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The problem of string pattern avoidance in generalized non-crossing trees is studied. The generating functions for
generalized non-crossing trees avoiding string patterns of length one and two are obtained. The Lagrange inver-
sion formula is used to obtain the explicit formulas for somespecial cases. A bijection is also established between
generalized non-crossing trees with special string pattern avoidance and little Schröder paths.
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1 Introduction
A non-crossing tree(NC-tree for short) is a tree drawn onn vertices in{1, 2, · · · , n} arranged in coun-
terclockwise order along a circle such that the edges lie entirely within the circle and do not cross. Non-
crossing trees have been investigated by Chen and Yan [1], Deutsch and Noy [3], Flajolet and Noy [4], Gu,
et al. [5], Hough [6], Noy [7], Panholzer and Prodinger [8]. Recently, some problems of pattern avoidance
in NC-trees have been studied by Sun and Wang [14]. It is well known that the set of NC-trees withn +1
vertices is counted by the generalized Catalan number1

2n+1

(

3n
n

)

[12, A001764].
A generalized non-crossing tree(GNC-tree for short) is a generalization of ordinary non-crossing

tree such that the vertices along the circle are not necessarily labelled by1, 2, . . . , n, but only weakly
increasing, beginning with1 and without “gaps”. See Figure 2 for an example.

In the sequel, we are concerned with rooted GNC-trees where the first 1 is the root. LetGNCn denote
the set of rooted GNC-trees ofn + 1 vertices. It is easy to prove thatGNCn is counted by|GNCn| =

2n

2n+1

(

3n

n

)

[12, A153231].
A descent (an ascent, a level)is an edge(i, j) such thati > j (i < j, i = j) and i is on the path

from the root to the vertexj. If encoding an ascent byu, a level byh and a descent byd, then each path
in a GNC-tree can be represented by a ternary word on{u, h, d} by reading the path from the root. In
analogy with the well-established permutation patterns [11, 15], we propose a definition of patterns in
GNC-trees. However, it should be pointed out that in the present paper we are dealing with “string pattern
avoidance” (only consecutive letters are considered), which is thus different from “pattern avoiding” as
defined in [11, 15].
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Definition 1.1 Let w = w1w2 . . . wn andσ = σ1σ2 . . . σk be two ternary words on{u, h, d}. Thenw

contains the string patternσ if it has a subwordwi+1wi+2 . . . wi+k equal toσ for some0 ≤ i ≤ n − k;
otherwisew is calledσ-avoiding. AGNC-treeT is calledσ-avoiding ifT has no subpath (viewed from
the root) encoded byσ.

Let Pk denote the set of ternary words of lengthk on {u, h, d}. For anyσ ∈ Pk, let GNCm
n (σ)

denote the set of GNC-trees inGNCn which contain the patternσ exactlym times. For any nonempty
subsetP ⊂ Pk, GNCn(P ) denotes the set of GNC-trees inGNCn which avoid all the patterns inP . A
counterpart for GNC-trees to the analogous question for restricted permutations is the following question:

Question 1.2 Determine the cardinalities ofGNCn(P ) for P ⊂ Pk andGNCm
n (σ) for σ ∈ Pk.

In the literature, two kinds of special NC-trees have been considered, namely non-crossing increas-
ing trees and non-crossing alternating trees. Both of them are counted by the Catalan numbersCn =

1
n+1

(

2n
n

)

[12, A000108].A non-crossing increasing (alternating) treeis an NC-tree with the vertices on
the path from the root 1 to any other vertex appearing in increasing (alternating) order. By our notation,
a non-crossing increasing tree is ad-avoiding NC-tree and a non-crossing alternating tree is a{uu, dd}-
avoiding NC-tree. Bijections between non-crossing alternating trees and Dyck paths have been presented
in [13]. But for GNC-trees, it seems to be shed little light onthis subject.

The contents of the paper (and also the methods used) are muchcloser to studies of “peaks, valleys,
etc.” in Motzkin paths or Dyck paths [9, 10]. In this paper, wedeal with several patterns and find the
corresponding generating functions for GNC-trees. More precisely, we investigate the patterns inP1 in
Section 2 and the patterns inP2 in Section 3. The Lagrange inversion formula is used to obtain explicit
formulas for some special cases. A bijection is also established between GNC-trees with special pattern
avoidance and little Schröder paths.

