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A construction of small regular bipartite
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Let g be a prime a power and k an integer such that 3 < k£ < q. In this paper we present a method using Latin squares
to construct adjacency matrices of k-regular bipartite graphs of girth 8 on 2(kq? — ¢) vertices. Some of these graphs
have the smallest number of vertices among the known regular graphs with girth 8.
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1 Introduction

Throughout this paper, only undirected simple graphs without loops or multiple edges are considered.
Unless otherwise stated, we follow the books by Godsil and Royle [16] and by Lint and Wilson [21] for
terminology and definitions.

Let G = (V(G), E(Q)) be a graph with vertex set V = V(G) and edge set E = E(G). The girth
of a graph G is the number g = ¢g(G) of edges in a smallest cycle. The degree of a vertex v € V is the
number of vertices adjacent to v. A graph is called regular if all the vertices have the same degree. A
cage is a k-regular graph with girth g having the smallest possible number of vertices. Simply counting
the numbers of vertices in the distance partition with respect to a vertex yields a lower bound n(k, g) on
the number of vertices n(k, g) in a cage, with the precise form of the bound depending on whether g is
even or odd.

no(k,g) =

{ T+ Ek4+k(kE—1)+... +k(k—1)973/2 if gis odd; W

20+ (k—1) + ...+ (k—1)9/271) if g is even.

As defined by Biggs [7]], the excess of a k-regular graph G is the difference |V(G)| — no(k,g). A
(k, g)-cage with even girth g and ng(k, g) vertices is said to be a generalized polygon graph. Generalized
polygon graphs exist if and only if g € {4, 6,8, 12} [7]. The question of the construction of graphs with
small excess is a difficult one. When g = 6, the existence of a graph with ng(k,6) = 2(k* — k + 1)
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vertices called generalized triangle, is equivalent to the existence of a projective plane of order k£ — 1,
that is, a symmetric ((no(k,6))/2, k, 1)-design. It is known that these designs exist whenever k — 1 is
a prime power, but the existence question for other values remains unsettled. Generalized quadrangles
when g = 8, and generalized hexagons when g = 12 are also known to exist for all prime power values
of k — 1 [SL[16}21].

Cages have been studied intensely since they were introduced by Tutte [27] in 1947. Erd6s and Sachs
[LO] proved the existence of a graph for any value of the regularity £ and the girth g, thus most of work
carried out has been focused on constructing a smallest such graph [ 2} |4} 16, 9L [11} [13} [15} 22} 23] 24,
28, 129]]. Biggs is the author of an impressive report on distinct methods for constructing cubic cages [8§]].
For some time, Royle [26] kept a web-site in which all the cages known so far appear. More details about
constructions on cages can be found in the survey by Wong [29]], the survey by Holton and Sheehan [17]]
or on the more recent dynamic cage survey by Exoo and Jajcay [12].

It is conjectured that cages with even girth are bipartite [25,29]. A graph is bipartite if its vertex set V'
can be partitioned into two partite sets, V7 and Vb, such that any edge has one end in V; and the other in
V5. If the vertices are ordered in such a way that the vertices of V; come first, then the adjacency matrix
of a bipartite graph can be written in the form

A(?VT év) @

An incidence graph is a bipartite graph in which the elements of one part V; are declared as lines and the
elements of the other part V5 are declared as points. The terminology for incidence graphs is geometric.
A point and a line are said to be incident if they are adjacent, thus the submatrix N of (2)) is called an
incidence matrix of the bipartite graph. If the number of points and the number of lines coincide, then N
is clearly a square matrix. An incidence matrix /N defines a partial plane when

- any line has at least two points, and
- two points are incident with at most one line.

Consequently, two lines of a partial plane have at most one point in common. The corresponding bipartite
graph is called the incidence graph of the partial plane, which clearly has even girth g > 6. Thus for
simplicity we shall say that the partial plane has girth g/2 if and only if the corresponding incidence
graph has girth g.

Let g be a prime power and & an integer such that 3 < k < ¢. In [3], incidence matrices of (k,6)-
bipartite graphs of order 2(kg— 1) were given. In this paper we present a method to construct the incidence
matrices of k-regular bipartite graphs of girth ¢ = 8 on 2¢(kq — 1) vertices.

