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The problem of string pattern avoidance in generalized e¢rossing trees is studied. The generating functions for
generalized non-crossing trees avoiding string pattefiength one and two are obtained. The Lagrange inver-
sion formula is used to obtain the explicit formulas for saspecial cases. A bijection is also established between
generalized non-crossing trees with special string patteoidance and little Schroder paths.
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1 Introduction

A non-crossing tree(NC-tree for short) is a tree drawn envertices in{1,2,--- ,n} arranged in coun-
terclockwise order along a circle such that the edges lieedptvithin the circle and do not cross. Non-
crossing trees have been investigated by Chen and Yan [(ifsBleand Noy [3], Flajolet and Noy [4], Gu,
et al. [5], Hough [6], Noy [7], Panholzer and Prodinger [8kdently, some problems of pattern avoidance
in NC-trees have been studied by Sun and Wang [14]. It is wan that the set of NC-trees with+ 1
vertices is counted by the generalized Catalan nur%l;igf (3:) [12, AO01764].

A generalized non-crossing tre¢ GNC-tree for short) is a generalization of ordinary nonssing
tree such that the vertices along the circle are not nedbskdrelled by 1,2, ..., n, but only weakly
increasing, beginning with and without “gaps”. See Figure 2 for an example.

In the sequel, we are concerned with rooted GNC-trees wherfrst 1 is the root. LEENC,, denote
the set of rooted GNC-trees of+ 1 vertices. It is easy to prove th&NC,, is counted byGNC,,| =
52— (%) [12, A153231].

A descent (an ascent, a levéd)an edge(i, j) such that > j (i < j,7i = j) andi is on the path
from the root to the vertex. If encoding an ascent hy, a level byh and a descent by, then each path
in a GNC-tree can be represented by a ternary wordwm, d} by reading the path from the root. In
analogy with the well-established permutation patterris 5], we propose a definition of patterns in
GNC-trees. However, it should be pointed out that in thegaregaper we are dealing with “string pattern
avoidance” (only consecutive letters are considered)clis thus different from “pattern avoiding” as
defined in [11, 15].
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Definition 1.1 Letw = wiws ... w, ando = o109 ...0x be two ternary words ofu, h,d}. Thenw
contains the string pattera if it has a subwordw; 1w, o ... w;1 equal too for somed < i < n — k;
otherwisew is calledo-avoiding. AGNC-tree T is calledo-avoiding if 7" has no subpath (viewed from
the root) encoded by.

Let P, denote the set of ternary words of lendthon {u, h,d}. For anyo € Py, let GNC.' (o)
denote the set of GNC-trees ®NC,, which contain the pattera exactlym times. For any nonempty
subsetP C P,, GNC,,(P) denotes the set of GNC-trees@NC,, which avoid all the patterns iff. A
counterpart for GNC-trees to the analogous question foricesd permutations is the following question:

Question 1.2 Determine the cardinalities dNC,,(P) for P € P, andGNC;,' (o) for o € P.

In the literature, two kinds of special NC-trees have beemsiered, namely non-crossing increas-
ing trees and non-crossing alternating trees. Both of thexnrcaunted by the Catalan numbérs =
= (™) [12, ADD0108].A non-crossing increasing (alternating) tréean NC-tree with the vertices on
the path from the root 1 to any other vertex appearing in exirgy (alternating) order. By our notation,
a non-crossing increasing tree ig-@voiding NC-tree and a non-crossing alternating tree{is«a dd}-
avoiding NC-tree. Bijections between non-crossing aldiéing trees and Dyck paths have been presented
in [13]. But for GNC-trees, it seems to be shed little lighttbis subject.

The contents of the paper (and also the methods used) are ctosshr to studies of “peaks, valleys,
etc.” in Motzkin paths or Dyck paths [9, 10]. In this paper, deal with several patterns and find the
corresponding generating functions for GNC-trees. Moezigely, we investigate the patternsf in
Section 2 and the patterns iy in Section 3. The Lagrange inversion formula is used to obgaplicit
formulas for some special cases. A bijection is also estabtl between GNC-trees with special pattern
avoidance and little Schroder paths.

