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This is the first of three papers that develop structures which are counted by a “parabolic” generalization of Catalan
numbers. Fix a subset R of {1, 2, .., n − 1}. Consider the ordered partitions of {1, 2, .., n} whose block sizes are
determined by R. These are the “inverses” of (parabolic) multipermutations whose multiplicities are determined by
R. The standard forms of the ordered partitions are referred to as “R-permutations”. The notion of 312-avoidance is
extended from permutations to R-permutations.

Let λ be a partition of N such that the set of column lengths in its shape is R or R ∪ {n}. Fix an R-permutation
π. The type A Demazure character (key polynomial) in x1, ..., xn that is indexed by λ and π can be described as the
sum of the weight monomials for some of the semistandard Young tableau of shape λ that are used to describe the
Schur function indexed by λ. Descriptions of these “Demazure” tableaux developed by the authors in earlier papers
are used to prove that the set of these tableaux is convex in ZN if and only if π is R-312-avoiding if and only if the
tableau set is the entire principal ideal generated by the key of π. These papers were inspired by results of Reiner and
Shimozono and by Postnikov and Stanley concerning coincidences between Demazure characters and flagged Schur
functions. This convexity result is used in the next paper to deepen those results from the level of polynomials to the
level of tableau sets.

The R-parabolic Catalan number is defined to be the number of R-312-avoiding permutations. These special R-
permutations are reformulated as “R-rightmost clump deleting” chains of subsets of {1, 2, ..., n} and as “gapless
R-tuples”; the latter n-tuples arise in multiple contexts in these papers.

Keywords: Demazure character, Key polynomial, Convex integral polytope, Pattern avoiding permutation, Catalan
number, Symmetric group parabolic quotient
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1 Introduction
This is the first of three papers that develop and use structures which are counted by a “parabolic” general-
ization of the Catalan numbers. Apart from some motivating remarks, it can be read by anyone interested
in tableaux. It is self-contained, except for a few references to its tableau precursors [Wi2] and [PW1].
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Fix n ≥ 1 and set [n− 1] := {1, 2, ..., n− 1}. Choose a subset R ⊆ [n− 1] and set r := |R|. The section
on R-Catalan numbers can be understood as soon as a few definitions have been read. Our “rightmost
clump deleting” chains of sets defined early in Section 4 became Exercise 2.202 in Stanley’s list [Sta] of
interpretations of the Catalan numbers.

Consider the ordered partitions of the set [n] with r + 1 blocks of fixed sizes that are determined
by using R to specify “dividers”. These ordered partitions can be viewed as being the “inverses” of
multipermutations whose r + 1 multiplicities are determined by R. Setting J := [n − 1]\R, these
multipermutations depict the minimum length coset representatives formingW J for the quotient of Sn by
the parabolic subgroup WJ . We refer to the standard forms of the ordered partitions as “R-permutations”.
When R = [n − 1], the R-permutations are just the permutations of [n]. The number of 312-avoiding
permutations of [n] is the nth Catalan number. In 2012 we generalized the notion of 312-pattern avoidance
for permutations to that of “R-312-avoidance” for R-permutations. Here we define the “parabolic R-
Catalan number” to be the number of R-312-avoiding R-permutations.

Let N ≥ 1 and fix a partition λ of N . The shape of λ has N boxes; assume that it has at most n rows.
Let Tλ denote the set of semistandard Young tableaux of shape λwith values from [n]. The content weight
monomial xΘ(T ) of a tableau T in Tλ is formed from the census Θ(T ) of the values from [n] that appear in
T . The Schur function in x1, ..., xn indexed by λ can be expressed as the sum over T in Tλ of the content
weight monomials xΘ(T ). Let Rλ ⊆ [n− 1] be the set of column lengths in the shape λ that are less than
n. The type A Demazure characters (key polynomials) in x1, ..., xn can be indexed by pairs (λ, π), where
λ is a partition as above and π is an Rλ-permutation. We refer to these as “Demazure polynomials”. The
Demazure polynomial indexed by (λ, π) can be expressed as the sum of the monomials xΘ(T ) over a set
Dλ(π) of “Demazure tableaux” of shape λ for the R-permutation π.

Regarding Tλ as a poset via componentwise comparison, it can be seen that the principal order ideals
[T ] in Tλ form convex polytopes in ZN . The set Dλ(π) can be seen to be a certain subset of the ideal
[Yλ(π)], where the tableau Yλ(π) is the “key” of π. It is natural to ask for whichR-permutations π one has
Dλ(π) = [Yλ(π)]. Our first main result is: If π is an Rλ-312-avoiding Rλ-permutation, then the tableau
set Dλ(π) is all of the principal ideal [Yλ(π)] (and hence is convex in ZN ). Our second main result is
conversely: If Dλ(π) forms a convex polytope in ZN (this includes the principal ideals [Yλ(π)]), then
the Rλ-permutation π is Rλ-312-avoiding. So we can say exactly when one has Dλ(π) = [Yλ(π)]. Our
earlier papers [Wi2] and [PW1] gave the first tractable descriptions of the Demazure tableau sets Dλ(π).
Those results provide the means to prove the main results here.