2 The patterns in P1

For anyT ∈ GNCn, let u(T ), h(T ), d(T ) denote the number of ascents, levels and descents ofT respec-
tively, thenu(T ) + h(T ) + d(T ) = n. Let GNC∗

n be the set of GNC-treesT in GNCn such thatT has
only one vertex with label 1, that is, only the root has the label 1 and all other vertices have labels greater
than 1. Define

Tx,y,z(t) =
∑

n≥0

tn
∑

T∈GNCn

xu(T )yh(T )zd(T ),

T ∗
x,y,z(t) =

∑

n≥0

tn
∑

T∈GNC∗

n

xu(T )yh(T )zd(T ).

Close relations betweenTx,y,z(t) andT ∗
x,y,z(t) can be established using the “butterfly” decomposition

(introduced by Flajolet and Noy [4]) of GNC-trees in Figure 1. It is obvious that the decomposition is
only used forn ≥ 1 and that the casen = 0 leads to the additional 1. Find the first and minimal labeli,
denoted byi©, of T ∈ GNCn in counterclockwise order such that the root1 and i© form an edge, thenT
can be partitioned into three parts.

Case(i): i = j = 1 andk = 1 or 2. Part I and II both avoid the patternsu andd, Part III still forms a
GNC-tree. The edge(1, 1) contributes a weight ofyt, each of Part I and II contributesT0,y,0(t),
and Part III contributesTx,y,z(t).
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Fig. 1: Decomposition of GNC-trees.

Case(ii): i = 1, j ≥ 2 andk = j or j + 1. Part I avoids the patternsu andd, Part II still forms a GNC-tree,
where not all vertices are labeled by 1. The edge(1, 1) contributes a weight ofyt, Part I contributes
T0,y,0(t) and Part II contributesTx,y,z(t) − T0,y,0(t). For Part III, except for the one point case, by
decreasing all the labels (excluding the root) byj − 2 units (if k = j) or j − 1 units (if k = j + 1),
one can obtain two GNC-trees inGNC∗

n for somen ≥ 1. Part III contributes2T ∗
x,y,z(t) − 1.

Case(iii): i ≥ 2, j ≥ i andk = j or j + 1. The edge (1,i©) contributes a weight ofxt. Note that the ascents
and descents are exchanged in Part I, and the labels are lyingin {1, 2, . . . , i} or {2, 3, . . . , i}, so
Part I contributes2Tz,y,x(t) − T0,y,0(t) for i ≥ 2. Part II still forms a GNC-tree after reducing
the labels{i, . . . , j} to {1, · · · , j − i + 1}, so Part II contributesTx,y,z(t). Similar to (ii), Part III
contributes2T ∗

x,y,z(t) − 1.

In summary, we have

Tx,y,z(t) = 1 + ytT0,y,0(t)
2Tx,y,z(t)

+ ytT0,y,0(t)
{

Tx,y,z(t) − T0,y,0(t)
}{

2T ∗
x,y,z(t) − 1

}

(2.1)

+ xtTx,y,z(t)
{

2Tz,y,x(t) − T0,y,0(t)
}{

2T ∗
x,y,z(t) − 1

}

.

For anyT ∈ GNC∗
n, by a similar decomposition, one can derive that

T ∗
x,y,z(t) = 1 + xtTx,y,z(t)Tz,y,x(t)

{

2T ∗
x,y,z(t) − 1

}

. (2.2)

Now we solve (2.2) forT ∗
x,y,z(t) and substitute into (2.1) to obtain

Tx,y,z(t) = 1 − ytT0,y,0(t)
2 − xtTx,y,z(t)T0,y,0(t) + ytT0,y,0(t)

{

1 + T0,y,0(t)
}

Tx,y,z(t)

+ 2xt
{

1 − ytT0,y,0(t)
2
}

Tx,y,z(t)
2Tz,y,x(t). (2.3)

If x = z = 0, then (2.3) reduces to

T0,y,0(t) = 1 + ytT0,y,0(t)
3. (2.4)
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Multiplying on both sides of (2.3) byT0,y,0(t) and using (2.4), after some routine computations, one
can deduce that

Tx,y,z(t) = 1 + (y − x)tT0,y,0(t)
2Tx,y,z(t) + 2xtTx,y,z(t)

2Tz,y,x(t). (2.5)