2 The patterns in P,

ForanyT € GNC,,, letu(T"), h(T'), d(T) denote the number of ascents, levels and descefitsespec-
tively, thenu(7T") + h(T) + d(T') = n. LetGNC;, be the set of GNC-tre€E in GNC,, such thafl" has
only one vertex with label 1, that is, only the root has thesldband all other vertices have labels greater

than 1. Define
Toye(t) = Y 7 3 guMyhDd1),
n>0  TEGNC,

T::.,y,z(t) = Zﬁ" Z x”(T)yh(T)Zd(T)_
n>0  TEGNC}

Close relations betweeh, , .(t) andT} , _(t) can be established using the “butterfly” decomposition
(introduced by Flajolet and Noy [4]) of GNC-trees in FigurelLis obvious that the decomposition is
only used forn > 1 and that the case = 0 leads to the additional 1. Find the first and minimal lahel
denoted by®), of I" € GNC,, in counterclockwise order such that the re@nd() form an edge, the’
can be partitioned into three parts.

Case(i):i = j = 1 andk = 1 or2. Part | and Il both avoid the patternsandd, Part Il still forms a
GNC-tree. The edgél, 1) contributes a weight ofit, each of Part | and Il contributés, , o(t),
and Part Ill contributeg, ,, . (t).
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Fig. 1: Decomposition of GNC-trees.

Case(ii):7 = 1,7 > 2andk = j orj + 1. Part | avoids the patternsandd, Part Il still forms a GNC-tree,

where not all vertices are labeled by 1. The efigd ) contributes a weight ajt, Part | contributes
To.y,0(t) and Part Il contribute$;, ,, .(t) — To,4,0(t). For Part lll, except for the one point case, by
decreasing all the labels (excluding the root)jby 2 units (if k = j) or j — 1 units (ifk = j + 1),
one can obtain two GNC-trees@NC’, for somen > 1. Part lll contribute77*, ,(¢) — 1.

z,Y,2

Case(iii): 7 > 2,5 > iandk = j orj + 1. The edge (13) contributes a weight aft. Note that the ascents

and descents are exchanged in Part |, and the labels areityifig2,...,i} or {2,3,...,i}, so
Part | contribute®T’, , ..(t) — To.4,0(¢t) fori > 2. Part Il still forms a GNC-tree after reducing
the labels{:, ..., j} to{1,---,j — i+ 1}, so Part Il contributeg}, , .(t). Similar to (i), Part Il
contribute7; . (t) — 1.

In summary, we have

Tyy(t) = 1+ ytTO,y,O(t)QTw,y,Z(t)
YT, 0(0)] To o (8) = To o) {275, () — 1} (2.1)

n thz,y,Z(t){sz,y,z(t) - To,y,o(t)} {2T;yyyz(t) - 1}.
For anyT € GNC;, by a similar decomposition, one can derive that
T2, (1) =1+ xthyyyz(t)szyyx(t){2T;yyyz(t) - 1}. 2.2)
Now we solve (2.2) foll; , .(¢) and substitute into (2.1) to obtain
Toye(t) = 1= ytTy0(0)° = otTey (O T0,40(t) + vtTo.y0(0) {1+ Toyo(t) } Ty o0
o+ 20t{1 = YLTo,5,0(8)? } Toy 2 (8 Te . (8). (2.3)
If x =z =0, then (2.3) reduces to

Toyot) = 1+ytTo,olt)®. (2.4)
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Multiplying on both sides of (2.3) b¥ ,.0(t) and using (2.4), after some routine computations, one
can deduce that

To-(t) = 14 (y—2)tToy0(t)* Tey.o(t) + 20t Ty (1) Ty 2 (1) (2.5)

The evaluation: = y = z = 1 immediately gives; 11(t) = 1 + 2tTy 1.1(t)3, which thus proves that

IGNC,,| = 23:1 (°™) via generating functions. By solving (2.5) f@}, .. (t), we have

1—(y— 2)tTo,y0(t)* — /(1 — (y — 2)tTo,y,0(t)2)% — 8xtT% 4 4 (1)
4xtT, 4 (1)
1 20tT, . (t)

R T D e S T T O R e 26)

Tr-,y,Z(t) =

whereC(t) = 1=% 31’4’5 is the generating function for Catalan numbers.
Exchanginge andz in (2.6), one can computg, , ..(¢). If one substitutes the resultin (2.6), one arrives
at the following proposition.