Demazure characters arose in 1974 when Demazure introduced certain B-modules while studying sin-
gularities of Schubert varieties in the G/B flag manifolds. Flagged Schur functions arose in 1982 when
Lascoux and Schützenberger were studying Schubert polynomials for the flag manifold GL(n)/B. Like
the Demazure polynomials, the flagged Schur functions in x1, ..., xn can be expressed as sums of the
weight monomial xΘ(T ) over certain subsets of Tλ. Reiner and Shimozono [RS] and then Postnikov and
Stanley [PS] described coincidences between the Demazure polynomials and the flagged Schur functions.
Beginning in 2011, our original motivation for this project was to better understand their results. In the
second paper [PW3] in this series, we deepen their results: Rather than obtaining coincidences at the level
of polynomials, we employ the main results of this paper to obtain the coincidences at the underlying
level of the tableau sets that are used to describe the polynomials. Fact 4.4, Proposition 4.6, and Theorem
5.2 are also needed in [PW3]. In Section 8 we indicate why our characterization of convexity for the sets
Dλ(π) may be of interest in algebraic geometry and representation theory.

Each of the two main themes of this series of papers is at least as interesting to us as is any one of
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the stated results in and of itself. One of these themes is that the structures used in the three papers are
counted by numbers that can be regarded as being “parabolic” generalizations of the Catalan numbers. In
these three papers these structures are respectively introduced to study convexity, the coincidences, and
to solve a problem concerning the “nonpermutable” property of Gessel and Viennot. It turned out that
by 2014, Godbole, Goyt, Herdan, and Pudwell had independently introduced [GGHP] a general notion of
pattern avoidance for ordered partitions that includes our notion of R-312-avoidance for R-permutations.
Apparently their motivations for developing their definition were purely enumerative. Chen, Dai, and
Zhou obtained [CDZ] further enumerative results. As a result of the work of these two groups, two
sequences were added to the OEIS. As is described in our last section, one of those is formed from the
counts considered here for a sequence of particular cases. The other of those is formed by summing the
counts considered here for all cases. In our series of papers, the parabolic Catalan count arises “in nature”
in a number of interrelated ways. In this first paper this quantity counts “gapless R-tuples”, “R-rightmost
clump deleting chains”, and convex Demazure tableau sets. The parabolic Catalan number further counts
roughly another dozen structures in our two subsequent papers. After the first version [PW2] of this paper
was initially distributed, we learned of a different (but related) kind of parabolic generalization of the
Catalan numbers due to Mühle and Williams. This is described at the end of this paper.

The other main theme of this series of papers is the ubiquity of some of the structures that are counted
by the parabolic Catalan numbers. The gapless R-tuples arise as the images of the R-312-avoiding R-
permutations under the R-ranking map in this paper and as the minimum members of the equivalence
classes for the indexing n-tuples of a generalization of the flagged Schur functions in our second paper.
Moreover, the R-gapless condition provides half of the solution to the nonpermutability problem con-
sidered in our third paper [PW4]. Since the gapless R-tuples and the structures equivalent to them are
enumerated by a parabolic generalization of Catalan numbers, it would not be surprising if they were to
arise in further contexts.

The material in this paper first appeared as one-third of the overly long manuscript [PW2]. The second
paper [PW3] in this series presents most of the remaining material from [PW2]. Section 11 of [PW3]
describes the projecting and lifting processes that relate the notions of 312-avoidance and of R-312-
avoidance.

Definitions are presented in Sections 2 and 3. In Section 4 we reformulate the R-312-avoiding R-
permutations as R-rightmost clump deleting chains and as gapless R-tuples. To prepare for the proofs of
our two main results, in Section 5 we associate certain tableaux to these structures. Our main results are
presented in Sections 6 and 7. Section 8 indicates why convexity for the sets of Dλ(π) may be of further
interest, and Section 9 contains remarks on enumeration.

2 General definitions and definitions of R-tuples
In posets we use interval notation to denote principal ideals and convex sets. For example, in Z one has
(i, k] = {i + 1, i + 2, ..., k}. Given an element x of a poset P , we denote the principal ideal {y ∈ P :
y ≤ x} by [x]. When P = {1 < 2 < 3 < ...}, we write [1, k] as [k]. If Q is a set of integers with q
elements, for d ∈ [q] let rankd(Q) be the dth largest element of Q. We write max(Q) := rank1(Q) and
min(Q) := rankq(Q). A set D ⊆ ZN for some N ≥ 1 is a convex polytope if it is the solution set for a
finite system of linear inequalities.

