Self-complementing permutations of k-uniform hypergraphs

Artur Szymański and A. Paweł Wojda
Faculty of Applied Mathematics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-053 Krakow, Poland

received January 20, 2008, revised January 16, 2009, accepted January 23, 2009.

A k-uniform hypergraph $H=(V ; E)$ is said to be self-complementary whenever it is isomorphic with its complement $\bar{H}=\left(V ;\binom{V}{k}-E\right)$. Every permutation σ of the set V such that $\sigma(e)$ is an edge of \bar{H} if and only if $e \in E$ is called selfcomplementing. 2-self-comlementary hypergraphs are exactly self complementary graphs introduced independently by Ringel (1963) and Sachs (1962).
For any positive integer n we denote by $\lambda(n)$ the unique integer such that $n=2^{\lambda(n)} c$, where c is odd.
In the paper we prove that a permutation σ of $[1, n]$ with orbits O_{1}, \ldots, O_{m} is a self-complementing permutation of a k-uniform hypergraph of order n if and only if there is an integer $l \geq 0$ such that $k=a 2^{l}+s, a$ is odd, $0 \leq s<2^{l}$ and the following two conditions hold:
(i) $n=b 2^{l+1}+r, r \in\left\{0, \ldots, 2^{l}-1+s\right\}$, and
(ii) $\sum_{i: \lambda\left(\left|O_{i}\right|\right) \leq l}\left|O_{i}\right| \leq r$.

For $k=2$ this result is the very well known characterization of self-complementing permutation of graphs given by Ringel and Sachs.

Keywords: Self-complementing permutations, k-uniform hypergraphs

1 Introduction

Let V be a set of n elements. The set of all k-subsets of V is denoted by $\binom{V}{k}$. A k-uniform hypergraph H consists of a vertex-set $V(H)$ and an edge-set $E(H) \subseteq\binom{V(H)}{k}$. Two k-uniform hypergraphs G and H are isomorphic, if there is a bijection σ : $V(G) \rightarrow V(H)$ such that $e \in E(G)$ if and only if $\{\sigma(x) \mid x \in e\} \in E(H)$. The complement of a k uniform hypergraph H is the hypergraph \bar{H} such that $V(\bar{H})=V(H)$ and the edge set of which consists of all k-subsets of $V(H)$ not in $E(H)$ (in other words $E(\bar{H})=\binom{V(H)}{k}-E$). A k-uniform hypergraph H is called self-complementary ($s-c$ for short) if it is isomorphic with its complement \bar{H}. Isomorphism of a k-uniform self-complementary hypergraph onto its complement is called self-complementing permutation (or s-c permutation).

The 2-uniform self-complementary hypergraphs are exactly self-complementary graphs. This class of graphs has been independently discovered by Ringel and Sachs who proved the following.
Theorem 1 (Ringel (Rin63) and Sachs (Sac62)) Let n be a positive integer. A permutation σ of $[1, n]$ is a self-complementing permutation of a self-complementary graph of order n if and only if all the orbits of σ have their cardinalities congruent to $0(\bmod 4)$ except, possibly, one orbit of cardinality 1.
Observe that by Theorem 1 an s-c graph of order n exists if and only if $n \equiv 0$ or $n \equiv 1(\bmod 4)$ or, equivalently, whenever $\binom{n}{2}$ is even. In $(\underline{S W})$ we prove that a similar result is true for k-uniform hypergraphs.
Theorem $2(\overline{\mathbf{S W})})$ Let k and n be positive integers, $k \leq n$. A k-uniform self-complementary hypergraph of order n exists if and only if $\binom{n}{k}$ is even.