Proposition 2.1 The generating functioff,, ,, .(t) for GNC-trees solves the third order equation
202 Bx*tT? + (B2 — ax)T? + (ox — 2a62)T + o*fz = 0,
namely,
Tpy(t) = aC(2zta260(22t62Txﬂyﬁz(t))),

N P S—
wherea = =g aNdf = ——m oo

By the Lagrange inversion formula and some series expasisiore can obtain the coefficient#f of

T,y -(t), but it seems to be somewhat complicated. Now we will comsideeral special cases which
lead to interesting results.

2.1 wu-avoiding GNC-trees

Note thatTy , . (t) is the generating function for GNC-trees with no ascent. &tirsgz = 0 in (2.5), one
can find

Toy.-(t) = 14+ ytToyo(t)*To,.-(t),

from which, together with (2.4), and using the Lagrangeiisi formula, one can deduce that

1 3n "
To®) = Toalt) = 32 g () 0" = Tonato)
In fact, the above relation can be easily derived from thendefih of GNC-tree: since a-avoiding
GNC-tree must also avoid the patteinsuch GNC-trees can be obtained by changing each label of the
underlying NC-trees to the labél
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2.2 h-avoiding GNC-trees

Note thatT’,  .(¢) is the generating function for GNC-trees with no level. Bitisg y = 0 in (2.4) and
(2.5), one can find

Too:(t) = 1—=atTyp(t) + 20tT, 0.2 (t)*T: 0.4(t),
which, whenr = z = 1, yields
Tioa(t) = 1—tTioa(t)+2tT101(t)°.

Let A = T4 0.1(t) — 1, then\ = ¢(1 + \)(2(1 + A\)? — 1), using the Lagrange inversion formula [16], one
can deduce fon > 1 that

(t"T0a(t) = [E"IA=—A"TNA+ A" 201+ 1) - 1)

1
n

_n (1)"1-(7?) QAT (1 4 A2

1

TLZ (3

= s 28 (n\ (n+2i
= 2D 2i+1(i)( n )

=0

i 20 30\ (n+2i
(—1) , i .
20+ 1\ ¢ 3t
=0
Theorem 2.2 The set ohi-avoiding GNC-trees af + 1 vertices is counted by

IGNC,,(h)] = ZZ;(U“ 22-2; 1 (3> <n ;22)'

This sequence beginning with 1, 5, 31,217, 1637, 12985 is listed in Sloane’s [12, A153232].

This leads to the following result.

2.3 d-avoiding GNC-trees

Note that7}, , o(t) is the generating function for GNC-trees with no descents&ingz = 0 in (2.6),
we can find

1 C( 2$tT0_’yﬁx(t)

R PR v T E ALY RS T RO
1 2xtTo 1,0(yt)

T PR v N LA G e v N P

Tr-,y,O(t)

);

2.7)

where we used the relatidhy , »(t) = To,y.0(t) = To,1,0(yt).
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Casei
Settingr = y = 1in (2.7), one gets
Tia0(t) = C(2tTo1,0(t)).
Taking the coefficient” of T3 1 ¢(¢), one gets
[t Tia0(t) = [t"C(2tToa0(t) = [t"] D 2'Cit' Ty 0(t)’
i>0
—_y i (3j+0\,
= ") _2Citt Y —( , )tﬂ,
= o 37 +1 7
= Z 3.2 (3J+2)2101
it e AN

This leads to the following results.
Theorem 2.3 The set ofi-avoiding GNC-trees of + 1 vertices is counted by

IGNC,.(d)] = > L(?’j,ﬂ)fci.

i+j=n Bj+iN
This sequence beginning with 2, 10, 62, 424, 3070 is not listed in Sloane’s [12].