Fix n ≥ 1 throughout the paper. Except for ζ, various lower case Greek letters indicate various kinds of
n-tuples of non-negative integers. Their entries are denoted with the same letter. An nn-tuple ν consists
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of n entries νi ∈ [n] that are indexed by indices i ∈ [1, n]. An nn-tuple φ is a flag if φ1 ≤ . . . ≤ φn.
An upper tuple is an nn-tuple υ such that υi ≥ i for i ∈ [n]. The upper flags are the sequences of
the y-coordinates for the above-diagonal Catalan lattice paths from (0, 0) to (n, n). A permutation is an
nn-tuple that has distinct entries. Let Sn denote the set of permutations. A permutation π is 312-avoiding
if there do not exist indices 1 ≤ a < b < c ≤ n such that πa > πb < πc and πa > πc. (This is
equivalent to its inverse being 231-avoiding.) Let S312

n denote the set of 312-avoiding permutations. By
Exercises 116 and 24 of [Sta], these permutations and the upper flags are counted by the Catalan number
Cn := 1

n+1

(
2n
n

)
.

Fix R ⊆ [n − 1] through the end of Section 7. Denote the elements of R by q1 < . . . < qr for some
r ≥ 0. Set q0 := 0 and qr+1 := n. We use the qh for h ∈ [r + 1] to specify the locations of r + 1
“dividers” within nn-tuples: Let ν be an nn-tuple. On the graph of ν in the first quadrant draw vertical
lines at x = qh+ε for h ∈ [r+1] and some small ε > 0. In Figure 7.1 we have n = 9 andR = {2, 3, 5, 7}.
These r + 1 lines indicate the right ends of the r + 1 carrels (qh−1, qh] of ν for h ∈ [r + 1]. An R-tuple
is an nn-tuple that has been equipped with these r + 1 dividers. Fix an R-tuple ν; we portray it by
(ν1, ..., νq1 ; νq1+1, ..., νq2 ; ...; νqr+1, ..., νn). Let UR(n) denote the set of upper R-tuples. Let UFR(n)
denote the subset of UR(n) consisting of upper flags. Fix h ∈ [r+ 1]. The hth carrel has ph := qh− qh−1

indices. The hth cohort of ν is the multiset of entries of ν on the hth carrel.
An R-increasing tuple is an R-tuple α such that αqh−1+1 < ... < αqh for h ∈ [r + 1]. Let UIR(n)

denote the subset of UR(n) consisting ofR-increasing upper tuples. Consult Table 2.1 for an example and
a nonexample. Boldface entries indicate failures. It can be seen that |UIR(n)| = n!/

∏r+1
h=1 ph! =:

(
n
R

)
.

An R-permutation is a permutation that is R-increasing when viewed as an R-tuple. Let SRn denote the
set of R-permutations. Note that |SRn | =

(
n
R

)
. We refer to the cases R = ∅ and R = [n − 1] as the

trivial and full cases respectively. Here |S∅n| = 1 and |S[n−1]
n | = n! respectively. An R-permutation π is

R-312-containing if there exists h ∈ [r − 1] and indices 1 ≤ a ≤ qh < b ≤ qh+1 < c ≤ n such that
πa > πb < πc and πa > πc. An R-permutation is R-312-avoiding if it is not R-312-containing. (This
is equivalent to the corresponding multipermutation being 231-avoiding.) Let SR-312

n denote the set of
R-312-avoiding permutations. We define the R-parabolic Catalan number CRn by CRn := |SR-312

n |.

Type of R-tuple Set Example Nonexample

R-increasing upper tuple α ∈ UIR(n) (2, 6, 7; 4, 5, 7, 8, 9; 9) (3, 5, 5; 6, 4, 7, 8, 9; 9)

R-312-avoiding permutation π ∈ SR-312
n (2, 3, 6; 1, 4, 5, 8, 9; 7) (2, 4, 6; 1, 3, 7, 8, 9; 5)

Gapless R-tuple γ ∈ UGR(n) (2, 4, 6; 4, 5, 6, 7, 9; 9) (2, 4, 6; 4, 6, 7, 8, 9; 9)

Table 2.1. (Non-)Examples of R-tuples for n = 9 and R = {3, 8}.

Next we consider R-increasing tuples with the following property: Whenever there is a descent across
a divider between carrels, then no “gaps” can occur until the increasing entries in the new carrel “catch
up”. So we define a gapless R-tuple to be an R-increasing upper tuple γ such that whenever there exists
h ∈ [r] with γqh > γqh+1, then s := γqh −γqh+1 + 1 ≤ ph+1 and the first s entries of the (h+ 1)st carrel
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(qh, qh+1] are γqh − s+ 1, γqh − s+ 2, ..., γqh . The failure in Table 2.1 occurs because the absence of the
element 5 ∈ [9] from the second carrel creates a gap. Let UGR(n) ⊆ UIR(n) denote the set of gapless
R-tuples. Note that a gapless γ has γq1 ≤ γq2 ≤ ... ≤ γqr ≤ γqr+1 . So in the full R = [n− 1] case, each
gapless R-tuple is a flag. Hence UG[n−1](n) = UF[n−1](n).