A simple criterion for evenness of $\binom{n}{k}$ has been given in (Gla99) (and then rediscovered in (KHRM58)).
Theorem 3 ((Gla99; KHRM58)) Let k and n be positive integers, $k=\sum_{i=0}^{+\infty} c_{i} 2^{i}$ and $n=\sum_{i=0}^{+\infty} d_{i} 2^{i}$, where $c_{i}, d_{i} \in\{0,1\}$ for every i. $\binom{n}{k}$ is even if and only if there is i_{0} such that $c_{i_{0}}=1$ and $d_{i_{0}}=0$.

Theorem 3 asserts that $\binom{n}{k}$ is even if and only if k has 1 in a certain binary place while n has 0 in the corresponding binary place. For example, $\binom{27}{13}$ is even since $13=1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}$ and $27=1 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}$ (so we have $c_{2}=1$ and $d_{2}=0$).

Except for Theorem 1 which is a characterization of the self-complementing permutations for graphs, there are already two published results characterizing the permutations of k-uniform s-c hypergraphs for $k>2$. Namely, Kocay in (Koc92) (see also (Pal73)) and Szymański in (Szy05) have characterized the s-c permutations of s-c k-uniform hypergraphs for, respectively, $k=3$ and $k=4$. This work is a continuation of the work of (SW) and (Woj06). We generalize all the results mentioned above by giving a characterization of the s-c permutations of k-uniform hypergraphs for any integers k and n.

2 Result

Any positive integer n may be writen in the form $n=2^{l} c$, where c is an odd integer. Moreover, l and c are uniquely determined. We write then $\lambda(n)=l$. Note that in the binary expansion of $n, \lambda(n)$ is the index of the first 1 -bit. For any set A we shall write $\lambda(A)$ in place of $\lambda(|A|)$, for short.

In the proof of our main result we shall need the following lemma proved in (Woj06).
Lemma 1 Let k, m and n be positive integers, and let $\sigma: V \rightarrow V$ be a permutation of a set $V,|V|=$ n, with orbits $O_{1}, \ldots, O_{m} . \sigma$ is a self-complementing permutation of a self-complementary k-uniform hypergraph, if and only if, for every $p \in\{1, \ldots, k\}$ and for every decomposition

$$
k=k_{1}+\ldots+k_{p}
$$

of $k\left(k_{j}>0\right.$ for $\left.j=1, \ldots, p\right)$, and for every subsequence of orbits

$$
O_{i_{1}}, \ldots, O_{i_{p}}
$$

such that $k_{j} \leq\left|O_{i_{j}}\right|$ for $j=1, \ldots, p$, there is a subscript $j_{0} \in\{1, \ldots, p\}$ such that

$$
\lambda\left(k_{j_{0}}\right)<\lambda\left(O_{i_{j_{0}}}\right)
$$

Given any integer $l \geq 0$. If the binary expansion of k is 1 -bit in position l, then k can be written in the form $k=a_{l} 2^{l}+s_{l}$, where a_{l} is odd and $0 \leq s_{l}<2^{l}$.

Theorem 4 Let k and n be integers, $k \leq n$. A permutation σ of $[1, n]$ with orbits O_{1}, \ldots, O_{m} is a selfcomplementing permutation of a k-uniform hypergraph of order n if and only if there is a nonnegative integer l such that $k=a_{l} 2^{l}+s_{l}$, where a_{l} is odd and $0 \leq s_{l}<2^{l}$, and the following two conditions hold:
(i) $n=b_{l} 2^{l+1}+r_{l}, r_{l} \in\left\{0, \ldots, 2^{l}-1+s_{l}\right\}$, and
(ii) $\sum_{i: \lambda\left(O_{i}\right) \leq l}\left|O_{i}\right| \leq r_{l}$.