2 Position matrices

Let S denote a set of symbols and let A be a matrix whose elements are subsets of S. Given x € S let
P, (A) be a (0,1)-matrix of the same dimension as A that satisfies

(Py(A));; = lifand only if x € A;;.

Thus, P, (A) is called the position matrix of the symbol x in A. Suppose that S = {0, z1,...,z,}. The
position matrices of all the symbols in A different from 0 give rise to the following (0, 1)-matrix P(A)
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called position matrix of A:
[P(A)] = [Pr,(A) -+ Py, (A)].

n

Let {A!, A% ... A"} be a family of matrices of the same number of columns whose elements are subsets
of S. Then the (0, 1)-matrix spanned by the position matrices of all of them

P(Al) Py, (Al) R (Al)
P(AQ) PI1 (AQ) U Pwn (A2)
: = : ; 3)
P(AT) Pz1 (AT) e Pxn (Ar)
is said to be the position matrix of the family F = {A', A%, ..., A"}. The following example shows two

matrices of order 2 x 2 whose elements are subsets of S = {0, a, b} and the position matrix of them. From
now on, if there is no confusion the 1-sets will be indicated as integers.

MATRICES SYMBOLS
al b

AlT @ a 110 0 @)
b b 001 1
A?[{a,b} 0 10(/1 O
0 {a,b}||0 1|0 1

As already mentioned in the Introduction, our main aim is to obtain incidence matrices of bipartite
k-regular graphs of girth 8 with small excess. Such incidence matrices may be seen also as incidence
matrices of partial planes which will be obtained by identifying row i of P,(A%) as line i(«), and column
j of P,(A%) as point j(z), for any matrix A* € F and z € S — 0. To achieve our goal we propose the
following definitions.

Definition 2.1 Let g > 4 be an even number. A family of matrices F = {A, A%, ..., A"} of the same
number of columns whose elements are subsets of a set of symbols S is said to have girth g if the position
matrix of F is the incidence matrix of a bipartite graph of girth g.

Each matrix of @]) has girth g = oo, and the two matrices A*, A% form a family of girth 8.

Let us recall that a Latin square of order q is a ¢ X ¢ matrix with entries from a set of ¢ symbols such
that each symbol occurs exactly once in each row and exactly once in each column. A Latin square has
clearly girth g = oo because the position matrices of its elements are permutation matrices yielding the
incidence matrix of a partial plane consisting in a set of parallel lines (since they have no common point).

In [3]] we introduced the notion of quasi row-disjoint matrices as follows.

Definition 2.2 /3] Let A' and A? be two matrices of the same number of columns whose elements are
subsets of a set of symbols S such that 0 € S. A pair (x,y) with x,y € S belongs to the cartesian product
of any two rows (A'); x (A?)y, if and only if (z,y) € (A')ij x (A?)n; for some j. Then A' and A* are
said to be quasi row-disjoint if and only if the cartesian product of any two rows (AY);, (A?)}, contains at
most one pair (z,x) € (A'); x (A?), with x # 0.
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The pair of matrices of the example () are quasi row-disjoint matrices. Moreover, in [3] we have stated
the following theorem which roughly speaking says that a family of r matrices is quasi row-disjoint if and
only if its girth is at least 6.

Theorem 2.1 [3] Let A' and A? be two matrices each one of girth at least 6 of the same number of
columns and whose elements are subsets of a set of symbols S such that 0 € S. Then A' and A? are quasi
row-disjoint if and only the family { A, A?} has girth at least 6.

In the next theorem we give a sufficient condition for a family of matrices to have girth at least 8.

Theorem 2.2 Let F = {A',... A"} be a set of r > 2 quasi row-disjoint matrices of the same number
of columns whose elements are subsets of a set of symbols S such that 0 € S. Let (A");, (AY)i, (A");r
denote any three mutually distinct rows of matrices A%, AV, A¥ € F. Then the girth of F is at least 8
if the sets (A"); x (AY)yr, (AY)i X (A¥)r, (A%); X (A™)s contains at most two distinct pairs (x, ),
(y,y) withz,y #0, 2,y € S.

