
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 20:2, 2018, #2

On fixed-parameter tractability of the mixed
domination problem for graphs with bounded
tree-width

Meysam Rajaati Bavil Olyaei1,2 Mohammad Reza Hooshmandasl1,2

Michael J. Dinneen3 Ali Shakiba4

1 Department of Computer Science, Yazd University, Yazd, Iran
2 The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran
3 Department of Computer Science, The University of Auckland, Auckland, New Zealand
4 Department of Computer Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

received 28th Dec. 2016, revised 23rd May 2017, accepted 28th June 2018.

A mixed dominating set for a graph G = (V,E) is a set S ⊆ V ∪ E such that every element x ∈ (V ∪ E)\S is
either adjacent or incident to an element of S. The mixed domination number of a graph G, denoted by γm(G), is
the minimum cardinality of mixed dominating sets of G. Any mixed dominating set with the cardinality of γm(G)

is called a minimum mixed dominating set. The mixed domination set (MDS) problem is to find a minimum mixed
dominating set for a graph G and is known to be an NP-complete problem. In this paper, we present a novel approach
to find all of the mixed dominating sets, called the AMDS problem, of a graph with bounded tree-width w. Our
new technique of assigning power values to edges and vertices, and combining with dynamic programming, leads to
a fixed-parameter algorithm of time O(3w

2

× w2 × |V |). This shows that MDS is fixed-parameter tractable with
respect to tree-width. In addition, we theoretically improve the proposed algorithm to solve the MDS problem in
O(6w × |V |) time.

Keywords: Mixed Domination, Tree decomposition, Tree-width, Fixed-parameter tractable

1 Introduction
The mixed dominating set (MDS) problem was first introduced in 1977 by Alavi et. al. Alavi et al. (1977).
The MDS problem has many practical applications such as placing phase measurement units in an electric
power system Zhao et al. (2011). Also, there are variations and generalizations of the MDS such as Roman
MDS and signed Roman MDS which were introduced and studied by Abdollahzadeh et al. Ahangar et al.
(2015b,a).

An edge dominates its endpoints as well as all of its adjacent edges. Also, a vertex dominates all of its
neighboring vertices as well as all of its incident edges. Formally, a set S ⊆ V ∪ E of vertices and edges
of a graph G = (V,E) is called a MDS if every element x ∈ (V ∪ E) \ S is dominated by an element

ISSN 1365–8050 © 2018 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:1

61
2.

08
23

4v
3

 [
cs

.D
M

]
 1

4
Ju

l 2
01

8

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/2615

2 Meysam Rajaati Bavil Olyaei, Mohammad Reza Hooshmandasl, Michael J. Dinneen, Ali Shakiba

of S. The mixed domination number of G is the size of the smallest mixed dominating set of G and is
denoted by γm(G). Finding all of the mixed dominating set of a graph is called AMDS problem.

The MDS problem is NP-complete for general graphs Zhao et al. (2011). There exist different ap-
proaches to solve an NP-complete problem such as approximation, randomization, heuristics, and param-
eterization. Several approximation algorithms exist for solving the MDS problem such as a 2-factor one
by Hatami Hatami (2007). It is notable that the MDS problem remains NP-complete even for split graphs
due to the high tree-width of the input graph Lan and Chang (2013); however, the MDS problem is poly-
nomial tractable for cacti and trees Lan and Chang (2013). A parallel concept is proposed by Adhar et
al. in Adhar and Peng (1994) which requires O(n) processors in CRCW PRAM model to solve the MDS
in O(log n) time where n is the number of graph vertices.

The parameterization method is a well-known technique which considers certain parameters on the
input constant to get a polynomial time algorithm with respect to the size of the input and may contain
exponential terms with respect to these fixed parameters. A famous example of such parameters is the
tree-width which was introduced by Robertson and Seymour in 1984 Robertson and Seymour (1984).
The tree-width parameter has proven to be a good coping strategy for tackling the intrinsic difficulty
for various NP-hard problems on graphs. The tree-width measures the similarity of a graph to a tree.
Since most of the algorithms work efficiently on trees, the tree decomposition of a graph can be used to
speed up solving some problems on graphs with a small tree-width. Although some problems in graph
theory cannot be solved in polynomial time even with respect to some fixed parameter, there are many
other interesting problems in graph theory which are fixed parameter tractable (FPT). To show that a
problem is FPT, one existing way is to express the problem in monadic second-order logic; if a problem
can be modeled in this way, then it is FPT by Courcelle’s famous theorem Courcelle (1992, 2015). The
reduction technique, which is an extension of a graph reduction to another graph of bounded tree-width
by Bodlaender (see Bodlaender and van Antwerpen-de Fluiter (2001)), is another technique which helps
solving problems in linear time with respect to constant tree-width.

Almost all of the algorithmic approaches that consider the input graph of a constant tree-width use the
dynamic programming paradigm. For example, Chimani proposed an algorithm to solve the Steiner tree
problem using dynamic programming Chimani et al. (2012).

In Rajaati et al. (2016), we proposed an approach to solve the problem of finding all of the mixed
dominating sets (AMDS) for a graph G = (V,E) of bounded tree-width w which has time complexity
O(3w

2 × w2 × |V |). Our constructive algorithm shows that the MDS is fixed-parameter tractable with
respect to tree-width. As defined later, the fundamental idea we use to solve the MDS problem is to assign
power values to vertices. Recently, Jain et al. in Jain et al. (2017) enhanced the complexity(i) of Rajaati
et al. (2016) to O∗(6w). Here they showed how to turn any set S ⊆ V ∪ E to satisfy (i) the edges
in S form a matching, and (ii) the set of endpoints of edges in S is disjoint from the vertices in S, to
a minimum sized mixed dominating set. In this paper, we also modify our original proposed algorithm
of Rajaati et al. (2016) to solve MDS with time complexity O∗(6w).

The rest of the paper is organized as follows: In Section 2, we give necessary notations and definitions.
In Section 3, we define the concept of charging vertices which is a key part of our proposed algorithm.
Our proposed algorithm that solves the AMDS is presented in Section 4. Then, we modify this algorithm
to solve MDS. In Section 5, we formally show the correctness of the proposed algorithm. Finally, a brief

(i) The “big Oh star” notation O∗(f(w)) indicates the algorithm runs in time O(f(w)nc), where n is the input size, c is a constant
independent to the treewidth w and f() is an arbitrary function dependent only on w.

On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width 3

conclusion and ideas for future work are discussed in Section 6.

2 Preliminaries
In this section, we overview the graph theory that is used throughout the paper. In general, the notation
used below follows West et al. (2001) and Haynes et al. (1998).

All graphs considered in this paper are undirected and simple, i.e. no parallel edges or self-loops. Let
G = (V,E) be a graph with the vertex set V and the edge set E.

For vertex v ∈ V , N(v) denotes the open neighborhood of v and is defined as N(v) = {u ∈ V | uv ∈
E}. The edge open neighborhood of the vertex v is defined as Ne(v) = {e ∈ E | e = uv}. Also, for
an edge e = uv ∈ E, N(e) = {u, v} denotes the open neighborhood of e. The edge open neighborhood
of the edge e = uv is defined as Ne(e) = {e′ ∈ E | e′ = uv′ or e′ = u′v where u 6= u′ and v 6= v′}.
We denote the mixed neighborhood of vertex v by Nmd(v) such that Nmd(v) = N(v) ∪Ne(v), and the
mixed neighborhood of edge e by Nmd(e) such that Nmd(e) = N(e) ∪Ne(e). Finally, for any element
r ∈ V ∪ E, we denote the mixed neighborhood of r by Nmd

G (r). Also, for any element r ∈ V ∪ E, the
closed mixed neighborhood is defined as Nmd

G (r) ∪ {r} and is denoted by Nmd
G [r].

A tree decomposition of a graph G is a mapping of G into a tree T which satisfies certain properties.
Note that throughout the paper, nodes of G are called vertices while nodes of T are called bags.

Definition 2.1. Let G = (V,E) be a graph. A tree decomposition of G is a pair (X = {Xi | i ∈ I}, T),
where each Xi is a subset of V , which is called a bag, T is a tree with elements of I as bags and satisfies
the following three properties.