Proof:

Sufficiency. By contradiction. Let $n, k, l, a_{l}, b_{l}, s_{l}$ and r_{l} be integers verifying the conditions of the theorem, let σ be a permutation of $[1, n]$ with orbits O_{1}, \ldots, O_{m} verifying (ii), and let us suppose that σ is not a s-c permutation of any k-uniform s-c hypergraph of order n. Then, by Lemma 1 , there is a decomposition of $k=k_{1}+\cdots+k_{t}$ and a subsequence of orbits $O_{i_{1}}, \ldots, O_{i_{t}}$ such that

$$
\begin{equation*}
0<k_{j} \leq\left|O_{i_{j}}\right| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda\left(k_{j}\right) \geq \lambda\left(O_{i_{j}}\right) \tag{2}
\end{equation*}
$$

for $j=1, \ldots, t$.
Since a_{l} is odd, we have $k \equiv 2^{l}+s_{l}\left(\bmod 2^{l+1}\right)$. By $2 \downarrow, \sum_{j: \lambda\left(O_{i_{j}}\right)>l} k_{j} \equiv 0\left(\bmod 2^{l+1}\right)$. Therefore

$$
k=\sum_{j=1}^{t} k_{j}=\sum_{j: \lambda\left(O_{i_{j}}\right)>l} k_{j}+\sum_{j: \lambda\left(O_{i_{j}}\right) \leq l} k_{j} \equiv \sum_{j: \lambda\left(O_{i_{j}}\right) \leq l} k_{j} \quad\left(\bmod 2^{l+1}\right)
$$

Hence, and by [1], (i]) and (ii) we have $\sum_{j: \lambda\left(O_{i_{j}}\right) \leq l} k_{j} \leq \sum_{j: \lambda\left(O_{i_{j}}\right) \leq l}\left|O_{i_{j}}\right|<2^{l+1}$, and therefore

$$
2^{l}+s_{l}=\sum_{j: \lambda\left(O_{i_{j}}\right) \leq l} k_{j} \leq \sum_{j: \lambda\left(O_{i_{j}}\right) \leq l}\left|O_{i_{j}}\right| \leq r_{l}<2^{l}+s_{l}
$$

a contradiction.
Necessity. Let $1 \leq k \leq n$ and let σ be a permutation of the set $[1, n]$ with orbits O_{1}, \ldots, O_{m}. Let us suppose that for every integer l such that $k=a_{l} 2^{l}+s_{l}$, where a_{l} is odd positive integer, $0 \leq s_{l}<2^{l}$, and $n=b_{l} 2^{l+1}+r_{l}, 0 \leq r_{l}<2^{l+1}$ we have either

$$
r_{l} \in\left\{2^{l}+s_{l}, \ldots, 2^{l+1}-1\right\}
$$

or

$$
r_{l} \in\left\{0, \ldots, 2^{l}-1+s_{l}\right\} \quad \text { and } \sum_{i: \lambda\left(O_{i}\right) \leq l}\left|O_{i}\right|>r_{l}
$$

We shall prove that σ is not a s-c permutation of any s-c k-uniform hypergraph of order n. For this purpose we shall give two claims.

Claim 1 For every nonnegative integer l such that $k=a_{l} 2^{l}+s_{l}$, where a_{l} is odd and $0 \leq s_{l}<2^{l}$, we have

$$
\sum_{i: \lambda\left(O_{i}\right) \leq l}\left|O_{i}\right| \geq 2^{l}+s_{l}
$$

Proof of Claim 1. Let us write $\sum_{i: \lambda\left(O_{i}\right) \leq l}\left|O_{i}\right|$ and $\sum_{i: \lambda\left(O_{i}\right)>l}\left|O_{i}\right|$ in their binary forms:

$$
\begin{aligned}
\sum_{i: \lambda\left(O_{i}\right) \leq l}\left|O_{i}\right| & =\sum_{j=0}^{\infty} e_{j} 2^{j} \\
\sum_{i: \lambda\left(O_{i}\right)>l}\left|O_{i}\right| & =\sum_{j=0}^{\infty} f_{j} 2^{j}
\end{aligned}
$$

where $e_{j}, f_{j} \in\{0,1\}$ for every j. Observe that $f_{j}=0$ for $j=0, \ldots, l$ and therefore