Proof: Suppose (z,z) € (A"); x (A");y,  # 0. Therefore the position matrix of F has the following
entries equal to 1:
Py(A")(i,§) = Po(A)(0, ) = 1, 5)

where P, (A") and P, (A") are the position matrix of the element x in A* and A" respectively. Recall

that for any given matrix A* € F and z € S — 0, row i of P,(A®) is line i(c), and column j of P,(A%)

is point j(z). Consequently, (5) means that lines i(u) and ¢’ (v) have point j(z) as a common point.
Analogously, (y,y) € (AV)y X (A¥);r, y # 0, is equivalent to:

Py (A")(i',5") = By (A*)(i",5') = 1,

or in other words, lines i’(v) and " (w) have the point j'(y) in common, with j'(y) # j(x) because
y # x. Thus if there exists z # 0, z # x,y, such that (z, z) € (A*); x (A");~, then lines i(u) and 7" (w)
have the point j”(z) in common, j” # j, 7/, yielding that the partial plane defined by the position matrix
of F contains the triangle j(z)j'(y)j” (z). In other words, the position matrix of F is the incidence matrix
of a bipartite graph of girth less than 8. O

Our immediate goal is to derive a method for constructing a family of matrices with girth 8, because
the position matrix of this family will be the incidence matrix of a bipartite graph of girth 8.

3 Method

Throughout this work let [[»]] denote the set of non negative integers {0, 1,...,n} and (n]] = [[n]] \ {0}.
Let I,, be the identity matrix and denote by (¢ x F')I,, the matrix obtained from I,, by replacing each
one with a subset {t} x F of {t} x [[n]] for some ¢ € [[n]] and F' C [[n]]. In the following theorem we
demonstrate a method for obtaining a family of matrices with girth 8 using Latin squares.

Theorem 3.1 Let q be a prime power, and let ¥, be the Galois field of order q. For each u,t € F, define
the ¢ X q matrix Lt by
L%'(i,§) =i +wuj +ut, i,j €F,.

Then the following assertions hold:
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(i) Forall u,v € F,\ {0}, u # v, and t,t' € F, the matrices L'** and LYt are quasi row-disjoint
Latin squares with entries from [[q — 1]].

(ii) For any given u,t € Fq, u # 0, the matrix LWt x LU+e 5t pas q2 distinct entries. Moreover, the
position matrix of the family
-1
{L“’t x LuTe Sty e F,}

is a (0, 1)-matrix of order > x ¢ considering symbol (0, 0) different from 0, and it is the incidence
matrix of a partial plane consisting in q> parallel lines with q points on each.

(iii) The family {L*! x L*t 5t ¢y t € Fy,u # 0} has girth 8 and its position matrix has order
(¢® — ¢%) x ¢* and q ones in each row and q — 1 ones in each column.

(iv) The position matrix of the family
(L% Lyt e Fyu # 0} U{(tx [[q— 1)), : t € Fy}

is the incidence matrix of a q-regular bipartite graph of girth 8 with ¢3 vertices in each partite set.

Proof: (ﬂ) Clearly L and L"' are ¢ x ¢ Latin squares on [[¢ — 1]]. Let us show that they are quasi
row-disjoint. Otherwise, there exists ,4'j, 7' € F, with j # j’ such that

L*'i.j) = L"(¢,)),
L“’t(i,j/) _ Lv’t,(i',j/).
Equivalently,
itujt+ut = i 4vj+ot
i+uj +ut = v +ot.

Therefore u(j — j') = v(j — j) implying that w = v or j = j', a contradiction in either case.

Note that L“T* "t is also a Latin square if u + u~1 # 0, otherwise L% (4, j) = i. In either case it
is very easy to check that L*t and L*+* "t are orthogonal, which implies that L*t x Lu+u” "t has ¢
distinct entries. Hence, the position matrix of the family {L** x Lu+*" "t : ¢ € F,} is a (0, 1)-matrix of
order ¢ x ¢* by considering entry (0,0) different from 0.