1.
⋃

i∈I Xi = V ,

2. for every edge {u, v} ∈ E, there is an index i ∈ I such that {u, v} ⊆ Xi,

3. for all i, j, k ∈ I, if j lies on the path between i and k in T , then Xi ∩Xk ⊆ Xj .

The width of a tree decomposition (X = {Xi | i ∈ I}, T) equals to max{|Xi| | i ∈ I} − 1. The
tree-width of a graph G, denoted by w, is the minimum width among all the tree decompositions of graph
G.

Definition 2.2. A tree decomposition (X = {Xi | i ∈ I}, T) is called a nice tree decomposition if the
following conditions are met:

1. Every bag of the tree has at most two children.

2. If a bag i has two children j and k, then Xi = Xj = Xk. Such a bag is called a JOIN bag.

3. If a bag i has exactly one child like j, then one of the following conditions must hold:

(a) |Xi| = |Xj |+ 1 and Xj ⊂ Xi

(b) |Xi| = |Xj | − 1 and Xi ⊂ Xj

Note that if (a) holds, the bag |Xi| is called an INTRODUCE bag, and if (b) holds, it is called a
FORGET bag.

4 Meysam Rajaati Bavil Olyaei, Mohammad Reza Hooshmandasl, Michael J. Dinneen, Ali Shakiba

Lemma 2.3. (Bodlaender (1996)) Given a tree decomposition of a graph G of width w, and n vertices,
one can find a nice tree decomposition of G in linear time of width w and O(n) bags.

Definition 2.4. A nice tree decomposition is called a very nice tree decomposition if each LEAF bag
contains just a single vertex.

(a)

1

2 3 4 5

1 2 3

4 5 6

(b)

1 12: FORGET bag

1, 4 11: JOIN bag

1, 46: FORGET bag

1, 4, 35: INTRODUCE bag

1, 34: FORGET bag

1, 2, 33: INTRODUCE bag

2, 32: FORGET bag

21: LEAF bag

1, 4 10: INTRODUCE bag

4 9: FORGET bag

4, 5 8: INTRODUCE bag

5 7: LEAF bag

Fig. 1: (a) Graph G1, (b) One of nice tree decomposition of G1 with treewidth 2. The bags of tree decomposition are
numbered according to a preorder traversal on it.

3 Fundamental Concepts
The fundamental idea that we use to solve the AMDS is transferring the edge power to the vertex power.

LetMD be a mixed domination set, Xi be a bag in a tree decomposition of G and v ∈ Xi be a vertex
of G. The rules for transferring the domination power of the edges to the vertices are as follows:

• Power 2: If v ∈ MD, then the power of v is set equal to 2. In this case, this vertex can dominate
the elements in Nmd

G [r].

• Power 1: If v /∈ MD and at least one of the incident edges of the vertex v is in MD, then the
power of v is set equal to 1. This vertex can dominate all of its incident edges.

• Power 0: If v and all of its incident edges are not inMD, then the power of v is set equal to 0.
This vertex cannot dominate any edges or vertices.

Given a vertex v ∈ Xi, there are seven situations to consider which are illustrated in the Table 3. The
intuition behind each of these cases is as follows:

On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width 5

1. In the first case, the vertex v and at least one of its incident edges belong toMD,

2. In the second case, v belong toMD, however, none of its edges belong toMD,

3. In the third case, v does not belong toMD but at least one of its incident edges belongs toMD,

4. In the fourth case, v and all of its edges do not belong toMD, and v and its edges are dominated,

5. In the fifth case, v and all of its edges do not belong toMD, and v is not dominated but all its edges
are dominated,

6. In the sixth case, v and all of its edges do not belong toMD, and v is dominated but at least one of
its edges is not dominated,

7. In the seventh case, v and all of its edges do not belong toMD, and v and at least one of its edges
is not dominated.

Tab. 1: The seven possible situation for a vertex in a bag.
v ∈MD Ne

Xi
(v) ∈MD vertex cover edge cover vertex power illustration

1 v ∈MD ∃e ∈ Ne
Xi

(v), e ∈MD v is covered ∀e ∈ Ne
Xi

(v), e is covered 2 2(a).
2 v ∈MD ∀e ∈ Ne

Xi
(v), e /∈MD v is covered ∀e ∈ Ne

Xi
(v), e is covered 2 2(b).

3 v /∈MD ∃e ∈ Ne
Xi

(v), e ∈MD v is covered ∀e ∈ Ne
Xi

(v), e is covered 1 2(c).
4 v /∈MD ∀e ∈ Ne

Xi
(v), e /∈MD v is covered ∀e ∈ Ne

Xi
(v), e is covered 0 2(d).

5 v /∈MD ∀e ∈ Ne
Xi

(v), e /∈MD v is not covered ∀e ∈ Ne
Xi

(v), e is covered 0 2(e).
6 v /∈MD ∀e ∈ Ne

Xi
(v), e /∈MD v is covered ∃e ∈ Ne

Xi
(v), e is not covered 0 2(f).

7 v /∈MD ∀e ∈ Ne
Xi

(v), e /∈MD v is not covered ∃e ∈ Ne
Xi

(v), e is not covered 0 2(g).

In Figure 2 we illustrate these situations where a rectangle indicates a bag; the vertices or edges that
are inMD are drawn as disk or bold line, respectively. Not covered elements are drawn by dotted lines
or circles and the remaining elements are covered. In Figures 2(b), 2(d) and 2(e), we use an arc sector for
incident edges of the selected vertex in the bag. It means all of the edges are covered, but in Figures 2(a)
and 2(c) at least one of incident edges of the vertex is inMD and in Figures 2(f) and 2(g) at least one of
incident edges of the vertex is not covered. Let T be a very nice tree decomposition (recall Definition 2.4)

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7

Fig. 2: Different situations for a vertex with respect to a bag.

for the graph G. For each bag Xi in T , we define the set X4i as

X4i = {v ∈ V | v is in the descendant bags of Xi within I}. (1)

The induced subgraph of G with vertices Xi (or X4i) is denoted by Gi (or G4i). LetMD be a mixed
dominating set for the bag Xi and v ∈ Xi. For a vertex v, there are nine possible situations to consider

6 Meysam Rajaati Bavil Olyaei, Mohammad Reza Hooshmandasl, Michael J. Dinneen, Ali Shakiba

based on the intersection ofG4i and bagXi. These are given in Table 3. Assuming that all of the elements
inG4i /Gi are dominated, seven situations of the Table 3 are the same as earlier given in Table 3. However,
to cover the cases that edges in G4i /Gi are not dominated, two extra cases are possible for v.

8. The vertex v is dominated, however at least one of its edges in G4i /Gi is not dominated.

9. The vertex v and at least one of its edges in G4i /Gi are not dominated.

In both case, the vertex v is not inMD, and at least one of its incident edges in G4i /Gi is not dominated.
However the vertex v in state 8 is dominated, and in state 9 is not dominated. The Figure 3 is similar to

Tab. 2: Different cases for a vertex v ∈ Xi in correspondence to the edges and vertices in Xi.
v ∈MD Ne

X4i
(v) ∈MD vertex cover edge is covered in this bag edge is covered in previous bags power illustration

1 v ∈MD ∃e ∈ Ne
X4i

(v), e ∈MD v is covered ∀e ∈ Ne
Xi

(v), e is covered ∀e ∈ Ne
X4i

(v), e is covered 2 Figure 3(a)

2 v ∈MD ∀e ∈ Ne
X4i

(v), e /∈MD v is covered ∀e ∈ Ne
Xi

(v), e is covered ∀e ∈ Ne
X4i

(v), e is covered 2 Figure 3(b)

3 v /∈MD ∃e ∈ Ne
X4i

(v), e ∈MD v is covered ∀e ∈ Ne
Xi

(v), e is covered ∀e ∈ Ne
X4i

(v), e is covered 1 Figure 3(c)

4 v /∈MD ∀e ∈ Ne
X4i

(v), e /∈MD v is covered ∀e ∈ Ne
Xi

(v), e is covered ∀e ∈ Ne
X4i

(v), e is covered 0 Figure 3(d)

5 v /∈MD ∀e ∈ Ne
X4i

(v), e /∈MD v is not covered ∀e ∈ Ne
Xi

(v), e is covered ∀e ∈ Ne
X4i

(v), e is covered 0 Figure 3(e)