An R-chain B is a sequence of sets ∅ =: B0 ⊂ B1 ⊂ . . . ⊂ Br ⊂ Br+1 := [n] such that |Bh| = qh
for h ∈ [r]. A bijection from R-permutations π to R-chains B is given by Bh := {π1, π2, . . . , πqh}
for h ∈ [r]. We indicate it by π 7→ B. The R-chains for the two R-permutations appearing in Table
2.1 are ∅ ⊂ {2, 3, 6} ⊂ {1, 2, 3, 4, 5, 6, 8, 9} ⊂ [9] and ∅ ⊂ {2, 4, 6} ⊂ {1, 2, 3, 4, 6, 7, 8, 9} ⊂ [9].
Fix an R-permutation π and let B be the corresponding R-chain. For h ∈ [r + 1], the set Bh is the
union of the first h cohorts of π. Note that R-chains B (and hence R-permutations π) are equiva-
lent to the

(
n
R

)
objects that could be called “ordered R-partitions of [n]”; these arise as the sequences

(B1\B0, B2\B1, . . . , Br+1\Br) of r + 1 disjoint nonempty subsets of sizes p1, p2, . . . , pr+1. Now
create an R-tuple ΨR(π) =: ψ as follows: For h ∈ [r + 1] specify the entries in its hth carrel by
ψi := rankqh−i+1(Bh) for i ∈ (qh−1, qh]. For a model, imagine there are n discus throwers grouped into
r+ 1 heats of ph throwers for h ∈ [r+ 1]. Each thrower gets one throw, the throw distances are elements
of [n], and there are no ties. After the hth heat has been completed, the ph longest throws overall so far
are announced in ascending order. See Table 2.2. We call ψ the rank R-tuple of π. As well as being
R-increasing, it can be seen that ψ is upper: So ψ ∈ UIR(n).

Name From/To Input Image

Rank R-tuple ΨR : SRn → UIR(n) (2, 4, 6; 1, 5, 7, 8, 9; 3) (2, 4, 6; 5, 6, 7, 8, 9; 9)

Undoes ΨR|SR-312
n

ΠR : UGR(n)→ SR-312
n (2, 4, 6; 4, 5, 6, 7, 9; 9) (2, 4, 6; 1, 3, 5, 7, 9; 8)

Table 2.2. Examples for maps of R-tuples for n = 9 and R = {3, 8}.

The map ΨR is not injective; for example it maps another R-permutation (2, 4, 6; 3, 5, 7, 8, 9; 1) to the
same image as in Table 2.2. In Proposition 4.6(ii) it will be seen that the restriction of ΨR to SR-312

n

is a bijection to UGR(n) whose inverse is the following map ΠR: Let γ ∈ UGR(n). See Table 2.2.
Define an R-tuple ΠR(γ) =: π by: Initialize πi := γi for i ∈ (0, q1]. Let h ∈ [r]. If γqh > γqh+1, set
s := γqh−γqh+1 +1. Otherwise set s := 0. For i in the right side (qh+s, qh+1] of the (h+1)st carrel, set
πi := γi. For i in the left side (qh, qh+s], set d := qh+s−i+1 and πi := rankd( [γqh ] \ {π1, ..., πqh} ).
In words: working from right to left, fill in the left side by finding the largest element of [γqh ] not used by
π so far, then the next largest, and so on. In Table 2.2 when h = 1 the elements 5, 3, 1 are found and placed
into the 6th, 5th, and 4th positions. (Since γ is a gaplessR-tuple, when s ≥ 1 we have γqh+s = γqh . Since
‘gapless’ includes the upper property, here we have γqh+s ≥ qh + s. Hence | [γqh ] \ {π1, ..., πqh} | ≥ s,
and so there are enough elements available to define these left side πi. ) Since γqh ≤ γqh+1

, it can
inductively be seen that max{π1, ..., πqh} = γqh .

When we restrict our attention to the fullR = [n−1] case, we will suppress most prefixes and subscripts
of ‘R’. Two examples of this are: an [n− 1]-chain becomes a chain, and one has UF (n) = UG(n).
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3 Shapes, tableaux, connections to Lie theory
A partition is an n-tuple λ ∈ Zn such that λ1 ≥ . . . ≥ λn ≥ 0. Fix such a λ for the rest of the paper.
We say it is strict if λ1 > . . . > λn. The shape of λ, also denoted λ, consists of n left justified rows with
λ1, . . . , λn boxes. We denote its column lengths by ζ1 ≥ . . . ≥ ζλ1

. The column length n is called the
trivial column length. Since the columns are more important than the rows, the boxes of λ are transpose-
indexed by pairs (j, i) such that 1 ≤ j ≤ λ1 and 1 ≤ i ≤ ζj . Sometimes for boundary purposes we refer
to a 0th latent column of boxes, which is a prepended 0th column of trivial length. If λ = 0, its shape is
the empty shape ∅. Define Rλ ⊆ [n − 1] to be the set of distinct non-trivial column lengths of λ. Note
that λ is strict if and only if Rλ = [n− 1], i.e. Rλ is full. Set |λ| := λ1 + . . .+ λn.