Let us show now that for every ¢,4’, j, t,t’ € F, such that ¢ # t' we have

’

(L™t LMF 00, 5) # (LY x LmH ) ().
Otherwise we would have

1+ uj + ut =4 +uj + ut’,
i+u+u i+ wt+u )t =i+ (u+u )+ (ut+u ),

implying ¢ = ', which is a contradiction. As a consequence, the position matrix of the set {L“* x
Lutu 't ¢ e F,} has one unique entry equal to 1 in each column. Considering the rows of this (0, 1)-
matrix as lines and the columns as points, this is equivalent to say that each point belongs to a unique line.
Thus, this (0, 1)-matrix is the incidence matrix of ¢> parallel lines with ¢ points on each.
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First, let us show that the position matrix of the family M = {L%! x Lu+u "t 2y ¢ € By, u # 0}
has ¢ entries equal to 1 in each row and ¢ — 1 entries equal to 1 in each column. By (i) the position matrix
of each set {L®! x Lute 't i ¢ € [F,} contributes with a unique 1 in each column, yielding that each
column of the position matrix of M has ¢ — 1 entries equal to 1. Since each matrix Lt x Lutu 't
has ¢? distinct entries, then the ¢ position matrices of symbols starting with the same x for any = € F,
contribute with one unique 1 in each row. So the position matrix of M has g entries equal to 1 in each
row. Therefore, we conclude that the position matrix of M has order (¢® — ¢%) x ¢* and ¢ entries equal
to 1 in each row and ¢ — 1 entries equal to 1 in each column.

Next, let us show that the girth of M is at least 6. Otherwise, there exists u,v € F, \ {0}, u # v and
i,4'j,7' € F, with j # j’ for which

(Lu,t ~ Lu+“:i’t)(7;,j) — (Lv,t: ~ Lv+v:1,t:)(i/,j)7
(Lu,t X Lu+u 7t)(i,jl) — (Lv,t X Lu+v ,t )(’i/,j/).

This implies that L** and Lv*" are not quasi row-disjoint, a contradiction with item . Thus the family
{Lwt x Lute™t gt e F,, u # 0} has girth at least 6. Next let us show that the girth is 8 applying
Theorem By way of contradiction assume that for three elements u, v, w of F, \ {0} there exist three
pairwise distinct columns 7, 5, 5" for which

—1 R v ’ v ’U_l ’ . .
(L s L h)(i, ) = (L0 < L ()
(Lv,t//x Lv+v ;tl /(/Z'/’j/) — (Lw,t X Lw+jli ,t )(i/7j/) (6)
(Lw,t X Lw+w ,t )(i”,j”) — (Lu,t X Lu+u ’t)(i7jll).

Note that u, v, w must be three distinct elements because by (ii) each matrix L*f x L*T "+t has ¢2
distinct entries. Then from the equality between the first coordinates we have:

(u—v)j = i —i+vt/ —ut
(v—w)j = V" =i +wt" -t
(w—wu)j" = i—4i" 4+ ut —wt’.
Hence
(v—u)j+ (w—2v)j = (w—u)j”. (7

Moreover, from equalities between the second coordinates in (6) and taking into account (7) we obtain
e e e
Multiplying this equality by uvw we get
w(u—v)j+ulv—w)j =v(u—w)j". 8)
Multiplying (7) by w we also obtain
wv —u)j+ww—v)j =wlw—u)j”’. )
Thus adding both equalities (8) and (9) we have

!/ -1/

(u—w)(v —w)j" = (v —w)(u—-w)j"
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Taking into account that u, v, w are mutually distinct we get that j° = 5 which is a contradiction. There-
fore M = {L*! x Lt 't st € By, u # 0} has girth 8 as claimed.