6 v /∈MD ∀e ∈ Ne
X4i

(v), e /∈MD v is covered ∃e ∈ Ne
Xi

(v), e is not covered ∀e ∈ Ne
X4i

(v), e is covered 0 Figure 3(f)

7 v /∈MD ∀e ∈ Ne
X4i

(v), e /∈MD v is not covered ∃e ∈ Ne
Xi

(v), e is not covered ∀e ∈ Ne
X4i

(v), e is covered 0 Figure 3(g)

8 v /∈MD ∀e ∈ Ne
X4i

(v), e /∈MD v is covered e is or is not covered ∃e ∈ Ne
X4i

(v), e is not covered 0 Figure 3(h)

9 v /∈MD ∀e ∈ Ne
X4i

(v), e /∈MD v is not covered e is or is not covered ∃e ∈ Ne
X4i

(v), e is not covered 0 Figure 3(i)

the Figure 2, except that it shows different situations for a vertex v ∈ Xi with respect to a bag Xi, and
it considers the edges and vertices appearing in previous bags. For each edge, there are three different

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

(f) 6 (g) 7 (h) 8 (i) 9

Fig. 3: Different cases for a vertex v ∈ Xi in correspondence to the edges and vertices in Xi.

possible cases to consider: (1) it is in the mixed dominating set, (2) it is not in the mixed dominating set
and it is covered by some element(s), or (3) it is not in the mixed dominating set and is not covered by any
element. These cases are summarized in Table 3. For our algorithm, we keep two types of data tables:
(1) The bag table Btablei saves all of the possible states for the vertices and the edges in the bag Xi. (2)
The status table Stablei saves all possible states for the vertices and the edges in the bag Xi with respect
to G4i . Each table is constructed as follows: in both Btablei and Stablei each row represents a possible
solution and each column corresponds to a vertex or an edge in the induced graph Xi. In addition they

On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width 7

Tab. 3: Possible condition for an edge.
1 edge belongs to the mixed dominating set.
2 edge does not belong to mixed dominating set, but it is covered
3 edge is not in mixed dominating set and also is not covered.

both have a column with a cost value that shows the number of mixed domination members in that row.
The ordering of cells in each row of these tables is v0, ..., vw, e1, ..., e(w+1

2), cost.

4 Our Proposed Algorithm
In this section, we present our proposal algorithm to find the mixed domination number for a graph with
bounded tree-width. This algorithm consists of three phases:

Step 1: Let G = (V,E) be an unweighted and undirected graph with constant tree-width. We compute and
then use a standard very nice tree decomposition with width w. It can be done in time O(n) using
Lemma 2.3.

Step 2: We find a postorder traversal τ on the very nice tree decomposition. The traversal τ begins from
the leftmost leaf and then goes up in the tree until it reaches the first JOIN bag. Then, it goes to the
leftmost leaf on the right subtree of the JOIN bag recursively. It goes up if both children of the JOIN
bag are visited and visits the JOIN bag itself and continues until it reaches the root. This phase can
be computed in O(n) time.

Step 3: We follow elements of τ in order and update the corresponding tables for each bag as follows:

– Whenever we reach a LEAF bag, we create a new table which contains all of the possible cases
that the bag can be in.

– Whenever we reach an INTRODUCE bag, we construct a new table for the bag from its child
table.

– Whenever we reach a JOIN bag, we construct a new table for the bag from its children tables.

– Whenever we reach a FORGET bag, we construct the table to obtain all of the possible states
that vertices in this bag can have by considering edges and vertices which appeared heretofore.

It is clear that the time complexity of this phase relates to the time spent in processing each bag in
the traversal τ . This process includes time to create a table for each LEAF bag and time to combine
two tables for the INTRODUCE, the FORGET and the JOIN bags. A new table is created with two
rows, running in constant time, therefore these operations add a constant time factor. To combine
two tables we consider the worst case. The table for a JOIN or an INTRODUCE bag can be created in
O(w2) steps and for a FORGET bag requiresO(w) steps. The worst case for JOIN bag happens when
they have all possible cases which lead to 9w+1 × 3(

w+1
2) rows. Therefore, the time complexity of

this phase equals O(9w × 3w
2 × w2).

The algorithm described so far is polynomial-time with respect to the size of T , Lemma 2.3 shows this
size is O(n). However, it is exponential with respect to the tree-width of T , w. The following theorem
states the time complexity of our proposed algorithm.

8 Meysam Rajaati Bavil Olyaei, Mohammad Reza Hooshmandasl, Michael J. Dinneen, Ali Shakiba

Theorem 4.1. The running time of the described approach is O(9w × 3w
2 × w2 × n).

Our proposed dynamic programming algorithm works on τ which is the postorder traversal on a very
nice tree decomposition of G. When the algorithm visits a bag, it describes the partial solutions to AMDS
and as it continues to other bags, it extends the created partial solutions. These partial solutions need to
satisfy all of the problem specific constraints in G4i except for the vertices in Xi and their incident edges
in G4i \Gi. The status tables Stable are used to store these partial solutions. In other words, a Stable
characterizes the partial solutions and each row in Stable contains a valid assignment for vertices and
edges in Gi.

To compute the Stable of each bag i, our algorithm uses Btable of the children of bag i. Since these
tables are computed bottom-up, the final solution of the MDS appears in the root of T . So, it can be
extracted by inspecting the table of the root. The Algorithm 1 demonstrates how we achieve the final
answer γmd.

Algorithm 1 The algorithm to compute γmd.
INPUT: Postorder traversal τ on a standard very nice tree decomposition of graph G.
OUTPUT: γmd for G.
for i← 1 to |τ | do

if Xi is a bag leaf then
Create a new table with two rows each corresponding to cases 2 and 5 for the isolated vertex

in Xi (see Section 4.1) .
else if Xi is an INTRODUCE bag then

for `1 ← 1 to number of rows in Stablei−1 do
for `2 ← 1 to number of rows in Btablei do

Call Algorithm 2 with inputs rStablei−1
(`1, :) and rBtablei(`2, :).

end for
end for

else if Xi is a FORGET bag then
for `1 ← 1 to number of rows in Stablei−1 do

Call Algorithm 3 with input rStablei−1
(`1, :).

end for
else if Xi is a JOIN bag then

for `1 ← 1 to number of rows in Stablei1 do
for `2 ← 1 to number of rows in Stablei2 do

Call Algorithm 4 with inputs rStablei1(`1, :) and rStablei2(`2, :).
end for

end for
end if
Add the created rows to Stablei.

end for

When Algorithm 1 observes a LEAF bag, it creates a new table which saves all of the possible states
for the only vertex in that bag. The algorithm when following the traversal τ calls Algorithms 2, 3 and 4
when observing introduce, FORGET and JOIN bags respectively, and return γmd as output. Note that it

On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width 9

Tab. 4: The status table of LEAF bag 1 in Figure 1(b).
vertices edges

case 2 - - - - - cost
1 2 0 0 0 0 0 1
2 5 0 0 0 0 0 0

is possible that combining two rows in different levels may create the same rows. In this case we store
the row with minimum cost in Stablei. To avoid searching and sorting to find these repeated states, we
use a coding to store the created rows. We use a help table in which each created row has a specific
position in it. When a row is created while combining two tables, the help table is checked and if there is
a row with lower cost, then the lower cost is considered and the help table is updated accordingly. Finally
Algorithm 1 inspects the root table and finds γmd. For illustration, we consider the graph in Figure 1(a)
and one of its nice tree decomposition (see Figure 1(b)) as an example for our proposed algorithm. The
output of the algorithm is γmd = 2. Next, we describe how the tables are filled and partial solutions are
computed.

Fig. 4: Mixed domination of the graph G1.

4.1 Status table construction for LEAF bags
During the traversal τ , when we observe a LEAF bag, a new table is created which saves all of the possible
states for the only vertex in that bag. Let Xi be a LEAF bag since we are working with a standard nice
tree decomposition, every LEAF bag contains exactly one vertex. For vertex v ∈ Xi, the status table i
denoted as Stablei contains two rows. The first row corresponds to the situation in with vertex v belongs
to an optimal mixed domination set, and the last one is for the case in which vertex v does not belong to
an optimal mixed domination set. Therefore, this table has two rows wherein the first row, the value of
the vertex is “2” by costing “1”, and in the second row, the value of the vertex is “5” by costing “0”. The
status table of LEAF bag 1 in Figure 1(b) is shown in Table 4.1.