The evaluationx = y = z = 1 immediately givesT1,1,1(t) = 1 + 2tT1,1,1(t)
3, which thus proves that

|GNCn| = 2n

2n+1

(

3n
n

)

via generating functions. By solving (2.5) forTx,y,z(t), we have

Tx,y,z(t) =
1 − (y − x)tT0,y,0(t)

2 −
√

(1 − (y − x)tT0,y,0(t)2)2 − 8xtTz,y,x(t)

4xtTz,y,x(t)

=
1

1 − (y − x)tT0,y,0(t)2
C(

2xtTz,y,x(t)

(1 − (y − x)tT0,y,0(t)2)2
), (2.6)

whereC(t) = 1−
√

1−4t
2t

is the generating function for Catalan numbers.
Exchangingx andz in (2.6), one can computeTz,y,x(t). If one substitutes the result in (2.6), one arrives

at the following proposition.

Proposition 2.1 The generating functionTx,y,z(t) for GNC-trees solves the third order equation

2α2βx2tT 3 + (βz − αx)T 2 + (α2x − 2αβz)T + α2βz = 0,

namely,

Tx,y,z(t) = αC
(

2xtα2βC
(

2ztβ2Tx,y,z(t)
))

,

whereα = 1
1−(y−x)tT0,y,0(t)2 andβ = 1

1−(y−z)tT0,y,0(t)2 .

By the Lagrange inversion formula and some series expansions, one can obtain the coefficient oftn of
Tx,y,z(t), but it seems to be somewhat complicated. Now we will consider several special cases which
lead to interesting results.

2.1 u-avoiding GNC-trees

Note thatT0,y,z(t) is the generating function for GNC-trees with no ascent. By settingx = 0 in (2.5), one
can find

T0,y,z(t) = 1 + ytT0,y,0(t)
2T0,y,z(t),

from which, together with (2.4), and using the Lagrange inversion formula, one can deduce that

T0,y,z(t) = T0,y,0(t) =
∑

n≥0

1

2n + 1

(

3n

n

)

(yt)n = T0,1,0(yt).

In fact, the above relation can be easily derived from the definition of GNC-tree: since au-avoiding
GNC-tree must also avoid the patternd, such GNC-trees can be obtained by changing each label of the
underlying NC-trees to the label1.
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2.2 h-avoiding GNC-trees

Note thatTx,0,z(t) is the generating function for GNC-trees with no level. By setting y = 0 in (2.4) and
(2.5), one can find

Tx,0,z(t) = 1 − xtTx,0,z(t) + 2xtTx,0,z(t)
2Tz,0,x(t),

which, whenx = z = 1, yields

T1,0,1(t) = 1 − tT1,0,1(t) + 2tT1,0,1(t)
3.

Let λ = T1,0,1(t)− 1, thenλ = t(1 + λ)(2(1 + λ)2 − 1), using the Lagrange inversion formula [16], one
can deduce forn ≥ 1 that

[tn]T1,0,1(t) = [tn]λ =
1

n
[λn−1](1 + λ)n(2(1 + λ)2 − 1)n

=
1

n

n
∑

i=0

(−1)n−i

(

n

i

)

2i[λn−1](1 + λ)n+2i

=

n
∑

i=0

(−1)n−i 2i

2i + 1

(

n

i

)(

n + 2i

n

)

=

n
∑

i=0

(−1)n−i 2i

2i + 1

(

3i

i

)(

n + 2i

3i

)

.

This leads to the following result.

Theorem 2.2 The set ofh-avoiding GNC-trees ofn + 1 vertices is counted by

|GNCn(h)| =

n
∑

i=0

(−1)n−i 2i

2i + 1

(

3i

i

)(

n + 2i

3i

)

.

This sequence beginning with1, 1, 5, 31, 217, 1637, 12985 is listed in Sloane’s [12, A153232].

2.3 d-avoiding GNC-trees

Note thatTx,y,0(t) is the generating function for GNC-trees with no descent. Bysettingz = 0 in (2.6),
we can find

Tx,y,0(t) =
1

1 − (y − x)tT0,y,0(t)2
C(

2xtT0,y,x(t)

(1 − (y − x)tT0,y,0(t)2)2
),

=
1

1 − (y − x)tT0,1,0(yt)2
C(

2xtT0,1,0(yt)

(1 − (y − x)tT0,1,0(yt)2)2
), (2.7)

where we used the relationT0,y,x(t) = T0,y,0(t) = T0,1,0(yt).
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Case i
Settingx = y = 1 in (2.7), one gets

T1,1,0(t) = C(2tT0,1,0(t)).