$$
\begin{equation*}
\sum_{j=0}^{l} e_{j} 2^{j}=r_{l} \tag{3}
\end{equation*}
$$

We shall consider two cases.
Case 1. $r_{l} \in\left\{0, \ldots, 2^{l}+s_{l}-1\right\}$ and $\sum_{i: \lambda\left(O_{i}\right) \leq l}\left|O_{i}\right|>r_{l}$.
We have $n \geq 2^{l+1}$ (otherwise $r_{l}=n=\sum_{i: \lambda\left(O_{i}\right) \leq l}\left|O_{i}\right|$).
Since $\sum_{j=0}^{\infty} e_{j} 2^{j}>r_{l}$, and by $\sqrt[3]{ }$, we obtain $\sum_{j=0}^{\infty} e_{j} 2^{j} \geq 2^{l+1}>2^{l}+s_{l}$.
Case 2. $r_{l} \in\left\{2^{l}+s_{l}, \ldots, 2^{l+1}-1\right\}$.
We have $\sum_{i: \lambda\left(O_{i}\right) \leq l}\left|O_{i}\right|=\sum_{j=0}^{\infty} e_{j} 2^{j} \geq \sum_{j=0}^{l} e_{j} 2^{j}=r_{l} \geq 2^{l}+s_{l}$, and the claim is proved.
Claim 2 Let $\alpha_{1}, \ldots, \alpha_{q}$ and $\lambda_{1}, \ldots, \lambda_{q}$ be integers such that $0<\alpha_{i}, 0 \leq \lambda_{i} \leq \lambda\left(\alpha_{i}\right)$ and $\lambda_{i} \leq l$ for $i=1, \ldots, q$ and $\sum_{i=1}^{q} \alpha_{i} \geq 2^{l}$. Then there are $\beta_{1}, \ldots, \beta_{q}$ such that for every $i=1, \ldots, q$

$$
\begin{equation*}
0 \leq \beta_{i} \leq \alpha_{i} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { either } \beta_{i}=0 \text { or } \lambda\left(\beta_{i}\right) \geq \lambda_{i} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{q} \beta_{i}=2^{l} \tag{6}
\end{equation*}
$$

Proof of Claim 2 The existence of $\beta_{1}, \ldots, \beta_{q}$ verifying (4)-5) and $\sum_{i=1}^{q} \beta_{i} \leq 2^{l}$ is very easy. Indeed, it is immediate that $\beta_{1}=2^{\lambda_{1}}, \beta_{2}=\ldots \beta_{q}=0$ is a sequence with the desired properties.
So let us suppose that $\beta_{1}, \ldots, \beta_{q}$ is a sequence verifying $47-5$ and $\sum_{i=1}^{q} \beta_{i} \leq 2^{l}$ such that $\sum_{i=1}^{q} \beta_{i}$ is maximal. If $\sum_{i=1}^{q} \beta_{i}=2^{l}$ then the proof is complete. So let us suppose that $\sum_{i=1}^{q} \beta_{i}<2^{l}$. Then there is $i_{0} \in\{1, \ldots, q\}$ such that $\beta_{i_{0}}<\alpha_{i_{0}}$. Observe that $\beta_{i_{0}}+2^{\lambda_{i_{0}}} \leq \alpha_{i_{0}}$. The sequence $\bar{\beta}_{1}, \ldots, \bar{\beta}_{q}$ defined by $\bar{\beta}_{i_{0}}=\beta_{i_{0}}+2^{\lambda_{i_{0}}}$ and $\bar{\beta}_{i}=\beta_{i}$ for $i \neq i_{0}$ also verifies 4p-5) and $\sum_{i=1}^{q} \bar{\beta}_{i} \leq 2^{l}$, which contradicts the maximality of the sum $\sum_{i=1}^{q} \beta_{i}$, and the claim is proved.