By and applying Theorem [2.2] we only need to prove that for all u, v € Fg \ {0} with u # v,
any three matrices Lt x Lutu 't [t 5 [v+v~ "t and (¢ x [[q — 1]])I, have girth 8. Otherwise we
would have

Lt % Lu+u71’t(i,j> — Lv,t’ > Lv—&-v’l,t/(i/’j)
Lot Lot M g e (7 x (lg = UD (G 5)
Lt L i) e (¢ x (lg = UG 5)

Then L*“t(i,j) = L"*(#/,7) and L**(i,j') = L** (i,j') = t”, meaning that L** and L"!" are not
quasi row-disjoint, contradicting item (). Further, by we know that the position matrix of {L%! x
Lutu 't u,t € Fg,u # 0} has ¢ ones in each row and g — 1 ones in each column. Since the rows of
the position matrix of (¢ x [[¢ — 1]])I, contributes with one additional one, then the result follows. O

To illustrate the method of Theorem [3.1] both the matrices provided by this theorem and their position
matrix for the first case ¢ = 2 are shown in Table From now on, if there is no confusion an entry (z, y)
will be denoted as xy. Thus this (0,1)-matrix is the incidence matrix of a 2-regular graph of girth 8, which
consists of two cycles of girth 8. In Table 2] the matrices for ¢ = 3 are also depicted. The corresponding
position matrix is the incidence matrix of a 3-regular graph of girth 8 on 27 vertices in each partite set.
Table [3] contains the matrices for ¢ = 4. Their position matrix is the incidence matrix of a 4-regular
bipartite graph on 64 vertices in each partite set.

MATRICES SYMBOLS
00] O] 10] 11

LY < L9000 10 [[10[0 0[]0 1]0 0
11 01 |[0 ojo 1[0 0|1 0

LN X LT[ 10 00 [[0 1[0 0[1 0|0 0
01 11 {jo o|1 0ofo oo 1

(0 x [[(J7z|{00,01} 0 ([T 0[1 0(0 00 0
0  {00,01}/[0 1[0 1{0 0|0 0

I x [ [{10,11} 0 ([0 0[0 0[1 01 0
0 {10,11}|[0 0|0 0|0 1]0 1

Tab. 1: Case g = 2.

Let us call array of r symbols and n columns the matrix of order r x n

1 ... 1

92 ... 9
Or,n:

T‘ PR r

When r = n the array is denoted by O,,. It is easy to see that the position matrix of O,.,, is the incidence
matrix of a partial plane consisting in 7 parallel lines, each one having n points. Using the position
matrices of these arrays denoted by P (O, ,,) and applying Theorem [3.1] we now present the method for
constructing the desired (k, 8)-bipartite graphs.
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LUt x L2 L2 < L1 t x [[2]])) I3
00 12 21 0021 12 [{00,01,02} 0 0
t=0{1120 02 {1102 20 0 {00, 01,02} 0
2201 10 2210 01 0 0 {00,01, 02}
1221 00 2112 00 [{10,11,12} 0 0
=1{2002 11 (0220 11 0 {10,11,12}
01 10 22 (1001 22 0 0 {10,11,12}
2100 12 [1200 21 [{20,21,22} 0 0
t=2(02 11 20 |20 11 02 {20, 21, 22} 0
1022 01 |0122 10 0 0 {20,21,22}
Tab. 2: Matrices for the case ¢ = 3.
LY x Lo 120 x LU L3 x L1Y (t x [[3]]) 14
00 10 20 30[00 21 32 13[00 31 12 23[{00, 01, 02,03} 0 0 0
1101 3121113023 02(11 20 03 32 0 {00,01, 02,03} 0 0
t=0{22 32 02 12|22 03 10 31|22 13 30 01 0 0 {00,01,02,03} 0
3323 13 03|33 12 01 20{33 02 21 10 0 0 0 {00, 01, 02,03}
10 00 30 20[21 00 13 32[31 00 23 12[{10,11, 12,13} 0 0 0
t=1|01 11 21 31|30 11 02 23|20 11 32 03 0 {10,11,12,13} 0 0
3222 12 02|03 22 31 10{13 22 01 30 0 0 {10,11,12,13} 0
233303 13|123320 10233 10 21 0 0 0 {10,11,12,13}
20 30 00 10[32 13 00 21[12 23 00 31[{20, 21, 22, 23} 0 0 0
3121110112302 11 3003 32 11 20 0 {20, 21, 22,23} 0 0
t=2102 12 22 32(10 31 22 03|30 01 22 13 0 0 {20, 21, 22,23} 0
13 03 33 23|01 20 33 12|21 10 33 02 0 0 0 {20, 21, 22,23}
3020 10 00[13 32 21 00]12 23 00 31[{30, 31, 32,33} 0 0 0
=3|21 31 01 1102 23 30 11|03 32 11 20 0 {30, 31, 32,33} 0 0
12 02 32 22|31 10 03 22|30 01 22 13 0 0 {30, 31, 32,33} 0
03 13 23 33|20 01 12 33|21 10 33 02 0 0 0 {30, 31, 32, 33}
Tab. 3: Matrices for the case ¢ = 4.