Case i
Settingy = 1in (2.7), by (2.4), one gets

Toao(t) o 20tTon0(t)’
1 + $tT07170(t)3 (1 + $tT()717()(t)3)2 ’
Taking the coefficient™z* of T,. 1 (t), one gets

TO,I,O(t) 2£L'T07170(t)3
L4+ aTp10(t)® (1 +2To1,0()3)2

1
(1 —+ $T07110(t)>2i+1

Trao(t) =

[t"a*)Tpr0(t) = [t" 2]

k

— [tnfk] Z QiCiT071,0(t)3i+l[$k7i]
=0

k .
) i k+1 n— 27
_ E :chi(_l)k <k - ,L> [ﬁ k]TO,l,O(t)kJrQ +1
1=0

k

7 2(71)’“’ k41 k+2i+1 3n—2k+2i+1 vic
o gt k—i)3n—2k+2i+1 n—k v

This leads to the following results.
Theorem 2.4 The set ofi-avoiding GNC-trees af + 1 vertices withk ascents is given by
k

2(71)’“’ k41 k+2i+1 3n—2k+2i+1 b
gt k—i)3n—2k+2i+1 n—k v
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Case iii
Settingz = 1,y = 01in (2.7) and usind,0,0(t) = T0,1,0(0) = 1, one gets

1 28 14+t—V1I-6t+ 12

1+tc((1+t)2)_ 4t ’

which is the generating function for little Schroder patRecall that dittle Schibder path of lengti2n is
a lattice path in the first quadrant running fr¢gf 0) to (2n, 0) consisting of up step§ = (1, 1), down
stepsD = (1, —1) and horizontal stepH = (2,0) with no horizontal step at the-axis. Let.#, denote
the set of little Schroder paths of length which is counted by theth little Schroder numbey,, [12,

A001003], whose generating function§gt) = 1=V 1=6

T1,0,0(t)

Fig. 2: The bijection betwee®NC,, (h, d) and.7,.

Theorem 2.5 The set of h, d}-avoiding (i.e. increasing) GNC-trees of+ 1 vertices is counted by the
nth little Schidder number. There exists a bijection betw&MC,,(h, d) and.7,.
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Proof: For anyT € GNC,,(h, d), traversing its edges from the root, when an eggg) is first read, we
have al/-step and mark th&-step byj; When an edge is read in the second time, we havestep. Then
we get a little Schroder path with nié-step (In fact a Dyck path). For ariy-step in the Dyck path, find
the maximal segment db-steps followed thé/-step and mark all of th&-steps with the same label as
theU-step. For any two consecutive step#’ (In fact a valley), if they have the same label, then replace
them by anH -step and remove the remaining labels, which leads to thieeddgtle Schroder path.

It is clear that the above procedure is invertible, see E@uior an example. O

3 The patterns in P

DefineGNC;, (P) to be the set of GNC-trees i@BNC, avoiding anyo in a setP of patterns. For any
o € Py, define

T;,y,z (t) — Z m Z I’u(T)yh(T)Zd(T),
n>0  TEGNC, (o)

T;5-() = Zt” Z () yh(T) (T,
nz0  TEeGNC} (o)

In this section, we deal with the patteras, dd, ud anddu, the others can be investigated similarly.

3.1 The patterns uu and dd.

Close relations betweeR'; . (t) andT; %", (t) can be established using the decomposition of GNC-trees
in Figure 1.

Case(i):i = 7 = 1 andk = 1 or 2. Part | and Il both avoid the pattermsandd, Part Il still forms auu-
avoiding GNC-tree. Then the ed@k 1) contributes a weight ajft, each of Part | and Il contributes
Tb,y,0(t), and Part Il contribute®;", _(t).