Taking the coefficienttn of T1,1,0(t), one gets

[tn]T1,1,0(t) = [tn]C(2tT0,1,0(t)) = [tn]
∑

i≥0

2iCit
iT0,1,0(t)

i

= [tn]
∑

i≥0

2iCit
i
∑

j≥0

i

3j + i

(

3j + i

j

)

tj ,

=
∑

i+j=n

i

3j + i

(

3j + i

j

)

2iCi.

This leads to the following results.

Theorem 2.3 The set ofd-avoiding GNC-trees ofn + 1 vertices is counted by

|GNCn(d)| =
∑

i+j=n

i

3j + i

(

3j + i

j

)

2iCi.

This sequence beginning with1, 2, 10, 62, 424, 3070 is not listed in Sloane’s [12].

Case ii
Settingy = 1 in (2.7), by (2.4), one gets

Tx,1,0(t) =
T0,1,0(t)

1 + xtT0,1,0(t)3
C(

2xtT0,1,0(t)
3

(1 + xtT0,1,0(t)3)2
).

Taking the coefficienttnxk of Tx,1,0(t), one gets

[tnxk]Tx,1,0(t) = [tn−kxk]
T0,1,0(t)

1 + xT0,1,0(t)3
C(

2xT0,1,0(t)
3

(1 + xT0,1,0(t)3)2
)

= [tn−k]

k
∑

i=0

2iCiT0,1,0(t)
3i+1[xk−i]

1

(1 + xT0,1,0(t))2i+1

=

k
∑

i=0

2iCi(−1)k−i

(

k + i

k − i

)

[tn−k]T0,1,0(t)
k+2i+1

=
k

∑

i=0

(−1)k−i

(

k + i

k − i

)

k + 2i + 1

3n − 2k + 2i + 1

(

3n− 2k + 2i + 1

n − k

)

2iCi.

This leads to the following results.

Theorem 2.4 The set ofd-avoiding GNC-trees ofn + 1 vertices withk ascents is given by

k
∑

i=0

(−1)k−i

(

k + i

k − i

)

k + 2i + 1

3n − 2k + 2i + 1

(

3n − 2k + 2i + 1

n − k

)

2iCi.
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Case iii
Settingx = 1, y = 0 in (2.7) and usingT0,0,0(t) = T0,1,0(0) = 1, one gets

T1,0,0(t) =
1

1 + t
C(

2t

(1 + t)2
) =

1 + t −
√

1 − 6t + t2

4t
,

which is the generating function for little Schröder paths. Recall that alittle Schr̈oder path of length2n is
a lattice path in the first quadrant running from(0, 0) to (2n, 0) consisting of up stepsU = (1, 1), down
stepsD = (1,−1) and horizontal stepsH = (2, 0) with no horizontal step at thex-axis. LetSn denote
the set of little Schröder paths of length2n which is counted by thenth little Schröder numbersn [12,
A001003], whose generating function isS(t) = 1+t−

√
1−6t+t2

4t
.
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Fig. 2: The bijection betweenGNCn(h, d) andSn.

Theorem 2.5 The set of{h, d}-avoiding (i.e. increasing) GNC-trees ofn + 1 vertices is counted by the
nth little Schr̈oder number. There exists a bijection betweenGNCn(h, d) andSn.
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Proof: For anyT ∈ GNCn(h, d), traversing its edges from the root, when an edge(i, j) is first read, we
have aU -step and mark theU -step byj; When an edge is read in the second time, we have aD-step. Then
we get a little Schröder path with noH-step (In fact a Dyck path). For anyU -step in the Dyck path, find
the maximal segment ofD-steps followed theU -step and mark all of theD-steps with the same label as
theU -step. For any two consecutive stepsDU (In fact a valley), if they have the same label, then replace
them by anH-step and remove the remaining labels, which leads to the desired little Schröder path.

It is clear that the above procedure is invertible, see Figure 2 for an example. ✷

3 The patterns in P2

DefineGNC∗
n(P ) to be the set of GNC-trees inGNC∗

n avoiding anyσ in a setP of patterns. For any
σ ∈ P2, define

T σ
x,y,z(t) =

∑

n≥0

tn
∑

T∈GNCn(σ)

xu(T )yh(T )zd(T ),

T ∗σ
x,y,z(t) =

∑

n≥0

tn
∑

T∈GNC∗

n
(σ)

xu(T )yh(T )zd(T ).