We shall use our claims to construct a decomposition of k in the form $k=k_{1}+\ldots+k_{m}$ such that
(1) k_{1}, \ldots, k_{m} are nonnegative integers,
(2) $k_{i} \leq\left|O_{i}\right|$ for $i=1, \ldots, m$, and
(3) $\lambda\left(k_{i}\right) \geq \lambda\left(O_{i}\right)$ whenever $k_{i}>0$

By Lemma 1 , this will imply that σ is not a s-c permutation of any k-uniform s-c hypergraph. Let us write k in its binary form:

$$
k=2^{l_{t}}+2^{l_{t-1}}+\ldots+2^{l_{1}}+2^{l_{0}}
$$

where $l_{0}<l_{1}<\ldots<l_{t}$.
By Claim 1 , $\sum_{i: \lambda\left(O_{i}\right) \leq l_{0}}\left|O_{i}\right| \geq 2^{l_{0}}$. Hence, and by Claim 2, there are nonnegative integers $k_{1}^{(0)}, k_{2}^{(0)}, \ldots, k_{m}^{(0)}$ such that $k_{i}^{(0)}=0$ for i such that $\lambda\left(O_{i}\right)>l_{0}$ and

$$
\begin{gathered}
k_{i}^{(0)} \leq\left|O_{i}\right| \text { for } i=1, \ldots, m \\
\lambda\left(k_{i}^{(0)}\right) \geq \lambda\left(O_{i}\right) \text { whenever } k_{i}^{(0)}>0
\end{gathered}
$$

and

$$
\sum_{i=1}^{m} k_{i}^{(0)}=2^{l_{0}}
$$

Note that, for $i=1, \ldots, m$, we have $\lambda\left(\left|O_{i}\right|-k_{i}^{(0)}\right) \geq \lambda\left(O_{i}\right)$.
Let us suppose that we have already constructed $k_{1}^{(j)}, \ldots, k_{m}^{(j)},(j \leq t)$, such that $k_{i}^{(j)}=0$ for i such that $\lambda\left(0_{i}\right)>l_{i}$ and

$$
\begin{gathered}
k_{i}^{(j)} \leq\left|O_{i}\right| \text { for } i=1, \ldots, m \\
\lambda\left(k_{i}^{(j)}\right) \geq \lambda\left(O_{i}\right) \text { whenever } k_{i}^{(j)}>0 \\
\sum_{i=0}^{m} k_{i}^{(j)}=2^{l_{j}}+2^{l_{j-1}}+\cdots+2^{l_{0}}
\end{gathered}
$$

and

$$
\lambda\left(\left|O_{i}\right|-k_{i}^{(j)}\right) \geq \lambda\left(O_{i}\right)
$$

If $j=t$, then we have already found a desired decomposition of k. If $j<t$, then, by Claim 1 we have $\sum_{i: \lambda\left(O_{i}\right) \leq l_{j+1}}\left(\left|O_{i}\right|-k_{i}^{(j)}\right) \geq 2^{l_{j+1}}$.
$\lambda\left(\left|O_{i}\right|-k_{i}^{(j)}\right) \geq \lambda\left(O_{i}\right)$ for every $i \in\{1, \ldots, m\}$ such that $\left|O_{i}\right|-k_{i}^{(j)}>0$. Hence, and by Claim 2 there are $\beta_{1}, \ldots, \beta_{m}$ such that $\beta_{i}=0$ for i such that $\lambda\left(O_{i}\right)>l_{j+1}$ and

$$
\begin{gathered}
0 \leq \beta_{i} \leq\left|O_{i}\right|-k_{i}^{(j)} \text { for } i=1, \ldots, m \\
\lambda\left(O_{i}\right) \leq \lambda\left(\beta_{i}\right) \text { for } i=1, \ldots, m \text { whenever } \beta_{i} \neq 0 \\
\sum_{i=1}^{m} \beta_{i}=2^{l_{j+1}}
\end{gathered}
$$