Case(ii):7 = 1,7 > 2andk = j or j + 1. Part | avoids the patternsandd, Part Il still forms auu-avoiding
GNC-tree, where not all vertices are labeled by 1. Then tiye €d 1) contributes a weight oft,
Part | contributed ,, o(t) and Part Il contribute®};'s _(t) — Tp,y,0(t). For Part lll, except for the
one point case, decreasing all the labels (excluding thg,ropj — 2 unitsif k = j orbyj — 1
units if ¥ = j + 1, one can obtain twau-avoiding GNC-trees iGNC, (uu) for somen > 1. Then
Part Il contribute7 " (t) — 1.

Case(iii): 7 > 2,5 > iandk = j orj + 1. The edge (1) contributes a weight aft. Note that the ascents
and descents are exchanged in Part |, and the labels areityifig2,...,i} or {2,3,...,i}, so
Part | contribute@T'?,  (t) — To,,,0(t). But Part Il can not begin with a edge, i.e., all edges (if
exist) starting fornt(z) areh edges, so we should further partition Part Il into threegdny finding
the last vertex labeled] which we denote by*, in counterclockwise order such th&b)(i*) is an
h edge which contributes a weight 9f, see Figure 3. Clearly, Part;lland I, both contribute
To.y,0(t), and Part I} contributesT’™ _(¢). Similar to (i), Part Il contribute®T %" (¢) — 1.

z,Y,2 x,Y,2
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@

Fig. 3: The decomposition of Part Il in (iii).

In summary, we have
T (8) = 1+ ytToy oM ey (1) + ytToyo®{ T .(6) = Toyo {27550 — 1]
+at{2T8 L (t) = To o) {1+ 9T 00T (0 Homiee ) -1}, @D
For anyT’ € GNC;, (uu), by the similar decomposition, one can easily derive that
Ty (t) = 1+ ot ()1 + ytTo o)1 (0 Hos, (0 - 1}, (3.2)

Similarly, for the patternid, close relations betweeh?? _(¢) andT:4¢_(t) can be established using the

Y,z z,Y,z

decomposition of GNC-trees in Figure 1, the details are tehit

T () = 1+ ytToyo()*TE (1) + ytTo 00 T4 (1) — T {27540 () — 1}
o at{ 2T (1) = Toyo(t) } T4 (0] 2759, 8) - 1}, (33)
T = 1wy (0T (0 {2male — 1}, (3.4)

Solve (3.2) forT;““ (¢) and (3.4) forT? (¢), and then substitute them respectively into (3.1) and

z,Y,2 z,Y,z

(3.3). After some simplifications, one obtains

T () = {10ty 0 + 2007 (0T 0 H{1+ ytTo 00T (0} (35)
Tr5-(t) = 1+ (y = a)tToy0(t)° T35, (0) + 20t Ty L()* T2 (2). (3.6)

Settingr = y = z = 1in (3.5) and (3.6), we have

Proposition 3.1 The generating functions faru-avoiding anddd-avoiding GNC-trees are determined
respectively by

9.1 = {1 — tTo,1,0(t)* + QtTﬁ?J(f)Tﬁ‘h(ﬁ)}{l + fTo,l,O(t)2Tff1f,1(t)}v
Tﬁ‘%@(t) 1+ QtTfi,l{,l(t)QTfflfJ(t)-



88 Yidong Sun and Zhiping Wang
Whenz =z =1,y =0, by Ty,0,0(¢) = 1, (3.5) and (3.6) generate
754 = 1-t+ 2tT1u,3,1(t)Tﬁ(é,1(t)a
Tfif(i),l(t) = 1- tTflf(im(t) + QtTﬁl(i),l(t)QTﬁg,l(t)v
from which, one can deduce that

1—¢
T7'5.4(1) o
0 1— 2tTﬁg71(t)

T () = 1= 3T (¢) + 4T 4 (8)2 (3.8)

(3.7)

From (3.7) and (3.8), one can get

143t — /(1 +3t)% — 16t
T, 1 =

1 4t 415t
1+ 3t0((1 + 3t)2) B Z (1 + 3t)2+t

_ i g B 22"']
= > 4Ct ) (-1) ( ; )3%3

i>0 >0

A O T T

n>0  j=0

e 1—1 3—3t— (1+3t)2716t
Tl,o,l(t) = = D)

1— 2T | (t)
31—t) — /(1 —t)2—8t(1—1t)

2
1t1+2

2t 2120,
= 17t+2t0( 71+t+z_7+1+1
1>0

1+t+2t”+22( )2”2C+1

n>0

This leads to the following results.