In this section, we deal with the patternsuu, dd, ud anddu, the others can be investigated similarly.

3.1 The patterns uu and dd.

Close relations betweenT uu
x,y,z(t) andT ∗uu

x,y,z(t) can be established using the decomposition of GNC-trees
in Figure 1.

Case(i): i = j = 1 andk = 1 or 2. Part I and II both avoid the patternsu andd, Part III still forms auu-
avoiding GNC-tree. Then the edge(1, 1) contributes a weight ofyt, each of Part I and II contributes
T0,y,0(t), and Part III contributesT uu

x,y,z(t).

Case(ii): i = 1, j ≥ 2 andk = j or j + 1. Part I avoids the patternsu andd, Part II still forms auu-avoiding
GNC-tree, where not all vertices are labeled by 1. Then the edge(1, 1) contributes a weight ofyt,
Part I contributesT0,y,0(t) and Part II contributesT uu

x,y,z(t) − T0,y,0(t). For Part III, except for the
one point case, decreasing all the labels (excluding the root), by j − 2 units if k = j or by j − 1
units if k = j +1, one can obtain twouu-avoiding GNC-trees inGNC∗

n(uu) for somen ≥ 1. Then
Part III contributes2T ∗uu

x,y,z(t) − 1.

Case(iii): i ≥ 2, j ≥ i andk = j or j + 1. The edge (1,i©) contributes a weight ofxt. Note that the ascents
and descents are exchanged in Part I, and the labels are lyingin {1, 2, . . . , i} or {2, 3, . . . , i}, so
Part I contributes2T dd

z,y,x(t) − T0,y,0(t). But Part II can not begin with au edge, i.e., all edges (if
exist) starting formi© areh edges, so we should further partition Part II into three parts, by finding
the last vertex labeledi, which we denote byi∗, in counterclockwise order such that (i©,i∗) is an
h edge which contributes a weight ofyt, see Figure 3. Clearly, Part II1 and II2 both contribute
T0,y,0(t), and Part II3 contributesT uu

x,y,z(t). Similar to (ii), Part III contributes2T ∗uu
x,y,z(t) − 1.
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II1

II2

II3

i©

i

i i∗

j

Fig. 3: The decomposition of Part II in (iii).

In summary, we have

T uu
x,y,z(t) = 1 + ytT0,y,0(t)

2T uu
x,y,z(t) + ytT0,y,0(t)

{

T uu
x,y,z(t) − T0,y,0(t)

}{

2T ∗uu
x,y,z(t) − 1

}

+ xt
{

2T dd
z,y,x(t) − T0,y,0(t)

}{

1 + ytT0,y,0(t)
2T uu

x,y,z(t)
}{

2T ∗uu
x,y,z(t) − 1

}

. (3.1)

For anyT ∈ GNC∗
n(uu), by the similar decomposition, one can easily derive that

T ∗uu
x,y,z(t) = 1 + xtT dd

z,y,x(t)
{

1 + ytT0,y,0(t)
2T uu

x,y,z(t)
}{

2T ∗
x,y,z(t) − 1

}

. (3.2)

Similarly, for the patterndd, close relations betweenT dd
x,y,z(t) andT ∗dd

x,y,z(t) can be established using the
decomposition of GNC-trees in Figure 1, the details are omitted.

T dd
x,y,z(t) = 1 + ytT0,y,0(t)

2T dd
x,y,z(t) + ytT0,y,0(t)

{

T dd
x,y,z(t) − T0,y,0(t)

}{

2T ∗dd
x,y,z(t) − 1

}

+ xt
{

2T uu
z,y,x(t) − T0,y,0(t)

}

T dd
x,y,z(t)

{

2T ∗dd
x,y,z(t) − 1

}

, (3.3)

T ∗dd
x,y,z(t) = 1 + xtT uu

z,y,x(t)T dd
x,y,z(t)

{

2T ∗dd
x,y,z(t) − 1

}

. (3.4)

Solve (3.2) forT ∗uu
x,y,z(t) and (3.4) forT ∗dd

x,y,z(t), and then substitute them respectively into (3.1) and
(3.3). After some simplifications, one obtains

T uu
x,y,z(t) =

{

1 − xtT0,y,0(t)
2 + 2xtT uu

x,y,z(t)T
dd
z,y,x(t)