4.2 Construction of the status table for an INTRODUCE bag
An INTRODUCE bag Xi has one more vertex than its child bag Xi−1 as well as the edges that are adjacent
to the new vertex and the vertices of the previous bag. Assume Stablei−1 contains all of the possible
states that can occur up to this level for visited edges and vertices. After adding the new vertex and the
corresponding edges we need to add all of the new possible states to the new Stablei. To do so, we
compute Stablei as Stablei−1 ⊗ Btablei. Assume that n is the size of bag Xi, e is the number of edges
with both ends in Xi, rStablei−1

(`1, :) and rBtablei(`2, :) are two rows of Stablei−1 and Btablei, and j

10 Meysam Rajaati Bavil Olyaei, Mohammad Reza Hooshmandasl, Michael J. Dinneen, Ali Shakiba

Tab. 5: Multiplication operation for vertices in INTRODUCE bag.
?Int 0 1 2 3 4 5 6 7 8 9

0 0 - - - - - - - - -
1 1 1 1 1 1 1 1 1 1 1
2 2 1 2 1 2 2 2 2 2 2
3 3 1 1 3 3 3 3 3 3 3
4 4 1 2 3 4 4 4 4 8 8
5 4,5 1 2 3 4 5 4 5 8 9
6 4,6 1 2 3 4,6 4,6 4,6 4,6 8 8
7 4,5,6,7 1 2 3 4,6 5,7 4,6 5,7 8 9

refers to the entries of a row of a table. Then, Equation 2 describes the construction of the entries of `th
row of Stablei.

rStablei(`, j) =


rStablei−1

(`1, j) ?Int rBtablei(`2, j), if 0 ≤ j ≤ w ,

rStablei−1
(`1, j) ∗Int rBtablei(`2, j), if w + 1 ≤ j ≤ w +

(
w+1
2

)
,

rStablei−1
(`1, j) + rBtablei(`2, j) - |A| - |B|, if j = w +

(
w+1
2

)
+ 1 ,

(2)

where
A = {α | (rStablei−1

(`1, α) ≤ 2 ∧ rBtablei(`2, α) ≤ 2) ∧ (0 ≤ α ≤ w)}, (3)

B =
{
α |
(
rStablei−1

(`1, α) = 1 ∧ rBtablei(`2, α) = 1) ∧ (w + 1 ≤ α ≤ w +
(
w+1
2

))}
. (4)

In Equation 2, two multiplication operators ?Int and ∗Int are used to compute the entries of Stablei.
The multiplication tables for these operators are given in Tables 4.2 and 4.2. Note that value “ − ”
in Tables 4.2, 4.2, 4.4 and 4.4 never happen. The Algorithm 2 describes aforementioned approach in
constructing rows of Stablei in a formal manner. Algorithms 2, 3 and 4 calculate the value of ` using
Equation 5. After constructing an entire row in Stablei, the value of ` is obtained as follows: Assume that
(r0, r1, ..., rw, rw+1, ..., rw+(w+1

2), rw+(w+1
2)+1) is the output of the algorithms, then number ` shows the

number of a row that this output is saved in it. Equation 5 shows how the value of ` is calculated. Array
rHP is used to save entries of a row until the value of ` is computed. If the `th row in Stablei is empty,
the algorithm saves the output. However if the `th row was filled, and if the new rw+(w+1

2)+1 is less than
the existing one, the algorithm replaces the value of rw+(w+1

2)+1.

` =

(
w∑
i=0

ri × 9i

)
+


(w+1

2)∑
j=1

rw+j × 4j−1

× 9w+1

 . (5)

The Algorithm 2 takes a row from Stablei−1 and a row from Btablei, and uses Equation 4.2 to fill
elements r0, ..., rw of Stablei. Given that some of the cells in Table 4.2 have two values, the exact
amount is determined according to the value of an adjacent edge. Algorithm 2 at first determines elements
r0, ..., rw of Stablei if the cell in Table 4.4 has one value. Similarly, it uses Equation 4.2 to fill elements
rw+1, ..., rw+(w+1

2) of Stablei. Then it assigns r0, ..., rw which the cell in Table 4.2 has two values, it

On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width 11

Tab. 6: Multiplication operation for edges in INTRODUCE bag.
∗Int 0 1 2 3

0 0 - - -
1 1 1 1 1
2 2 1 2 2
3 2,3 1 2 3

chooses one of them according to the value of the adjacent edges of a vertex in bag Xi. The value of the
rw+(w+1

2)+1 is computed during the assignment of the elements r0, ..., rw+(w+1
2). Computing Stable2 as

Stable1⊗Btable2 is shown in Table 4.2. Algorithm 2 computes rStable1(4, :)⊗ rBtable2(1, :) as follows:

1) (2, 0, 0, 0, 0, 0, 1) ?Int (3, 3, 0, 1, 0, 0, 1)→ (1, 0, 0, 0, 0, 0, 0)

2) (2, 0, 0, 0, 0, 0, 1) ?Int (3, 3, 0, 1, 0, 0, 1)→ (1, 3, 0, 0, 0, 0, 0)

3) (2, 0, 0, 0, 0, 0, 1) ∗Int (3, 3, 0, 1, 0, 0, 1)→ (1, 3, 0, 1, 0, 0, 0)

4) (2, 0, 0, 0, 0, 0, 1)× (3, 3, 0, 1, 0, 0, 1)→ (1, 3, 0, 1, 0, 0, 2)

Also it computes rStable1(8, :)⊗ rBtable2(2, :) as follows:

1) (5, 0, 0, 0, 0, 0, 0) ?Int (7, 7, 0, 3, 0, 0, 0)→ (?, 0, 0, 0, 0, 0, 0)

2) (5, 0, 0, 0, 0, 0, 0) ?Int (7, 7, 0, 3, 0, 0, 0)→ (?, ?, 0, 0, 0, 0, 0)

3) (5, 0, 0, 0, 0, 0, 0) ∗Int (7, 7, 0, 3, 0, 0, 0)→ (?, ?, 0, 3, 0, 0, 0)

4) (5, 0, 0, 0, 0, 0, 0) ?Int (7, 7, 0, 3, 0, 0, 0)→ (7, 0, 0, 3, 0, 0, 0)

5) (5, 0, 0, 0, 0, 0, 0) ?Int (7, 7, 0, 3, 0, 0, 0)→ (7, 7, 0, 3, 0, 0, 0)

6) (5, 0, 0, 0, 0, 0, 0)× (7, 7, 0, 3, 0, 0, 0)→ (7, 7, 0, , 0, 0, 0)

Tab. 7: Stable1
vertices edges

case 2 - - - - - cost
1 2 0 0 0 0 0 1
2 5 0 0 0 0 0 0

4.3 Construction of the status table for a FORGET bag
A FORGET bag Xi loses one vertex and its incident edges with respect to its present bag Xi−1. So,
it is enough to omit the invalid rows from Stablei−1 to obtain the Stablei for bag Xi. Algorithm 3
describes an approach for constructing rows of Stablei. This algorithm takes a row from Stablei−1. Let
vertex veliminated is the vertex that will be deleted in bag Xi. If this vertex has values 5, 7, 8 and 9, the
algorithm omits this row, but if it has value 6, the algorithm updates the value ofN(v) in bagXi−1. When

12 Meysam Rajaati Bavil Olyaei, Mohammad Reza Hooshmandasl, Michael J. Dinneen, Ali Shakiba

Tab. 8: Btable2
vertices edges

case 2 3 - 4 - - cost
1 1 1 0 1 0 0 3
2 1 3 0 1 0 0 2
3 3 1 0 1 0 0 2
4 3 3 0 1 0 0 1
5 2 2 0 2 0 0 2
6 2 4 0 2 0 0 1
7 4 2 0 2 0 0 1
8 7 7 0 3 0 0 0