A (semistandard) tableau of shape λ is a filling of λ with values from [n] that strictly increase from
north to south and weakly increase from west to east. The example tableau below for n = 12 has shape
λ = (75, 54, 22). Here Rλ = {5, 9, 11}. Let Tλ denote the set of tableaux T of shape λ. Under entrywise
comparison ≤, this set Tλ becomes a poset that is the distributive lattice L(λ, n) introduced by Stanley.
The principal ideals [T ] in Tλ are clearly convex polytopes in Z|λ|. Fix T ∈ Tλ. For j ∈ [λ1], we denote
the one column “subtableau” on the boxes in the jth column by Tj . Here for i ∈ [ζj ] the tableau value in
the ith row is denoted Tj(i). The set of values in Tj is denoted B(Tj). Columns Tj of trivial length must
be inert, that is B(Tj) = [n]. The 0th latent column T0 is an inert column that is sometimes implicitly
prepended to the tableau T at hand: We ask readers to refer to its values as needed to fulfill definitions or
to finish constructions. We say a tableau Y of shape λ is a λ-key if B(Yl) ⊇ B(Yj) for 1 ≤ l ≤ j ≤ λ1.
The example tableau below is a λ-key. The empty shape has one tableau on it, the null tableau. Fix a set
Q ⊆ [n] with |Q| =: q ≥ 0. The column Y (Q) is the tableau on the shape for the partition (1q, 0n−q)
whose values form the set Q. Then for d ∈ [q], the value in the (q + 1− d)th row of Y (Q) is rankd(Q).

1 1 1 1 1 1 1

2 2 3 3 3 4 4

3 3 4 4 4 6 6

4 4 5 5 5 7 7

5 5 6 6 6 10 10

6 6 7 7 7

7 7 8 8 8

8 8 9 9 9

9 9 10 10 10

10 10

12 12

The most important values in a tableau of shape λ occur at the ends of its rows. Using the latent column
when needed, these n values from [n] are gathered into anRλ-tuple as follows: Let T ∈ Tλ. We define the
λ-row end list ω of T to be theRλ-tuple given by ωi := Tλi(i) for i ∈ [n]. Note that for h ∈ [r+1], down
the hth “cliff” from the right in the shape of λ one has λi = λi′ for i, i′ ∈ (qh−1, qh]. In the example take
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h = 2. Then q2 = 9 and q1 = 5. Here λi = 5 = λi′ for i, i′ ∈ (5, 9]. Reading off the values of T down
that cliff produces the hth cohort of ω. Here this cohort of ω is {7, 8, 9, 10}. These values are increasing.
So ω ∈ UIRλ(n).

For h ∈ [r], the columns of length qh in the shape λ have indices j such that j ∈ (λqh+1
, λqh ]. When

h = 2 we have j ∈ (λ11, λ9] = (2, 5] for columns of length q2 = 9. A bijection from R-chains B
to λ-keys Y is obtained by juxtaposing from left to right λn inert columns and λqh − λqh+1

copies of
Y (Bh) for r ≥ h ≥ 1. We indicate it by B 7→ Y . For h = 2 here there are λ9 − λ11 = 5 − 2 = 3
copies of Y (B2) with B2 = (0, 10]\{2}. Unfortunately we need to have the indices h of the column
lengths qh decreasing from west to east while the column indices j increase from west to east. Hence the
elements of Bh+1 form the column Yj for j = λqh+1

while the elements of Bh form Yj+1. A bijection
from Rλ-permutations π to λ-keys Y is obtained by following π 7→ B with B 7→ Y . The image of
an Rλ-permutation π is called the λ-key of π; it is denoted Yλ(π). The example tableau is the λ-key of
π = (1, 4, 6, 7, 10; 3, 5, 8, 9; 2, 12; 11). It is easy to see that the λ-row end list of the λ-key of π is the rank
Rλ-tuple ΨRλ(π) =: ψ of π: Here ψi = Yλi(i) for i ∈ [n].

Let α ∈ UIRλ(n). Define Zλ(α) to be the subset of tableaux T ∈ Tλ with λ-row end list α. To see
that Zλ(α) 6= ∅, for i ∈ [n] take Tj(i) := i for j ∈ [1, λi) and Tλi(i) := αi. This subset is closed under
the join operation for the lattice Tλ. We define the λ-row end max tableau Mλ(α) for α to be the unique
maximal element of Zλ(α). The example tableau is an Mλ(α).