Theorem 3.2 Let g be a power prime, and let ¥ be the Galois field of order q. For eachu,t € Fg, u # 0,
let L' be the matrix L' (i, j) = i +uj + ut, i,j € Fy, and let M be the position matrix of the family

(L0 x L5yt € F,u# 0} U{(Ex [[g— 1)])1, : t € Fy}.

Then the following assertions hold:

(i) The (0,1)-matrix

’ A4" P(Og2.) " ‘

(10)

is the incidence matrix of a bipartite graph of girth 8 with ¢> + ¢ vertices in one partite set having
degree q + 1, and q° vertices in the other partite set having degree q.
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(i) Let (L" x Lu+tv""t)o denote the matrix obtained from L*t x LT "t by replacing each entry
0z with O for all x € . Let My be the position matrix of the family

(L % L g syt € Fyyu £ 0} U (¢ x [lg— 1)), : ¢ € Fyyt 40},

Then

My | P(Og2_ygq)"

0 (n

is the incidence matrix of a q-regular bipartite graph of girth 8 with ¢> — q vertices in each partite
set.

(iii) Let k be an integer such that 3 < k < q — 1 and let (L** x L“*“il’t)q_k denote the matrix

obtained from Lt x L*+v" "t by replacing with 0 the entries Oy and (z,x + s) for all z,y, s € F,
fors=0,...,q—1— k. Let M,_}, be the position matrix of

(Lot xpv ey ru=1, . k=130 (tx ([[q—U\{t, t+1, ... t+q—1—k}))I, : t # 0}

*

Suppose that the q columns of Orq—q,q are indexed by j € Fy. Let Oy, _, . be the matrix obtained
from Opq—q.q by changing for O the entries (i, —u?s) forallu = 1,...,k—1,i = (u—1)g+1,...,uq
ands=0,...,q—1—k. Then

* T
Mq—k P(Ok‘gfg q) (12)

(0]

is the incidence matrix of a k-regular bipartite graph of girth 8 with kq® — q vertices in each partite
set.

Proof: From Theorem [3.1] it follows that M is the incidence matrix of a bipartite graph of girth 8
with ¢3 lines and ¢* points. Thus we need to prove that the ¢ columns of P(O,2,) " can be added to
M without decreasing the girth 8. It is readily seen that after adding these columns, the girth is at least
6, because by Theorem for each u € F, \ {0} the set {L** x Lu+u "t : ¢ € F,,} consists of ¢2
parallel lines. Thus suppose that (I0) contains as a sub-matrix the incidence matrix of a cycle of length 6.
Then there exists u,v € F, \ {0} and ¢,',4", j, j € F, with u # v, i # ' and j # j’ such that

1

(Lmt 5 D )0, g) = (L0 x D@ g),
(Lu’t « Lu.;,_u* ’t)(i/,j/) — (Lv,t % Lv-‘r?f ,t )(i//,j/).
From the equalities between their coordinates we obtain
i— i +u(j - j') = o(j—=J)
i—i 4+ (utu)G—4) = (vt