Tab. 9: Stable2
vertices edges

case 2 3 - 4 - - cost
1 1 1 0 1 0 0 3
2 1 3 0 1 0 0 2
3 3 1 0 1 0 0 2
4 3 3 0 1 0 0 1
5 2 2 0 2 0 0 2
6 2 4 0 2 0 0 1
7 4 2 0 2 0 0 1
8 7 7 0 3 0 0 0

On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width 13

Algorithm 2 Status table’s row construction algorithm for an INTRODUCE bag.
INPUT: rStablei−1(`1, :) and rBtablei(`2, :)
OUTPUT: rStablei(`, :)
c← 0
for j ← 0 to w do

if (rStablei−1
(`1, j) ≤ 2) and (rBtablei(`2, j) ≤ 2) then

c← c+ 1
end if
if |rStablei−1

(`1, j) ?Int rBtablei(`2, j)| = 1 then
rHS(1, j)← rStablei−1

(`1, j) ?int rBtablei(`2, j)
end if

end for
for j ← w + 1 to w +

(
w+1
2

)
do

if (rStablei−1
(`1, j) = 1) and (rBtablei(`2, j) = 1) then

c← c+ 1
end if
if |rStablei−1

(`1, j) ∗Int rBtablei(`2, j)| = 1 then
rHS(1, j)← rStablei−1(`1, j) ∗Int rBtablei(`2, j)

else
if for ej = vrvnew, Stablei−1(`1, r) ≤ 3 then

rHS(1, j)← 2
else

rHS(1, j)← 3
end if

end if
end for
for j ← 0 to w do

if |rStablei−1
(`1, j) ?Int rBtablei(`2, j)| = 2 then

if rStablei−1(`1, j) = 0 and rBtablei(`2, j) = 5 then
if ∃wr∈Nmd

Bag(vj)
, rHS(1, r) ≤ 2 then

rHS(1, j)← 4
else

rHS(1, j)← 5
end if

else
if ∀wr∈Nmd

Bag(vj),es=(wrvj), rStablei(s) ≤ 2 then
rHS(1, j)← first element of rStablei−1

(`1, j) ∗Int rBtablei(`2, j)
else

rHS(1, j)← second element of rStablei−1(`1, j) ∗Int rBtablei(`2, j)
end if

end if
else

if ∀wr∈Nmd
Bag(vj),es=(wrvj), rHS(1, s) ≤ 2 and ∃wr∈Nmd

Bag(vj)
, rHS(1, r) ≤ 2 then

rHS(1, j)← 4
else if ∀wr∈Nmd

Bag(vj),es=(wrvj), rHS(1, s) ≤ 2 and ∀wr∈Nmd
Bag(vj)

, rHS(1, r) ≥ 3 then
rHS(1, j)← 5

14 Meysam Rajaati Bavil Olyaei, Mohammad Reza Hooshmandasl, Michael J. Dinneen, Ali Shakiba

else if ∃wr∈Nmd
Bag(vj),es=(wrvj), rHS(1, s) = 3 and ∃wr∈Nmd

Bag(vj)
, rHS(1, r) ≤ 2 then

rHS(1, j)← 6
else if ∃wr∈Nmd

Bag(vj),es=(wrvj), rHS(1, s) = 3 and ∀wr∈Nmd
Bag(vj)

, rHS(1, r) ≥ 3 then
rHS(1, j)← 7

end if
end if

end for
Calculate the value of `
rStablei(`, 1 : end− 1)← rHS(1, 1 : end− 1)
if rStablei(`, end) > (rStablei−1(`1, end) + rBtablei(`2, end)− c) then

rStablei(`, end)← rStablei−1
(`1, end) + rBtablei(`2, end)− c

end if

its neighbor is covered but the edge between them is not covered, the neighbor’s value changes to 8, and
when none of its neighbors and edges between them are not covered, the neighbor’s value changes to 9.
For example Algorithm 3 takes rows of Stable11 and constructs Stable12.

Algorithm 3 Status table’s row construction algorithm for a FORGET bag.
INPUT: rStablei−1

(`, :)
OUTPUT: rStablei(`, :) or 0
if (rStablei−1(`, veliminated) ≥ 7) or (rStablei−1(`, veliminated) = 5) then

Return 0
else

rHS(1, :)← rStablei−1
(`, :)

if rStablei−1(`, veliminated) = 6 then
if (∀vr∈Nmd

Xi−1
(veliminated),es=(vr,veliminated)

, rStablei−1(`, r) = 6) and (rStablei−1(`, s) = 3)

then
rHS(`, r)← 8

else if (∀vr∈Nmd
Bagi−1

(veliminated),es=(vr,veliminated)
, rStablei−1

(`, r) =

7) and (rStablei−1
(`, s) = 3) then

rHS(`, r)← 9
end if

end if
end if
Calculate the value of `
rStablei(`, :)← rHS(1, :)
rHS(`, veliminated)← 0
∀vr∈Nmd

Xi−1
(veliminated),es=(vr,veliminated)

, rHS(`, s)← 0

On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width 15

Tab. 10: Stable11
vertices edges

case 1 4 - 3 - - cost
1 1 1 0 1 0 0 4
2 1 2 0 2 0 0 3
3 1 3 0 1 0 0 4
4 1 3 0 2 0 0 3
5 1 4 0 2 0 0 3
6 1 8 0 2 0 0 3
7 2 1 0 2 0 0 3
8 2 2 0 2 0 0 3
9 2 3 0 2 0 0 3
10 2 4 0 2 0 0 3
11 2 8 0 2 0 0 3
12 3 1 0 1 0 0 3
13 3 1 0 2 0 0 3
14 3 2 0 2 0 0 2
15 3 3 0 1 0 0 3
16 3 3 0 2 0 0 3
17 3 4 0 2 0 0 3
18 3 8 0 2 0 0 3
19 4 1 0 2 0 0 3
20 4 2 0 2 0 0 2
21 4 3 0 2 0 0 3
22 5 3 0 2 0 0 2
23 6 6 0 3 0 0 3
24 7 6 0 3 0 0 2
25 7 7 0 3 0 0 1
26 8 1 0 2 0 0 3
27 8 2 0 2 0 0 2
28 8 3 0 2 0 0 2
29 8 6 0 3 0 0 2
30 8 8 0 2 0 0 2

Tab. 11: Stable12
vertices edges

case 1 - - - - - cost
1 1 0 0 0 0 0 3
2 2 0 0 0 0 0 3
1 3 0 0 0 0 0 2
2 4 0 0 0 0 0 2
1 5 0 0 0 0 0 2
2 8 0 0 0 0 0 2

16 Meysam Rajaati Bavil Olyaei, Mohammad Reza Hooshmandasl, Michael J. Dinneen, Ali Shakiba

4.4 Construction of the status table for a JOIN bag
A JOIN bag Xi has the same set of vertices and edges with its two children Xi1 and Xi2. To construct
possible states for Xi in Stablei, we compute Stablei = Stablei1 ⊗ Stablei2. Let rStablei1(`1, :) and
rStablei2(`2, :) be two rows of Stablei1 and Stablei2, and j refers to the entries of a row of a table.
Equation 2 describes how to construct the rows of Stablei.

rStablei(`, j) =


rStablei1(`1, j) ?Join rStablei2(`2, j), if 0 ≤ j ≤ w .

rStablei1(`1, j) ∗Join rStablei2(`2, j), if w + 1 ≤ i ≤ w +
(
w+1
2

)
.

rStablei1(`1, j) + rStablei2(`2, j) - |A| - |B|, if i = w +
(
w+1
2

)
+ 1 .

(6)

where
A = {α | (rStablei1(`1, α) ≤ 2 ∧ rStablei2(`2, α) ≤ 2) ∧ (0 ≤ α ≤ w)} . (7)

B =
{
α |
(
rStablei1(`1, α) = 1 ∧ rStablei2(`2, α) = 1) ∧ (w + 1 ≤ α ≤ w + 1 +

(
w+1
2

))}
. (8)

In Equation 6, two different multiplication operations ?Join and ∗Join are used to obtain the entries
of Stablei. Their multiplication tables are given in Tables 4.4 and 4.4. Algorithm 4 describes how to
construct the rows of Stablei precisely. Given that some of the cells in Table 4.4 have two values we do
as before. Algorithm 4 at first determines elements r0, ..., rw of Stablei if the cell in Table 4.4 has one
value then it uses Table 4.4 to fill elements rw+1, ..., rw+(w+1

2) of Stablei. Finally, it assigns r0, ..., rw
when the cell in Table 4.4 has two values, it chooses one as mentioned before. The value of rw+(w+1

2)+1

that is computed during the assignment of the elements is r0, ..., rw+(w+1
2).