}{

1 + ytT0,y,0(t)
2T uu

x,y,z(t)
}

, (3.5)

T dd
x,y,z(t) = 1 + (y − x)tT0,y,0(t)

2T dd
x,y,z(t) + 2xtT dd

x,y,z(t)
2T uu

z,y,x(t). (3.6)

Settingx = y = z = 1 in (3.5) and (3.6), we have

Proposition 3.1 The generating functions foruu-avoiding anddd-avoiding GNC-trees are determined
respectively by

T uu
1,1,1(t) =

{

1 − tT0,1,0(t)
2 + 2tT uu

1,1,1(t)T
dd
1,1,1(t)

}{

1 + tT0,1,0(t)
2T uu

1,1,1(t)
}

,

T dd
1,1,1(t) = 1 + 2tT dd

1,1,1(t)
2T uu

1,1,1(t).
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Whenx = z = 1, y = 0, by T0,0,0(t) = 1, (3.5) and (3.6) generate

T uu
1,0,1(t) = 1 − t + 2tT uu

1,0,1(t)T
dd
1,0,1(t),

T dd
1,0,1(t) = 1 − tT dd

1,0,1(t) + 2tT dd
1,0,1(t)

2T uu
1,0,1(t),

from which, one can deduce that

T uu
1,0,1(t) =

1 − t

1 − 2tT dd
1,0,1(t)

, (3.7)

T dd
1,0,1(t) = 1 − 3tT dd

1,0,1(t) + 4tT dd
1,0,1(t)

2. (3.8)

From (3.7) and (3.8), one can get

T dd
1,0,1(t) =

1 + 3t −
√

(1 + 3t)2 − 16t

8t

=
1

1 + 3t
C(

4t

(1 + 3t)2
) =

∑

i≥0

4iCit
i

(1 + 3t)2i+1

=
∑

i≥0

4iCit
i
∑

j≥0

(−1)j

(

2i + j

j

)

3jtj

=
∑

n≥0

tn
n

∑

j=0

(−1)j

(

2n − j

j

)

3j4n−jCn−j .

T uu
1,0,1(t) =

1 − t

1 − 2tT dd
1,0,1(t)

=
3 − 3t −

√

(1 + 3t)2 − 16t

2

=
3(1 − t) −

√

(1 − t)2 − 8t(1 − t)

2

= 1 − t + 2tC(
2t

1 − t
) = 1 + t +

∑

i≥0

2i+2Ci+1t
i+2

(1 − t)i+1

= 1 + t +
∑

n≥0

tn+2
n

∑

i=0

(

n

i

)

2i+2Ci+1.

This leads to the following results.

Theorem 3.2 The setsGNCn+2(uu, h) of {uu, h}-avoiding GNC-trees andGNCn(dd, h) of {dd, h}-
avoiding GNC-trees are counted respectively by

|GNCn+2(uu, h)| =

n
∑

i=0

(

n

i

)

2i+2Ci+1,

|GNCn(dd, h)| =

n
∑

j=0

(−1)j

(

2n − j

j

)

3j4n−jCn−j , ([12, A059231]).
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Remark 3.3 Coker [2] proved thatT dd
1,0,1(t) is also the generating function forDn, the set of different

lattice paths running from(0, 0) to (2n, 0) using steps fromS = {(k,±k) : k positive integer} that never
go below x-axis, and provided several different expressions for |Dn|. One may ask to find a bijection
betweenDn andGNCn(dd, h).

3.2 The patterns ud and du

Similar to Subsection 3.1, close relations betweenT ud
x,y,z(t) andT ∗ud

x,y,z(t), and betweenT du
x,y,z(t) and

T ∗du
x,y,z(t), can be derived using the decomposition of GNC-trees, see Figure 1, but the details are omitted.