When we are considering tableaux of shape λ, much of the data used will be in the form of Rλ-tuples.
Many of the notions used will be definitions from Section 2 that are being applied with R := Rλ. The
structure of each proof will depend only upon Rλ and not upon how many times a column length is
repeated: If λ′, λ′′ ∈ Λ+

n are such that Rλ′ = Rλ′′ , then the development for λ′′ will in essence be the
same as for λ′. To emphasize the original independent entity λ and to reduce clutter, from now on rather
than writing ‘R’ or ‘Rλ’ we will replace ‘R’ by ‘λ’ in subscripts and in prefixes. Above we would have
written ω ∈ UIλ(n) instead of having written ω ∈ UIRλ(n) (and instead of having written ω ∈ UIR(n)
after setting R := Rλ). When λ is a strict partition, we omit most ‘λ-’ prefixes and subscripts since
Rλ = [n− 1].

To connect to Lie theory, fix R ⊆ [n − 1] and set J := [n − 1]\R. The R-permutations are the one-
rowed forms of the “inverses” of the minimum length representatives collected in W J for the cosets in
W/WJ , where W is the Weyl group of type An−1 and WJ is its parabolic subgroup 〈si : i ∈ J〉. A
partition λ is strict exactly when the weight it depicts for GL(n) is strongly dominant. If we take the set
R to be Rλ, then the restriction of the partial order ≤ on Tλ to the λ-keys depicts the Bruhat order on that
W J . Further details appear in Sections 2, 3, and the appendix of [PW1].

4 Rightmost clump deleting chains, gapless R-tuples
We show that if the domain of the simple-minded global bijection π 7→ B is restricted to SR-312

n ⊆ SRn ,
then a bijection to a certain set of chains results. And while it appears to be difficult to characterize the
image ΨR(SRn ) ⊆ UIR(n) of the R-rank map for general R, we show that restricting ΨR to SR-312

n

produces a bijection to the set UGR(n) of gapless R-tuples.
Given a set of integers, a clump of it is a maximal subset of consecutive integers. After decomposing

a set into its clumps, we index the clumps in the increasing order of their elements. For example, the
set {2, 3, 5, 6, 7, 10, 13, 14} is the union L1 ∪ L2 ∪ L3 ∪ L4, where L1 := {2, 3}, L2 := {5, 6, 7},
L3 := {10}, L4 := {13, 14}.
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For the first part of this section we temporarily work in the context of the full R = [n − 1] case. A
chain B is rightmost clump deleting if for h ∈ [n − 1] the element deleted from each Bh+1 to produce
Bh is chosen from the rightmost clump of Bh+1. More formally: It is rightmost clump deleting if for
h ∈ [n − 1] one has Bh = Bh+1\{b} only when [b,m] ⊆ Bh+1, where m := max(Bh+1). For n = 3
there are five rightmost clump deleting chains, whose sets B3 ⊃ B2 ⊃ B1 are displayed from the top in
three rows:

1 2 �3
1 �2

�1

1 2 �3
�1 2

�2

1 �2 3
1 �3

�1

�1 2 3
2 �3

�2

�1 2 3
�2 3

�3

To form the corresponding π, record the deleted elements from bottom to top. Note that the 312-containing
permutation (3; 1; 2) does not occur. Its triangular display of B3 ⊃ B2 ⊃ B1 deletes the ‘1’ from the
“left” clump in the second row.

After Part (0) restates the definition of this concept, we present four reformulations of it:

Fact 4.1. Let B be a chain. Set {bh+1} := Bh+1\Bh for h ∈ [n− 1]. Set mh := max(Bh) for h ∈ [n].
The following conditions are equivalent to this chain being rightmost clump deleting:
(0) For h ∈ [n− 1], one has [bh+1,mh+1] ⊆ Bh+1.
(i) For h ∈ [n− 1], one has [bh+1,mh] ⊆ Bh+1.
(ii) For h ∈ [n− 1], one has (bh+1,mh) ⊂ Bh.
(iii) For h ∈ [n− 1]: If bh+1 < mh, then bh+1 = max([mh]\Bh).
(iii′) For h ∈ [n− 1], one has bh+1 = max([mh+1]\Bh).

The following characterization is related to Part (ii) of the preceeding fact via the correspondence
π ←→ B:

Fact 4.2. A permutation π is 312-avoiding if and only if for every h ∈ [n− 1] we have
(πh+1,max{π1, ..., πh}) ⊂ {π1, ..., πh}.

Since the following result will be generalized by Proposition 4.6, we do not prove it here. Part (i) is
Exercise 2.202 of [Sta].

Proposition 4.3. For the full R = [n− 1] case we have:
(i) The restriction of the global bijection π 7→ B from Sn to S312

n is a bijection to the set of rightmost
clump deleting chains. Hence there are Cn rightmost clump deleting chains.
(ii) The restriction of the rank tuple map Ψ from Sn to S312

n is a bijection to UF (n) whose inverse is Π.