Theorem 3.2 The set€GNC,, ;2 (uu, h) of {uu, h}-avoiding GNC-trees an@&NC,,(dd, h) of {dd, h}-
avoiding GNC-trees are counted respectively by

( ) 21+207,+17

2
( " J)sw i, ([12, A059231].

IGNC,, 2 (uu, h)| =

IGNC,,(dd, h)|

»
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Remark 3.3 Coker [2] proved tha@ﬁg,l(t) is also the generating function far,,, the set of different
lattice paths running frong0, 0) to (2n, 0) using steps fron$ = {(k, £k) : k positive integef that never
go below x-axis, and provided several different expression|2,|. One may ask to find a bijection
between?,, andGNC,, (dd, h).

3.2 The patterns ud and du

Similar to Subsection 3.1, close relations betw@& _(t) and 7,47 (¢), and betweerd?% _(t) and

Y,z T,Yy,z

Txd (t), can be derived using the decomposition of GNC-trees, spediL, but the details are omitted.

T,Y,2

TEa () = 1+ ytToy0()2 T () + ytToyo(){ T (1) = Toyo() {27250 0 — 1}
+ 2t ({1 +ytTh 0()2 {25 (£) = Toyo(t) }{2T;gdz f1}, (3.9)
T (1) = 1—|—xtT;“éZ(t){1+ytT0y7 ngmt}{ T (1) 1}, (3.10)
T (8) = 1+ ytTo, 0T (1) + ytToyo() { T (1) = To,o(t) {2150 (1) — 1}
+th§Zz(>{2T?Z,( — Toyolt }{ Trd (1) — } (3.11)
Tt = 1 atTl (072, ({2005 (1) 1] (3.12)

Solve (3.10) foﬁ;@?z(t) and (3.12) for74“ (t), and then substitute them respectively into (3.9) and

T,y,%2

(3.11). After some simplifications, one obtains

TH () = 1+ (g — 2Ty 02T (1) + 20Tt (02 {1+ T, (0T (1)}, (3.13)
T = 1 (g — )Ty ot TS (1) + 200D (02T (1), (3.19)

The caser = y = z = 1in (3.13) and (3.14) yields the following result.

Proposition 3.4 The generating functions fard-avoiding andiu-avoiding GNC-trees are given by

T = 12T 1+ 0T (1)},
T{i.,?,l(t) = 1+2tT1d,1f,1(t>2T11fC11,1(t)-

Whenz =z =1,y =0, by To0,0(t) = 1, (3.13) and (3.14) generate

Tlu,g.,l(t) = 1- tTlu,g.,l(t) + QtTlu,g,l(ﬁ)Q;
T1d,15,1(t) = 1- tTﬁ%,l(t) + 2tTfI,7571(t)2Tffg,1(t),
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from which, one can deduce that

1+t-VI—6i+12 1 2t

I
1 205(t) | < 2'CiS(b)'t!
- 1—_HC((1 +t)2) - QZO (14 t)2i+1

2iC;tt 2t i
B ;(1+t)3i+1{0((1+t)2)}

= 2/Cyt’ i (2j + z) 2741
- 3i+1 P ; (1+42
= (1+1) = 2j+i\ j (1+t)%

L2+ k\ i (25 i\ .
_ E n § _1k 21-!—] y
t ( )( k )2j+i( j ) “

n>0 i+j+k=n

This leads to the following result.