T ud
x,y,z(t) = 1 + ytT0,y,0(t)

2T ud
x,y,z(t) + ytT0,y,0(t)

{

T ud
x,y,z(t) − T0,y,0(t)

}{

2T ∗ud
x,y,z(t) − 1

}

+ xtT ud
x,y,z(t)

{

1 + ytT0,y,0(t)
2
{

2T du
z,y,x(t) − T0,y,0(t)

}

}{

2T ∗ud
x,y,z(t) − 1

}

, (3.9)

T ∗ud
x,y,z(t) = 1 + xtT ud

x,y,z(t)
{

1 + ytT0,y,0(t)
2T du

z,y,x(t)
}{

2T ∗ud
x,y,z(t) − 1

}

, (3.10)

T du
x,y,z(t) = 1 + ytT0,y,0(t)

2T du
x,y,z(t) + ytT0,y,0(t)

{

T du
x,y,z(t) − T0,y,0(t)

}{

2T ∗du
x,y,z(t) − 1

}

+ xtT du
x,y,z(t)

{

2T ud
z,y,x(t) − T0,y,0(t)

}{

2T ∗du
x,y,z(t) − 1

}

, (3.11)

T ∗du
x,y,z(t) = 1 + xtT du

x,y,z(t)T
ud
z,y,x(t)

{

2T ∗du
x,y,z(t) − 1

}

. (3.12)

Solve (3.10) forT ∗ud
x,y,z(t) and (3.12) forT ∗du

x,y,z(t), and then substitute them respectively into (3.9) and
(3.11). After some simplifications, one obtains

T ud
x,y,z(t) = 1 + (y − x)tT0,y,0(t)

2T ud
x,y,z(t) + 2xtT ud

x,y,z(t)
2
{

1 + ytT0,y,0(t)
2T du

z,y,x(t)
}

, (3.13)

T du
x,y,z(t) = 1 + (y − x)tT0,y,0(t)

2T du
x,y,z(t) + 2xtT du

x,y,z(t)
2T ud

z,y,x(t). (3.14)

The casex = y = z = 1 in (3.13) and (3.14) yields the following result.

Proposition 3.4 The generating functions forud-avoiding anddu-avoiding GNC-trees are given by

T ud
1,1,1(t) = 1 + 2tT ud

1,1,1(t)
{

1 + tT0,1,0(t)
2T du

1,1,1(t)
}

,

T du
1,1,1(t) = 1 + 2tT du

1,1,1(t)
2T ud

1,1,1(t).

Whenx = z = 1, y = 0, by T0,0,0(t) = 1, (3.13) and (3.14) generate

T ud
1,0,1(t) = 1 − tT ud

1,0,1(t) + 2tT ud
1,0,1(t)

2,

T du
1,0,1(t) = 1 − tT du

1,0,1(t) + 2tT du
1,0,1(t)

2T ud
1,0,1(t),
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from which, one can deduce that

T ud
1,0,1(t) = S(t) =

1 + t −
√

1 − 6t + t2

4t
=

1

1 + t
C(

2t

(1 + t)2
),

T du
1,0,1(t) =

1 + t −
√

(1 + t)2 − 8tS(t)

4tS(t)

=
1

1 + t
C(

2tS(t)

(1 + t)2
) =

∑

i≥0

2iCiS(t)iti

(1 + t)2i+1

=
∑

i≥0

2iCit
i

(1 + t)3i+1

{

C(
2t

(1 + t)2
)
}i

=
∑

i≥0

2iCit
i

(1 + t)3i+1

∑

j≥0

i

2j + i

(

2j + i

j

)

2jtj

(1 + t)2j

=
∑

n≥0

tn
∑

i+j+k=n

(−1)k

(

3i + 2j + k

k

)

i

2j + i

(

2j + i

j

)

2i+jCi.

This leads to the following result.

Theorem 3.5 The setGNCn(ud, h) of {ud, h}-avoiding (i.e. increasing) GNC-trees is counted by the
nth little Schr̈oder number, and the setGNCn(du, h) of {du, h}-avoiding GNC-trees is counted by

|GNCn(du, h)| =
∑

i+j+k=n

(−1)k

(

3i + 2j + k

k

)

i

2j + i

(

2j + i

j

)

2i+jCi.

This sequence beginning with1, 1, 5, 27, 157, 957, 6025 is listed in [12, A153233].