Tab. 12: Multiplication operation for vertices in JOIN bag.
?Join 0 1 2 3 4 5 6 7 8 9

0 0 - - - - - - - - -
1 - 1 1 1 1 1 1 1 1 1
2 - 1 2 1 2 2 2 2 2 2
3 - 1 1 3 3 3 3 3 3 3
4 - 1 2 3 4 4 4 4 8 8
5 - 1 2 3 4 5 4 5 8 9

6 - 1 2 3 4 4
First Second
4 6

First Second
4 6

8 8

7 - 1 2 3 4 5
First Second
4 6

First Second
5 7

8 9

8 - 1 2 3 8 8 8 8 8 8
9 - 1 2 3 8 9 8 9 8 9

Tab. 13: Multiplication operation for edges in JOIN bag.
∗Join 0 1 2 3

0 0 - - -
1 - 1 1 1
2 - 1 2 2
3 - 1 2 3

On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width 17

Tab. 14: Stable6
vertices edges

case 1 4 - 3 - - cost
1 1 1 0 1 0 0 4
2 1 2 0 2 0 0 3
3 1 3 0 1 0 0 3
4 1 3 0 2 0 0 2
5 1 4 0 2 0 0 2
6 1 8 0 2 0 0 2
7 2 2 0 2 0 0 3
8 2 4 0 2 0 0 2
9 2 8 0 2 0 0 2
10 3 1 0 1 0 0 3
11 3 1 0 2 0 0 3
12 3 2 0 2 0 0 2
13 3 3 0 1 0 0 2
14 3 3 0 2 0 0 2
15 3 4 0 2 0 0 2
16 3 5 0 2 0 0 2
17 3 9 0 2 0 0 2
18 4 1 0 2 0 0 2
19 4 2 0 2 0 0 2
20 4 3 0 2 0 0 2
21 5 3 0 2 0 0 2
22 6 6 0 3 0 0 2
23 6 7 0 3 0 0 2
24 7 7 0 3 0 0 1
25 8 1 0 2 0 0 3
26 8 2 0 2 0 0 2
27 8 3 0 2 0 0 2
28 8 6 0 3 0 0 1
29 8 9 0 3 0 0 1

Tab. 15: Stable10
vertices edges

case 1 4 - 3 - - cost
1 1 1 0 1 0 0 3
2 1 3 0 1 0 0 3
3 2 2 0 2 0 0 2
4 2 3 0 2 0 0 2
5 2 4 0 2 0 0 2
6 2 3 0 2 0 0 2
7 3 1 0 1 0 0 2
8 3 3 0 1 0 0 2
9 4 1 0 2 0 0 2
10 4 2 0 2 0 0 1
11 5 3 0 2 0 0 1
12 7 6 0 3 0 0 1

18 Meysam Rajaati Bavil Olyaei, Mohammad Reza Hooshmandasl, Michael J. Dinneen, Ali Shakiba

Tab. 16: Stable11
vertices edges

case 1 4 - 3 - - cost
1 1 1 0 1 0 0 4
2 1 2 0 2 0 0 3
3 1 3 0 1 0 0 4
4 1 3 0 2 0 0 3
5 1 4 0 2 0 0 3
6 1 8 0 2 0 0 3
7 2 1 0 2 0 0 3
8 2 2 0 2 0 0 3
9 2 3 0 2 0 0 3
10 2 4 0 2 0 0 3
11 2 8 0 2 0 0 3
12 3 1 0 1 0 0 3
13 3 1 0 2 0 0 3
14 3 2 0 2 0 0 2
15 3 3 0 1 0 0 3
16 3 3 0 2 0 0 3
17 3 4 0 2 0 0 3
18 3 8 0 2 0 0 3
19 4 1 0 2 0 0 3
20 4 2 0 2 0 0 2
21 4 3 0 2 0 0 3
22 5 3 0 2 0 0 2
23 6 6 0 3 0 0 3
24 7 6 0 3 0 0 2
25 7 7 0 3 0 0 1
26 8 1 0 2 0 0 3
27 8 2 0 2 0 0 2
28 8 3 0 2 0 0 2
29 8 6 0 3 0 0 2
30 8 8 0 2 0 0 2

On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width 19

Algorithm 4 Status table’s row construction algorithm for a JOIN bag.
INPUT: rStablei1(`1, :) and rStablei2(`2, :)
OUTPUT: rStablei(`, :)
for j ← 0 to w do

if |rStablei1(`1, j) ?Join rStablei2(`2, j)| = 1 then
rHS(1, j)← rStablei1(`1, j) ?Join rStablei2(`2, j)

end if
if (rStablei1(`1, j) ≤ 2) and (rStablei(`2, j) ≤ 2) then

c← c+ 1
end if

end for
for j ← w to w +

(
w+1
2

)
do

rHS(1, j)← rStablei1(`1, j) ∗Join rStablei2(`2, j)
if (rStablei−1

(`1, j) = 1) and (rStablei(`2, j) = 1) then
c← c+ 1

end if
end for
for j ← 0 to w do

if |rStablei1(`1, j) ?Join rStablei2(`2, j)| = 2 then
if ∀wr∈Nmd

Bag(vj),es=(wrvj), rHS(1, s) ≤ 2 then
rHS(`, j)← First element of rStablei1(`1, j) ∗Join rStablei2(`2, j)

else
rHS(1, j)← Second element of rStablei1(`1, j) ∗Join rStablei2(`2, j)

end if
end if

end for
Calculate the value of `
rStablei(`, 1 : end− 1)← rHS(1, 1 : end− 1)
if rStablei(`, end) > (rStablei−1(end) + rBtablei(end)− c) then

rStablei(end)← rStablei−1
(end) + rBtablei(end)− c

end if

20 Meysam Rajaati Bavil Olyaei, Mohammad Reza Hooshmandasl, Michael J. Dinneen, Ali Shakiba

Algorithm 4 computes Stable1⊗Btable2 to construct Stable2. The status table of bag 12 of Figure 1(b)
is shown in Table 4.4.

Note that Algorithm 1 computes the value of γmd, however it is not a minimum mixed dominating
set. It is possible to modify the algorithm to obtain a mixed dominating set with minimum size. This
modification is as follows. We first consider some fixed arbitrary one-to-one total numbering function φ
used to code elements of S ⊆ V ∪E. Let |V | = n and |E| = m, φ : {V ∪E} 1−1−−→ {1, 2, ..., n+m}. The
function φ determines an arbitrary order on set {V ∪ E}. We get elements in a particular order to code a
partial solution. Indeed, we display a partial solution as a binary number, i.e. every element in {V ∪ E}
can have two values of 0 or 1 where 0 indicates that the corresponding element is not present (in the mixed
domination set) and 1 indicates it is present. We use a function ψ : φ(x) → {0, 1}. to convert a partial
solution x to a binary number. Its enough to change the algorithm and save elements of the partial solution
by a binary number just after constructing each state. Other changes to the algorithm are straightforward.
Note that the maximum number of bits that can be changed in a state is equal to k +

(
k
2

)
, where k is the

number of vertices in a bag.
After computing γmd, our proposed algorithm traverses the tree decomposition via τ recursively and

identifies the edges and vertices in the mixed domination sets. Finally, the AMDS problem is solved.

4.5 The Modified Algorithm to Solve the MDS Problem
In this section, we use the notion of fast subset convolution, which was introduced by Van et al. in Van Rooij
et al. (2009), to solve MDS in time O∗(6w). Van et al. introduced two new techniques, the first using a
variant of convolutions, and the second being a simple way of partitioned table handling, which can be
used for MDS as well. They used an alternative representation to obtain an exponentially faster algorithm.
In their solution for dominating set problem, each vertex can be in three states as follow:

1: Vertex is in the dominating set.

01: Vertex is not in the dominating set and has already been dominated.

00: Vertex is not in the dominating set and has not yet been dominated.

