential Growth via Fekete’s Lemma

In this subsection, we exhibit the fact that in the case of general alphabets, the expected number of distinct sequences

is “around” cn, mirroring the result in Corollary 2.10. This fact is hardly surprising, but raises other questions, namely

as to whether the “true” numbers contain, additionally, polynomial factors as do several Stanley-Wilf limits in the

theory of pattern avoidance (note that there are no polynomial factors in Corollary 2.10).

Also, in general the existence of limits is not automatic, as seen by the following example: Assume that n balls are

independently thrown into an infinite array of boxes so that box j is hit with probability 1/2j for j = 1, 2, . . .. Let πn
be the probability that the largest occupied box has a single ball in it. Then, as seen in Athreya and Fidkowski (2000),

limn→∞ πn does not exist, and lim supn→∞ πn and lim infn→∞ πn differ in the fourth decimal place! Such behavior

does not however occur in our context, as we prove next.

Theorem 3.6. Let s1, s2, . . . be a sequence of independent and identically distributed random variables with Pr(s1 =
j) = αj , j = 1, 2, . . . , d, and

∑

j αj = 1. Set α = (α1, . . . , αd). Let φ(Sn) and φ(Sn+1,n+m) be the number

of distinct subsequences in Sn = (s1, . . . , sn) and (sn+1, . . . , sn+m). Let ψ(n) = E(φ(Sn)). Then there exists

c = cd,α ≥ 1 such that

ψ(n)1/n → c;n→ ∞,

where c = 1 iff d ≥ 1 and maxj αj = 1.

Proof: As in Arratia’s paper Arratia (1999) on the existence of Stanley-Wilf limits, we employ subadditivity arguments

and Fekete’s lemma. Assume without loss of generality that m ≤ n. Let η be a distinct subsequence of Sm+n, and

consider the first lexicographic occurrence of η, say ηf . Then ηf |Sn = ηf1 and ηf |(sn+1,...,sn+m) = ηf2 are a pair of

subsequences of (s1, . . . , sn) and (sn+1, . . . , sn+m). Moreover, the map

ηf −→ (ηf1 , ηf2)

is one-to-one (note that one of the components ηf1 , ηf2 may be empty). Thus

Sn+m ≤ SnSn+1,n+m,

and thus, by independence we get

ψ(n+m) ≤ ψ(n)ψ(n+ 1, n+m).

Since m ≤ n, we conclude that

ψ(n+m) ≤ ψ(n)ψ(m).

In other words, ξ(n) = logψ(n) satisfies the subadditivity condition

ξ(n+m) ≤ ξ(n) + ξ(m),

and Fekete’s lemma yields the conclusion that

ξ(n)

n
→ ℓ = inf

n≥1

ξ(n)

n
.

Clearly ℓ ∈ [0, log d]. We thus get

logψ(n)

n
= log[ψ(n)]1/n → ℓ,

and so

ψ(n)1/n → eℓ := c,

where c ∈ [1, d]. Clearly c = 1 for any d if α1 = 1. We need to show that this is the only case when this occurs. By

Theorem 2.9, we know that c > 1 if d = 2 and max(α1, α2) 6= 1. Using a monotonicity argument (for larger size

alphabets, we replace all the letters 2, 3, . . . , d by 2), it is easy to see that c > 1 if d ≥ 3 and maxj(αj) < 1. This

concludes the proof.
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4 Discussion and Open Questions

In this section we list and briefly discuss some questions that seem to be quite non-trivial.

(a) One of the central questions in the Permutation Patterns community is that of packing patterns and words in larger

ensembles; see, e.g., Burstein et al. (2002-2003). In a similar vein, we have the question of superpatterns, i.e., strings

that contain all the patterns or words of a smaller size; see, e.g., Biers-Ariel et al. (2016). A distinguished question

in this area is the one posed by Alon, who conjectured (see Biers-Ariel et al. (2016)) that a random permutation on

[n] =
[
k2

4 (1 + o(1))
]

contains all the permutations of length k with probability asymptotic to 1 as n → ∞. In

the present context, a similar question might be: What is the largest k so that each element of {0, 1}k appears as a

subsequence of a binary random string with high probability?

(b) The basic question studied in this paper appears to not have been considered in the context of permutations; i.e.,

one might ask: What is the expected number of distinct patterns present in a random permutation on [n]?
(c) Computation of the rates of exponential growth in Theorem 3.6 would, of course, be of interest as would be,

alternatively, a solution of the recurrences in Sections 3.1 and 3.2. Also, estimation of the width of the intervals of

concentration of the number of distinct subsequences, around their expected values, would add significantly to our

understanding of the situation.

(d) An intriguing question (which leads to a wide area for further investigation) is the following. In the baseline case

of binary equiprobable letter generation, we have that E(φ(Sn)) ∼ 2(1.5)n, which implies that the average number

of occurrence of a subsequence is 1
22

n/(1.5)n = 1
2 (4/3)

n. Now a subsequence such as 1 occurs “just” around n/2
times, and the sequence 11 . . . 1 with n/2 ones occurs an average of

(
n

n/2

)
· 1
2n/2 times, which simplifies, via Stirling’s

formula, to around
√
2
n

, ignoring constants and polynomial factors. The same is true of any sequence of length n/2;

it is, on average, over-represented. We might ask, however, what length sequences occur more-or-less an average

number (1.33)n of times. We can parametrize by setting k = xn and equating the expected number of occurrences of

a k-long sequence to (1.33)n. We seek, in other words, the solution to the equation

(
n

xn

)
1

2xn
= (1.33)n.

Ignoring non-exponential terms and employing Stirling’s approximation, the above reduces to

2xxx(1− x)1−x = 0.75,

which, via Wolfram Alpha, yields the solutions x = .123 . . . and x = .570 . . .! In a similar fashion we see that the

expected number of occurrences of a sequence of length (0.7729 . . .)n or longer is smaller than one. Does this suggest

that the solution to the Alon-like question stated in (a) above might be k = (0.7729 . . .)(1 + o(1))n?
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