3.3 The pattern {uu, dd}
Now we consider the pattern{uu, dd}, letP = {uu, dd}, using the decomposition of GNC-trees, relations
betweenT P

x,y,z(t) andT ∗P
x,y,z(t) can be derived, the details are omitted:

T P
x,y,z(t) = 1 + ytT0,y,0(t)

2T P
x,y,z(t) + ytT0,y,0(t)

{

T P
x,y,z(t) − T0,y,0(t)

}{

2T ∗P
x,y,z(t) − 1

}

+ xt
{

2T P
z,y,x(t) − T0,y,0(t)

}{

1 + ytT0,y,0(t)
2T P

x,y,z(t)
}{

2T ∗P
x,y,z(t) − 1

}

,

T ∗P
x,y,z(t) = 1 + xtT P

z,y,x(t)
{

1 + ytT0,y,0(t)
2T P

x,y,z(t)
}{

2T ∗P
x,y,z(t) − 1

}

,

from which, one can get

T P
x,y,z(t) =

{

1 + ytT0,y,0(t)
2T P

x,y,z(t)
}{

1 − xtT0,y,0(t)
2 + 2xtT P

z,y,x(t)T P
x,y,z(t)

}

. (3.15)

The casex = y = z = 1 in (3.15) yields

Proposition 3.6 The generating function for{uu, dd}-avoiding GNC-trees is given by

T P
1,1,1(t) =

{

1 + tT0,1,0(t)
2T P

1,1,1(t)
}{

1 − tT0,1,0(t)
2 + 2tT P

1,1,1(t)
2
}

.



String Pattern Avoidance in Generalized Non-crossing Trees 91

Settingy = 0 in (3.15), byT0,0,0(t) = 1, one can get

T P
x,0,z(t) = 1 − xt + 2xtT P

z,0,x(t)T P
x,0,z(t). (3.16)

Exchangingx andz in (3.16), one has

T P
z,0,x(t) = 1 − zt + 2ztT P

x,0,z(t)T
P
z,0,x(t). (3.17)

From (3.16) and (3.17), one can obtain

T P
x,0,z(t) = 1 − xt − 2(z − x)tT P

x,0,z(t) + 2ztT P
x,0,z(t)

2,

which leads to

T P
x,0,z(t) =

1 + 2(z − x)t −
√

(1 + 2(z − x)t)2 − 8zt(1 − xt)

4zt
. (3.18)

Settingz = 1 in (3.18), one can deduce

T P
x,0,1(t) =

1 + 2(1 − x)t −
√

(1 + 2(1 − x)t)2 − 8t(1 − xt)

4t

=
1 − xt

1 + 2(1 − x)t
C(

2t(1 − xt)

(1 + 2(1 − x)t)2
) =

∑

i≥0

2iCit
i(1 − xt)i+1

(1 + 2(1 − x)t)2i+1

=
∑

i≥0

2iCit
i

i+1
∑

j=0

(−1)j

(

i + 1

j

)

xjtj
∑

k≥0

(−1)k

(

2i + k

k

)

2ktk
k

∑

ℓ=0

(−1)ℓ

(

k

ℓ

)

xℓ

=
∑

n≥0

n
∑

r=0

tnxr
∑

i+j+k=n

(−1)r+k

(

i + 1

j

)(

2i + k

k

)(

k

r − j

)

2i+kCi.

Settingx = z = 1 in (3.18), one has

T P
1,0,1(t) =

1 −
√

1 − 8t(1 − t)

4t
= (1 − t)C(2t(1 − t))

=
∑

n≥0

tn
n

∑

i=0

(−1)n−i

(

i + 1

n − i

)

2iCi,

which leads to the following result.

Theorem 3.7 The number of{uu, dd, h}-avoiding (i.e., alternating) GNC-trees ofn+1 vertices is given
by

n
∑

i=0

(−1)n−i

(

i + 1

n − i

)

2iCi, ([12, A068764]).

Moreover, the number of alternating GNC-trees ofn + 1 vertices with exactlyr ascents is

∑

i+j+k=n

(−1)r+k

(

i + 1

j

)(

2i + k

k

)(

k

r − j

)

2i+kCi.
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Remark 3.8 Whenr = 0, thenj = 0 and there is no alternating GNC-tree ofn + 1 vertices with exactly
r = 0 ascents forn ≥ 1. So we have

n
∑

i=0

(−1)n−i

(

n + i

n − i

)

Ci = 0, (n ≥ 1).

Whenx = −1, z = 1 in (3.18), one has

T P
−1,0,1(t) =

1 + 4t −
√

1 + 8t2

4t
= 1 − tC(−2t2)

= 1 +
∑

n≥0

(−1)n+12nCnt2n+1,

which leads to the following results.

Theorem 3.9 The difference between the number of alternating GNC-treeson m vertices with an even
number of ascents and those with an odd number of ascents is zero if m = 2n + 3 and(−1)n+12nCn if
m = 2n + 2 for n ≥ 0.
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