Here when R = [n − 1], the map Π : UF (n) −→ S312
n has a simple description. It was introduced in

[PS] for Theorem 14.1. Given an upper flag φ, recursively construct Π(φ) =: π as follows: Start with
π1 := φ1. For i ∈ [n− 1], choose πi+1 to be the maximum element of [φi+1]\{π1, ..., πi}.

Now fix R ⊆ [n − 1]. Let B be an R-chain. More generally, we say B is R-rightmost clump deleting
if this condition holds for each h ∈ [r]: Let Bh+1 =: L1 ∪ L2 ∪ ... ∪ Lf decompose Bh+1 into clumps
for some f ≥ 1. We require Le ∪Le+1 ∪ ...∪Lf ⊇ Bh+1\Bh ⊇ Le+1 ∪ ...∪Lf for some e ∈ [f ]. This
condition requires the set Bh+1\Bh of new elements that augment the set Bh of old elements to consist
of entirely new clumps Le+1, Le+2, ..., Lf , plus some further new elements that combine with some old
elements to form the next “lower” clump Le inBh+1. When n = 14 andR = {3, 5, 10}, an example of an
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R-rightmost clump deleting chain is given by ∅ ⊂ {1-2, 6} ⊂ {1-2, 5-6, 8} ⊂ {1-2, 4-5-6-7-8, 10, 13-14}
⊂ {1-2-3-...-13-14}. Here are some reformulations of the notion of R-rightmost clump deleting:

Fact 4.4. Let B be an R-chain. For h ∈ [r], set bh+1 := min(Bh+1\Bh) and mh := max(Bh). The
following conditions are equivalent to this chain being R-rightmost clump deleting:
(i) For h ∈ [r], one has [bh+1,mh] ⊆ Bh+1.
(ii) For h ∈ [r], one has (bh+1,mh) ⊂ Bh+1.
(iii) For h ∈ [r], let s be the number of elements of Bh+1\Bh that are less than mh. These must be the s
largest elements of [mh]\Bh.

Part (iii) will again be used in [PW3] for projecting and lifting 312-avoidance.
The following characterization is related to Part (ii) of the preceding fact via the correspondence π ←→

B:

Fact 4.5. An R-permutation π is R-312-avoiding if and only if for every h ∈ [r] one has
(min{πqh+1, ..., πqh+1

},max{π1, ..., πqh}) ⊂ {π1, ..., πqh+1
}.

Is it possible to characterize the rank R-tuple ΨR(π) =: ψ of an arbitrary R-permutation π? An R-flag
is an R-increasing upper tuple ε such that εqh+1+1−u ≥ εqh+1−u for h ∈ [r] and u ∈ [min{ph+1, ph}]. It
can be seen that ψ is necessarily an R-flag. But the three conditions required so far (upper, R-increasing,
R-flag) are not sufficient: When n = 4 and R = {1, 3}, the R-flag (3; 2, 4; 4) cannot arise as the rank
R-tuple of an R-permutation. In contrast to the upper flag characterization in the full case, it might not be
possible to develop a simply stated sufficient condition for an R-tuple to be the rank R-tuple ΨR(π) of a
general R-permutation π. But it can be seen that the rank R-tuple ψ of an R-312-avoiding permutation π
is necessarily a gapless R-tuple, since a failure of ‘gapless’ for ψ leads to the containment of an R-312
pattern. Building upon the observation that UG(n) = UF (n) in the full case, this seems to indicate that
the notion of “gapless R-tuple” is the correct generalization of the notion of “flag” from [n− 1]-tuples to
R-tuples. (It can be seen directly that a gapless R-tuple is necessarily an R-flag.)

Two bijections lie at the heart of this work; the second one will again be used in [PW3] to prove
Theorem 9.1.

Proposition 4.6. For general R ⊆ [n− 1] we have:
(i) The restriction of the global bijection π 7→ B from SRn to SR-312

n is a bijection to the set ofR-rightmost
clump deleting chains.
(ii) The restriction of the rankR-tuple map ΨR from SRn to SR-312

n is a bijection to UGR(n) whose inverse
is ΠR.

Proof: Setting bh = min{πqh+1, ..., πqh+1
} and mh = max{π1, ..., πqh}, use Fact 4.5, the π 7→ B

bijection, and Fact 4.4(ii) to confirm (i). As noted above, the restriction of ΨR to SR-312
n gives a map to

UGR(n). Let γ ∈ UGR(n) and construct ΠR(γ) =: π. Let h ∈ [r]. Recall that max{π1, ..., πqh} = γqh .
Since γ is R-increasing it can be seen that the πi are distinct. So π is an R-permutation. Let s ≥ 0 be
the number of entries of {πqh+1, ..., πqh+1

} that are less than γqh . These are the s largest elements of
[γqh ]\{π1, ..., πqh}. If in the hypothesis of Fact 4.4 we take Bh := {π1, ..., πqh}, we have mh = γqh . So
the chain B corresponding to π satisfies Fact 4.4(iii). Since Fact 4.4(ii) is the same as the characterization
of an R-312-avoiding permutation in Fact 4.5, we see that π is R-312-avoiding. It can be seen that
ΨR[ΠR(γ)] = γ, and so ΨR is surjective from SR-312

n to UGR(n). For the injectivity of ΨR, now let π
denote an arbitrary R-312-avoiding permutation. Form ΨR(π), which is a gapless R-tuple. Using Facts
4.5 and 4.4, it can be seen that ΠR[ΨR(π)] = π. Hence ΨR is injective.
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5 Row end max tableaux, gapless (312-avoiding) keys
We study the λ-row end max tableaux of gapless λ-tuples. We also form the λ-keys of theR-312-avoiding
permutations and introduce “gapless” lambda-keys. We show that these three sets of tableaux coincide.