Hence u=t(j — j') = v=1(j — j'), implying u = v or j = j’, a contradiction in either case. Further if
(L% L0 (i, ) € (F x [lg=101g) (0", ), and (L x L0 (i, ) € (t x [lg= 1) (i, ).
then then ¢ = j = j’ which is also a contradiction.
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MATRICES SYMBOLS
0 [ IT [ 12 | 20 [ 21 [ 22
0 2 P 0 00[0 00[0 100 000 OI[0 00[T00000
11 20 0 0 00/1T 00[0 00[0 10/0 00[0 00[100000
2 0 10 0 01/0 00[0 00/0 00/0 00/1 00[100000
12 71 0 0 00/0 00[T 000 000 T0[0 00010000
20 0 11 0 00/0 01[0 00[1 00/0 00[0 00[010000
0 10 22 0 10/0 00[0 00/0 00/0 00[0 01010000
p)| 0 ¥ 0 00/0 00[0 010 00T 00[0 00001000
0 11 20 0 00/0 10[0 00[0 01/0 00[0 00[001000
10 22 0 1 00[0 00[0 00/0 00[0 00[0 10/001000
0 P 2 0 00[0 00[0 0TI[0 00/0 T0[0 00000100
11 0 20 0 00/1 00[0 00[0 01/0 00[0 00[000100
2 10 0 0 10/0 00[0 00/0 00/0 00/1 00[000100
71 2 0 0 00/0 00[0 100 00T 00[0 00000010
0 20 11 0 00/0 01/0 00[0 10/0 00[0 00[000010
10 0 22 1 _00[0 00[0 00/0 00[0 00[0 01/000010
2 0 21 0 00[0 00[T 00[0 000 010 00000001
20 11 0 0 00/0 10[0 00[1 00/0 00[0 00(000001
0 22 10 0 01/0 00[0 00[0 00/0 00[0 10/000001
{10, 11, 12} 0 0 T 00[T 001 00/0 00[0 00[0 00000000
0 {10,11,12} 0 0 10/0 10[0 10[0 00/0 00[0 00[000000
0 0 {10,11,12}| 0 0 1[0 01/0 0 1[0 00[0 00/0 00[0 00000
120,21, 22} 0 0 0 00/0 00[0 00T 00T 00/T 00000000
0 {20,21,22} 0 0 00/0 00[0 00[0 10/0 10[0 10[000000
0 0 {20,21,22}| 0 00[0 00/0 00[0 01[0 01/0 01[000000

Tab. 4: Case g = 3 for (i) of Theorem[3.2] Incidence matrix of a (3,8)-graph on 48 vertices.

This item follows directly from the fact that My is a sub-matrix of M obtained by deleting the
first ¢> columns, which correspond to the position of the symbols starting by 0. Hence M, has ¢* — ¢
columns. Moreover, the total number of rows of M, is the number of matrices L%t x Lu+% "t (that is,
(¢ — 1)g) plus the number of matrices (¢t x ([[¢g — 1]]))I,, t # 0, (a total of ¢ — 1) multiplied by ¢, that
is, q(¢> — ¢+ g — 1) = ¢® — q. Thus M, is a matrix of order (¢ — ¢) x (¢> — ¢?). Since P(Oy2_,4)
contributes with g2 — ¢ more columns, then is a square matrix of order ¢> — q. Reasoning as in of
Theorem [3.1] we obtain that is the incidence matrix of a bipartite graph of girth 8, which has ¢> — ¢
columns and ¢3 — ¢ rows both having ¢ ones, so this item is valid. By way of example, both the matrices
provided by this item and their position matrix for the case ¢ = 3 are shown in Table d] Thus this
(0,1)-matrix is the incidence matrix of a 3-regular graph of girth 8 on 24 vertices in each partite set.

Note that (I2)) is a sub-matrix of (I0), then it is the incidence matrix of a bipartite graph of girth 8.
Moreover, M, is obtained from M by deleting the first ¢ columns which corresponds to the position
matrix of symbols starting by 0, and by deleting also (¢ — k)(¢ — 1)g columns corresponding to the
symbols (z + s,z + 2s) forall s = 0,1,...,¢g — 1 — k which have been changed for 0. Then the total
number of columns of M,_j is

¢ — ¢ — (q—k)(q—1)qg=kq(q—1).