Theorem 3.5 The setGNC,,(ud, h) of {ud, h}-avoiding (i.e. increasing) GNC-trees is counted by the

nth little Schibder number, and the s&NC,, (du, h) of {du, h}-avoiding GNC-trees is counted by
34254+ k\ i (2540
GNC,,(du, h)| = —1)* 29 C;.
onCyut| = Y (M) S (P e

i+j+k=n 2j+i J
This sequence beginning with 1, 5, 27,157,957, 6025 is listed in [12, A153233].
3.3 The pattern {uu, dd}

Now we consider the pattefmu, dd}, let P = {uu, dd}, using the decomposition of GNC-trees, relations

betweerl), .(t) andZ, " (t) can be derived, the details are omitted:

TP, (1) = 1+ytTo,y,o<t>2T£y,z<t>+ytTo,y,o<t>{TW<> Tow(w}{ﬂ;iz(m}
+ at{2TF, (1) = Toy0®) H{1+ ytTo.00?TE, (0 2T (1) — 1},
Tih ) = 1+ a1+ gt 0(02TE, L >}{2T:f;z< )1},
from which, one can get
TL,.(t) = {1+ utToyo®TE, (0 M1 - oty o) + 20478, ,)TE, (1)} (3.15)

The caser = y = z = 1in (3.15) yields
Proposition 3.6 The generating function fofuu, dd }-avoiding GNC-trees is given by

T11,31,1(t) = {1 + tTO,l,O(t)QTll,DLl(t)}{l — tTo,1,0(t)* + 2tT11,31,1(t)2}-
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Settingy = 0in (3.15), byT},0,0(¢) = 1, one can get
Tho.(t) = 1—at+2xtTh (T (). (3.16)
Exchanginge andz in (3.16), one has
ThoL(t) = 1—zt+22TF, ()T (1) (3.17)
From (3.16) and (3.17), one can obtain
TLo.(t) = 1—wt—2(z— a)tT], (t) + 22tT), (1),

which leads to

5 (1) — 1+2(z—a2)t— /(1 +42Z(: —x)t)? — 8zt(1 — xt). (3.18)

Settingz = 1 in (3.18), one can deduce

14+2(1—a)t — /(1 +2(1 —2)t)2 — 8(1 — xt)
4t
1—at 2t(1 — xt) ) = Z (21'01-#'(1 — at)tt!

T 1+20 —x)tc((lJrQ(l —2)t)? 1+ 2(1 — z)t)2it!

T£0,1(t) =

i>0

= Y 2ci ii(—nj (’ J; 1) 2ty (—1)F (% Z k) ok ¢k zz:(_l)é (lz) 2’

>0 7=0 k>0
= 2.2t Yy (Z - 1) (2221‘:) < § ) 2R C,.
n>0r=0 i+jt+k=n J r—=

Settingz = z = 1in (3.18), one has

That) = YIS0 e - )

4t
n - n—i i+1 (72l
= ;t ;(_1) (nz)z Ci,

which leads to the following result.

Theorem 3.7 The number ofuu, dd, h }-avoiding (i.e., alternating) GNC-trees of+ 1 vertices is given
by

n

1N
Z(1)“Z(Z + ) 2, ([12, A068764].
=0 n—1

Moreover, the number of alternating GNC-treeswof 1 vertices with exactly ascents is

= ()

itjtk=n
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Remark 3.8 Whenr = 0, thenj = 0 and there is no alternating GNC-tree of}- 1 vertices with exactly
r = 0 ascents forn > 1. So we have

iz:(—l)"_i(z i— z) C;=0, (n>1).

Whenz = —1,z = 1in (3.18), one has
1+4t— V14812

T oa(t) = 1 —tC(—2t%)

41
1 + Z(*l)n+12ncnt2n+l7
n>0
which leads to the following results.

Theorem 3.9 The difference between the number of alternating GNC-toees. vertices with an even
number of ascents and those with an odd number of ascent®iff ze = 2n + 3 and (—1)"*12"C,, if
m=2n+2forn > 0.
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