Thus we may define for every $i=1, \ldots, m$

$$
k_{i}^{(j+1)}=k_{i}^{(j)}+\beta_{i}
$$

to obtain the sequence $\left(k_{1}^{(j+1)}, \ldots, k_{m}^{(j+1)}\right)$ verifying for every $i \in\{1, \ldots, m\}$

$$
\begin{aligned}
& k_{i}^{(j+1)}=0 \text { for } i \text { such that } \lambda\left(O_{i}\right)>l_{j+1} \\
& \qquad k_{i}^{(j+1)} \leq\left|O_{i}\right| \\
& \lambda\left(k_{i}^{(j+1)}\right) \geq \lambda\left(O_{i}\right) \text { whenever } k_{i}^{(j+1)}>0
\end{aligned}
$$

and

$$
\sum_{i=1}^{m} k_{i}^{(j+1)}=2^{l_{j+1}}+2^{l_{j}}+\cdots+2^{l_{0}}
$$

It is clear that $k=\sum_{i=1}^{m} k_{i}^{(t)}$ and the proof of Theorem 4 is complete.

Theorem 4 implies very easily the following theorem first proved by Kocay.
Corollary 1 (Kocay (Koc92)) σ is a self-complementing permutation of a self-complementary 3-uniform hypergraph if and only if either all the orbits of σ have even cardinalities, or else, it has 1 or 2 fixed points and the all remaining orbits of σ have their cardinalities being multiples of 4 .

For $k=2^{l}$ Theorem 4 may be written as follows.
Corollary 2 Let l and n be nonnegative integers, $2^{l}<n$, and let $0 \leq r<2^{l+1}$ be such that $n \equiv r$ ($\bmod 2^{l+1}$). A permutation σ of $[1, n]$ with orbits $O_{1}, \ldots O_{m}$ is a self-complementing permutation of a 2^{l}-uniform self-complementary hypergraph if and only if
(i) $r \in\left\{0, \ldots, 2^{l}-1\right\}$ and
(ii) $\sum_{i: \lambda\left(O_{i}\right) \leq l}\left|O_{i}\right| \leq r$.

Theorem 2 for $l=1$ (i.e. for graphs) is exactly Theorem 1, and for $l=2$ the following theorem proved by Szymański in (Szy05).

Corollary 3 A permutation σ is self-complementing permutation of a 4-uniform hypergraph of order n if and only if $n \equiv r(\bmod 8)$ with $r=0,1,2$ or 3 , and the sum of the cardinalities of orbits which are not multiples of 8 is at most 3 .

Acknowledgements

The research was partially supported by AGH local grant No 1142004.

References

[Gla99] J.W.L. Glaisher. On the residue of a binomial coefficient with respect to a prime modulus. Quarterly Journal of Mathematics, 30:150-156, 1899.
[KHRM58] S.H. Kimball, T.R. Hatcher, J.A. Riley, and L. Moser. Solution to problem e1288: Odd binomial coefficients. Amer. Math. Monthly, 65:368-369, 1958.
[Koc92] W. Kocay. Reconstructing graphs as subsumed graphs of hypergraphs, and some selfcomplementary triple systems. Graphs and Combinatorics, 8:259-276, 1992.
[Pal73] E.M. Palmer. On the number of n-plexes. Discrete Math., 6:377-390, 1973.
[Rin63] G. Ringel. Selbstkomplementare graphen. Arch. Math., 14:354-358, 1963.
[Sac62] H. Sachs. Uber selbstkomplementare graphen. Publ. Math. Debrecen, 9:270-288, 1962.
[SW] A. Szymański and A.P. Wojda. A note on k-uniform self-complementary hypergraphs of given order. submited.
[Szy05] A. Szymański. A note on self-complementary 4-uniform hypergraphs. Opuscula Mathematica, 25/2:319-323, 2005.
[Woj06] A.P. Wojda. Self-complementary hypergraphs. Discussiones Mathematicae - Graph Theory, 26:217-224, 2006.