A vertex in their alternative representation defines two basic states 1 and 0?. The state 0? denotes that a
vertex is not in the dominating set and may or may not be dominated by the current dominating set. The
transformation can be applied by the formula of F (c), which represents their table for coloring c.

F (c1 × 0? × c2) = F (c1 × 00 × c2) + F (c1 × 01 × c2),

where c1 is a subcoloring of size i, and c2 is a subcoloring of size k − i− 1. The transformation to basic
states is applicable using

F (c1 × 01 × c2) = F (c1 × 0? × c2)− F (c1 × 00 × c2).

Dynamic programming algorithm over nice tree decomposition uses O∗(3w) time on leaf, INTRODUCE
and FORGET bags, however, it uses O∗(4w) time on a JOIN bag. By using the results of the convolution
of Van et al., the time complexity of a JOIN bag is improved to O∗(3w).

Now, we introduce our algorithm to solve MDS. Similar to solving the AMDS, we assign a power value
to the vertices and use dynamic programming. Our solution to the MDS has two differences compared
with the solution to the AMDS:

On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width 21

1: The tables Stable and Btable store a valid assignment for just vertices and we do not need to
consume memory to store information on edges in a beg.

2: A vertex v ∈ Xi has six possible states based on satisfying v ∈MD and being covered byNmd
G [v].

These six conditions are illustrated in Table 4.5.

Tab. 17: Possible states for each vertex with respect to a bag in tables Stable and Btable.
v ∈MD Ne

Xi
(v) ∈MD vertex cover edge cover vertex power

1 v ∈MD ∀e ∈ Ne
Xi

(v) v is covered ∀e ∈ Ne
Xi

(v), e is covered 2
3 v /∈MD ∃e ∈ Ne

Xi
(v), e ∈MD v is covered ∀e ∈ Ne

Xi
(v), e is covered 1

4 v /∈MD ∀e ∈ Ne
Xi

(v), e /∈MD v is covered ∀e ∈ Ne
Xi

(v), e is covered 0
5 v /∈MD ∀e ∈ Ne

Xi
(v), e /∈MD v is not covered ∀e ∈ Ne

Xi
(v), e is covered 0

6 v /∈MD ∀e ∈ Ne
Xi

(v), e /∈MD v is covered ∃e ∈ Ne
Xi

(v), e is not covered 0
7 v /∈MD ∀e ∈ Ne

Xi
(v), e /∈MD v is not covered ∃e ∈ Ne

Xi
(v), e is not covered 0

These six states are the same as the seven states in Section 3, except for the state 2. The state 2 is
deleted since it has the same effect as state 1 on Nmd

G [v], since we do not store any information on edges
in the tables Stable and Btable.

We follow the three phases of our proposed algorithm in Section 4. Note the storage tables Stable and
Btable store a valid assignment only for the vertices. During the traversal τ , when we observe a LEAF
bag, a new table is created which saves all of the possible states for the only vertex in that bag. In an
INTRODUCE or a JOIN bag, the multiplication operators ?Int and ?Join in Equations 2 and 6, respectively,
are used to compute the entries of Stablei. This algorithm omits the invalid rows from Stablei−1 to
obtain the Stablei for bag Xi in a FORGET bag.

It is clear that the time complexity of this algorithm relates to the time spent for processing each bag
in the traversal of τ . In a bag, we have at most w + 1 vertices. So, This algorithm uses O(6w) time
on leaf, INTRODUCE and FORGET bags but O(7w) time on a JOIN bag. To reduce the time spent for a
JOIN bag, we use the fast subset convolution to multiply the two tables of size 6w in time O(6w). In this
multiplication technique, we use the notion of fast subset convolution and convert the two tables Stable
andBtable to two new tables Stable′ andBtable′. In these new tables, states 5 and 7 are merged to a new
state 0? where this vertex is not covered and its edges may or may not be covered. Therefore, it suffices to
multiply the two tables since no states in a JOIN bag tables are lost. Using the results of convolution and
alternative representations of vertex states, our algorithm for MDS improves to O∗(6w).

5 The Correctness of the Algorithms
In this section, we first show that finding the mixed domination number of graphs is checkable in linear-
time if the graph has bounded tree-width using Courcelle’s Theorem Courcelle (1990). Then, we describe
how to ensure that our proposed bottom-up method solves MDS by computing partial solutions as state
tables for bags. A partial solution is an object which stores all possible states for vertices and edges in a
bag. Therefore, what we need to show is showing that how a partial solution can be extended to a final
solution.

To show that the mixed domination property of graphs can be checked in linear-time for graphs with
bounded tree-width, we consider the following to express mixed domination in monadic second-order
logic.

22 Meysam Rajaati Bavil Olyaei, Mohammad Reza Hooshmandasl, Michael J. Dinneen, Ali Shakiba

• Vertices, edges, sets of vertices and edges of a graph G as variables of monodic second order logic.

• Relations adj(p, q) and inc(p, q) which are defined as follows: adj(p, q) is a binary adjacency
relation and it is true if and only if p and q are two adjacent vertices or are two adjacent edges of G,
and inc(p, q) is a binary incidence relation and it is true if and only if edge p is incident to vertex q
or vertex p is incident to edge q.

• The set operations ∪, ∩, ⊆ and ∈ denote the union, the intersection, the subset and the membership
operators, respectively.

• Unary set cardinality operator |S| and the set equality operator =.

• The comparison operator ≤.

• The logical connectives AND (∧) and OR (∨).

• The logical quantifiers ∀ and ∃ over vertices, edges, sets of vertices and edges of G.

By modeling the mixed domination property of graphs in the described monadic second-order logic,
we can conclude that checking this property on graphs with a bounded tree-width is a linear time task.
Let G = (V,E) be a given simple graph. For any element r ∈ V ∪ E, the mixed neighborhood of r is
denoted by Nmd(r) and is defined as Nmd

G (r) = {s ∈ V ∪ E | adj(s, r) ∨ inc(s, r)} and the closed
neighborhood of r is denoted by Nmd

G [r] and equals Nmd
G [r] = Nmd

G (r) ∪ {r}. A subset S ⊆ V ∪E is a
mixed dominating set (MDS) for G, if for all r ∈ V ∪ E, it is the case that |Nmd

G [r]∩S| ≥ 1. The mixed
domination number problem asks for the size of S which is expressed as in Equation 9:

∃S ⊆ (V ∪ E), S is an MDS ∧ ∀M ⊆ (V ∪ E), M is an MDS, |S| ≤ |M |. (9)

To show the correctness of our algorithm, it is enough to show that the extension of a partial solution
satisfies the condition of the restricted form of mixed domination problem. Extending a partial solution
begins by constructing a table for a LEAF bag. At first, the leaf table contains two possible states (see
Section 4.1). Obviously, these two states are all possible states that can occur for a vertex in a bag.

According to the definition of the tree decomposition, a bag Xi is a separator whenever it separates the
vertices of (X4i)\Xi from V \(X4i), so the vertices of (X4i)\Xi do not appear in other bags except the
ones descending from bag Xi. Hence, in our bottom-up approach, all of the possible states have been
considered for vertices of bag Xi since they will never be considered again. Using this fact, we continue
the proof of correctness of our algorithm by first checking the extension of an INTRODUCE bag.

Lemma 5.1. Let Stablei−1 and Btablei be two tables with all possible states mentioned in Table 3 and
Table 3 for Xi−1 and Xi respectively. Combining these two tables according to Algorithm 1 produces all
of the possible states for bag Xi.

Proof: The proof is by contradiction. A new states state r ∈ Stablei is the result of multiplying two
possible states r1 ∈ Stablei−1 and r2 ∈ Btablei. We need to show that state r cannot be produced
by impossible states. Let r′1 be a possible and r′2 be an impossible state, hence r′1 ∈ Stablei−1 and
r′2 /∈ Btablei and r = r1 ⊗ r2. Since r is a possible state, then it preserves all of the restrictions of MDS
while state r′2 /∈ Btablei does not satisfy those restrictions and is impossible. So, because we cannot
satisfy some restrictions in the entire problem while for a part of it, it is not satisfied. Similarly, the proof

On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width 23

for cases r′1 /∈ Stablei−1 and r′2 ∈ Btablei or r′1 /∈ Stablei−1 and r′2 /∈ Btablei is similar. Combining
Stablei−1 and Btablei produces all of the possible states for bag Xi. In the second step,

we show how the extension of a FORGET bag satisfies restriction mixed domination problem. The proof
is by contradiction.