The total number of rows of M,_} is given by the number of matrices (L*! x L¥F% '), o =
1,...,k—1,t € F, plus the number of matrices (¢ X ([[¢ — 1]\ {t,¢+1,...,.t+q—1—k}))I, : t #0,
t # 0, (a total of ¢ — 1) multiplied by ¢, that is

(k—1)¢* + (¢—1)g = kq* — q.
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Thus M, is a matrix of order (k¢> — q) x (kq* — kq). Since P(Oj,_, )" contributes with kg — ¢
more columns, then is a square matrix of order kq? — q.

To finish the proof of this item, we only need to show that has k£ ones in each row and k ones in
each column. To see this, let us show that given a fixed s = 0,1,...,¢ — 1 — k, the entries (y,y + s) for
all y € I, are in the same column of each matrix L*! x L*+" ' Suppose L' x LUt t(, j) =
(y,y + s), that is

ituj+ut=y, andi+ (u+u )i+ u+u Ht=y+s.

Then u=!(j 4+ t) = s, which implies j = us — t. Thus our claim is true since the symbols (y,y + s)
are placed in the same column us — ¢ of the matrix L%t x Lu+% ", Therefore, after changing for 0 the
symbols Oz and (y,y+s) forall z,y € F,and forall s = 0, ..., ¢ — 1 — k we obtain a new matrix having
k entries different from O in the rows 4 such that i + u%s = 0, and in the remaining rows k — 1 entries
different from 0. Since in the rows ¢ of P( Zk_q,q)—r such that i + u?s # 0 there is a 1 by hypothesis,
then P(O;k_ a0 q)T contributes with one additional entry equal to 1 in the same rows as those having k£ — 1
entries different from 0. Hence is a square matrix of order kg> — ¢ having k ones in each row and
clearly in each column.

By way of example, both the matrices provided by this item and their position matrix for the case
g =4 and k = 3 are shown in Table[5} and the corresponding matrices for ¢ = 5 and k = 3 are shown in
Table[6] Thus, these (0,1)-matrices are the incidence matrix of a 3-regular graph of girth 8 on 44 vertices
in each partite set for ¢ = 4 and 70 vertices in each partite set for ¢ = 5. O

4 Conclusion

For ¢ a prime power and 3 < k < g we have presented a method providing the incidence matrices of
k-regular bipartite graphs of girth 8 with kg? — q vertices in each partite set. Thus if n(k, 8) denotes the
order of a (k, 8)-cage, it follows from (1)) that

2k(k? —2k+2) < n(k,8) < 2q(kq—1).

Hence the g-regular bipartite graphs constructed in this work have an excess of 4¢% — 6q. And the (¢ — 1)-
regular bipartite graphs have an excess of 8¢ — 20q + 10.

As regards to known upper bounds on n(k, g), Lazebnik, Ustimenko and Woldar [[19] gave the following
result: Let £ > 2 and g > 5 be integers, and let ¢ denote the smallest odd prime power for which k& < q.
Then,

n(k,g) < 2kq977 (13)

where a =4, 11/4,7/2,13/4 for g = 0, 1,2, 3 (mod 4), respectively. According to , n(k,8) < 2kq?,
therefore the graphs provided by our method also improve this result for g = 8. A construction giving
this upper bound (T3) for g = 8 appeared for the first time in [18]] and was used later in [14] and probably,
the simplest exposition of it is in Section 2.4 of [20]. In [135], (¢, 8)-graphs with 2¢(¢q? — 2) vertices were
constructed using geometrical techniques. But for regularities & < ¢ the graphs constructed in this paper
have the smallest number of vertices among the known regular graphs with girth 8.
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Tab. 5: Case ¢ = 4 for k = 3 of Theorem |3.2|(ii1). Incidence matrix of a (3,8)-graph on 88 vertices.

{10, 12, 13} I4
{20, 21, 23} I,

{30, 31, 32} I,
00 0

00

020 0

042 0 32 0

00 0 4313

014 0 0 24

44

Tab. 6: Matrices for ¢ = 5 and k = 3 according to Case of Theorem[3.2]

2|0 31

u=1|{0 0 41 0 10

u:
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