Lemma 5.2. Let Stablei−1 be a table with all possible states for bag Xi−1. Deleting invalid rows from
this table produces all of the possible states for bag Xi.

Proof: Suppose that the vertex v is the FORGET vertex, thus it does not appear in later steps, all of its
edges have appeared up to now and all its possible states are checked before constructing Stablei−1. For
vertex v and its edges, there are four cases to consider:

1. vertex v and its edges are dominated: In these cases, the value of vertex v is either 1, 2, 3 or 4.
So, they are valid cases and remain in Stablei

2. vertex v is not dominated: For these cases, the value of v is either 5, 7 or 9. So, they are invalid
cases and are not allocated to appear in Stablei since no neighbor of vertex v appeared till now.

3. vertex v is dominated but at least one of its edges in G4i−1\Gi−1 is not dominated: Let e be an
edge in G4i−1\Gi−1 which is not dominated. Edge e causes the value of vertex v to be 8 and makes
invalid cases. So, these cases must be omitted from Stablei since edge e has not any neighbor
which appeared till now.

4. vertex v and its edges in G4i−1\Gi−1 are dominated but at least one of its edges in Gi−1 is not
dominated: Let e = (v, v′) be an edge in Gi−1 that is not dominated. So, edge e causes the value
of v to be 6. By deleting vertex v, edge e is converted to an external edge for bag i and does not
appear in Gi. However it is possible that an edge appears in later steps and dominates e, so this
states can be extended to a solution and we need to save it. Thus, we consider the effect of edge e
on vertex v′ and change the value of vertex v′.

In the third step, we are going to check the correctness of our algorithm in the extension of a JOIN bag.

Lemma 5.3. Let Stablei1 and Stablei2 be tables with all possible states mentioned in Table 3 and Table 3
for children of bag Xi. Combining these two tables produces all of the possible states for bag Xi.

Proof: The proof is by contradiction and is similar to Lemma 5.1, except that r′1 ∈ Stablei1 and r′2 /∈
Stablei2 and for other cases similarly r′1 /∈ Stablei1 and r′2 ∈ Stablei2 and r′1 /∈ Stablei1 and r′2 /∈
Stablei2.

Theorem 5.4. Our proposed mixed domination algorithm produces all possible states satisfying MDS.

Proof: A partial solution starts by considering a LEAF bag and initializing the leaf table to contain all
two possible states. By Lemmas 5.1, 5.2 and 5.3, we proved that every extension of partial solutions
contains all of the possible states that satisfy the conditions of a mixed domination set, Thus, our algorithm
produces all possible states required.

24 Meysam Rajaati Bavil Olyaei, Mohammad Reza Hooshmandasl, Michael J. Dinneen, Ali Shakiba

Lemma 5.5. Every extension of a partial solution preserves possible states with minimum cost.

Proof: The Algorithm 1 stores rows of Stablei using a coding scheme and updates the state with minimum
cost. So, every extension of a partial solution preserves possible states with minimum cost.

Theorem 5.6. Our proposed dynamic algorithm computes γmd of graphs with constant tree-width in the
status table of root bag, e.g. Stableroot in O(9w × 3w

2 × w2 × n) time.

Proof: According to the Theorem 5.4 and Lemma 5.5, our algorithm preserves possible states with mini-
mum cost in every bag, so Stableroot contains all of the possible states with minimum cost. To find γmd,
it is enough for the algorithm to find the smallest cost among all of the possible states in the root bag.
Also Theorem 4.1 expresses the time complexity of this algorithm. So, the desired result is obtained.

6 Conclusion
In this paper, we proposed an algorithm to solve MDS and AMDS of graphs with bounded tree-width. Our
algorithm used a novel technique of inputting edge domination power to vertices of the graph. Using this
technique and by analyzing our algorithm, we have shown for the first time that MDS is fixed-parameter
tractable. We provided detailed dynamic program is given with running time O∗(3w

2

) and a theoretical
improved version with running time O∗(6w) .

As a future work, we suggest enhancing the running time of our algorithm for special classes of graphs.
Studying other parameters for MDS such as path-width seems a fruitful topic, too. More importantly,
exploiting our technique of assigning power values to vertices from edges to solve other graph problems
is another research direction.

Acknowledgements
This article has been written while the second author was on a sabbatical visit to the University of Auck-
land. He would like to express his gratitude to Prof. Cristian S. Calude and his research group for the nice
and friendly hospitality.

The revision of this article has been done when the first author was on research visit to Eotvos Lorand
University, ELTE. He would like to express his thankfulness, warmth and appreciation to Prof. Komjath
P. who made his research successful. He would also like to extend his thanks to the computer science
group of the university of ELTE which assisted him at every point to cherish his goal.

References
G. S. Adhar and S. Peng. Mixed domination in trees: a parallel algorithm. Congressus Numerantium,

100:73–80, 1994.

H. A. Ahangar, L. Asgharsharghi, S. Sheikholeslami, and L. Volkmann. Signed mixed roman domination
numbers in graphs. Journal of Combinatorial Optimization, pages 1–19, 2015a.

H. A. Ahangar, T. W. Haynes, and J. Valenzuela-Tripodoro. Mixed roman domination in graphs. Bulletin
of the Malaysian Mathematical Sciences Society, pages 1–12, 2015b.

On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width 25

Y. Alavi, M. Behzad, L. M. Lesniak-Foster, and E. Nordhaus. Total matchings and total coverings of
graphs. Journal of Graph Theory, 1(2):135–140, 1977.

H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
Journal on computing, 25(6):1305–1317, 1996.

H. L. Bodlaender and B. van Antwerpen-de Fluiter. Reduction algorithms for graphs of small treewidth.
Information and Computation, 167(2):86–119, 2001.

M. Chimani, P. Mutzel, and B. Zey. Improved steiner tree algorithms for bounded treewidth. Journal of
Discrete Algorithms, 16:67–78, 2012.

B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Information
and computation, 85(1):12–75, 1990.

B. Courcelle. The monadic second-order logic of graphs iii: Tree-decompositions, minors and complexity
issues. RAIRO-Theoretical Informatics and Applications, 26(3):257–286, 1992.

B. Courcelle. Fly-automata for checking monadic second-order properties of graphs of bounded tree-
width. Electronic Notes in Discrete Mathematics, 50:3–8, 2015.

P. Hatami. An approximation algorithm for the total covering problem. Discussiones Mathematicae
Graph Theory, 27(3):553–558, 2007.

T. W. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of domination in graphs. CRC Press, 1998.

P. Jain, M. Jayakrishnan, F. Panolan, and A. Sahu. Mixed dominating set: A parameterized perspective. In
International Workshop on Graph-Theoretic Concepts in Computer Science, pages 330–343. Springer,
2017.

J. K. Lan and G. J. Chang. On the mixed domination problem in graphs. Theoretical Computer Science,
476:84–93, 2013.

M. Rajaati, M. R. Hooshmandasl, M. J. Dinneen, and A. Shakiba. On fixed-parameter tractability of
the mixed domination problem for graphs with bounded tree-width. arXiv preprint arXiv:1612.08234,
2016.

N. Robertson and P. D. Seymour. Graph minors. III. planar tree-width. Journal of Combinatorial Theory,
Series B, 36(1):49–64, 1984.

J. M. Van Rooij, H. L. Bodlaender, and P. Rossmanith. Dynamic programming on tree decompositions
using generalised fast subset convolution. In Algorithms-ESA 2009, pages 566–577. Springer, 2009.

D. B. West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River, 2001.

Y. Zhao, L. Kang, and M. Y. Sohn. The algorithmic complexity of mixed domination in graphs. Theoret-
ical Computer Science, 412(22):2387–2392, 2011.

	1 Introduction
	2 Preliminaries
	3 Fundamental Concepts
	4 Our Proposed Algorithm
	4.1 Status table construction for leaf bags
	4.2 Construction of the status table for an introduce bag
	4.3 Construction of the status table for a forget bag
	4.4 Construction of the status table for a join bag
	4.5 The Modified Algorithm to Solve the MDS Problem

	5 The Correctness of the Algorithms
	6 Conclusion