Let α ∈ UIλ(n). The values of the λ-row end max tableauMλ(α) =: M can be determined as follows:
For h ∈ [r] and j ∈ (λqh+1

, λqh ], first set Mj(i) = αi for i ∈ (qh−1, qh]. When h > 1, from east to west
among columns and south to north within a column, also set Mj(i) := min{Mj(i+ 1)− 1,Mj+1(i)} for
i ∈ (0, qh−1]. Finally, set Mj(i) := i for j ∈ (0, λn] and i ∈ (0, n]. (When ζj = ζj+1, this process yields
Mj = Mj+1.) The example tableau in Section 3 is Mλ(α) for α = (1, 4, 6, 7, 10; 7, 8, 9, 10; 10, 12; 12).
There we have s = 4 and s = 1 respectively for h = 1 and h = 2:

Lemma 5.1. Let γ be a gapless λ-tuple. The λ-row end max tableau Mλ(γ) =: M is a key. For h ∈ [r]
and j := λqh+1

, the s ≥ 0 elements in B(Mj)\B(Mj+1) that are less than Mj+1(qh) = γqh are the s
largest elements of [γqh ]\B(Mj+1).

Proof: Let h ∈ [r] and set j := λqh+1
. We claim B(Mj+1) ⊆ B(Mj). If Mj(qh + 1) = γqh+1 >

γqh = Mj+1(qh), then Mj(i) = Mj+1(i) for i ∈ (0, qh] and the claim holds. Otherwise γqh+1 ≤ γqh .
The gapless condition on γ implies that if we start at (j, qh + 1) and move south, the successive values
in Mj increment by 1 until some lower box has the value γqh . Let i ∈ (qh, qh+1] be the index such that
Mj(i) = γqh . Now moving north from (j, i), the values in Mj decrement by 1 either all of the way to the
top of the column, or until there is a row index k ∈ (0, qh) such that Mj+1(k) < Mj(k + 1) − 1. In the
former case set k := 0. In the example we have k = 1 and k = 0 respectively for h = 1 and h = 2. If
k > 0 we have Mj(x) = Mj+1(x) for x ∈ (0, k]. Now use Mj(k + 1) ≤ Mj+1(k + 1) to see that the
valuesMj+1(k+1),Mj+1(k+2), ...,Mj+1(qh) each appear in the interval of values [Mj(k+1),Mj(i)].
Thus B(Mj+1) ⊆ B(Mj). Using the parenthetical remark made before the lemma’s statement, we see
that M is a key. There are qh+1 − i elements in B(Mj)\B(Mj+1) that are larger than Mj+1(qh) = γqh .
So s := (qh+1 − qh) − (qh+1 − i) ≥ 0 is the number of values in B(Mj)\B(Mj+1) that are less than
γqh . These s values are the complement in [Mj(k + 1),Mj(i)] of the set {Mj+1(x) : x ∈ [k + 1, qh] },
where Mj(i) = Mj+1(qh) = γqh .

We now introduce a tableau analog to the notion of “R-rightmost clump deleting chain”. A λ-key Y
is gapless if the condition below is satisfied for h ∈ [r − 1]: Let b be the smallest value in a column of
length qh+1 that does not appear in a column of length qh. For j ∈ (λqh+2

, λqh+1
], let i ∈ (0, qh+1] be the

shared row index for the occurrences of b = Yj(i). Let m be the bottom (largest) value in the columns
of length qh. If b > m there are no requirements. Otherwise: For j ∈ (λqh+2

, λqh+1
], let k ∈ (i, qh+1]

be the shared row index for the occurrences of m = Yj(k). For j ∈ (λqh+2
, λqh+1

] one must have
Yj(i+ 1) = b+ 1, Yj(i+ 2) = b+ 2, ..., Yj(k− 1) = m− 1 holding between Yj(i) = b and Yj(k) = m.
(Hence necessarily m− b = k − i.) The tableau shown above is a gapless λ-key.

Given a partition λ with Rλ =: R, our next result considers three sets of R-tuples and three sets of
tableaux of shape λ:
(a) The set AR of R-312-avoiding permutations and the set Pλ of their λ-keys.
(b) The set BR of R-rightmost clump deleting chains and the set Qλ of gapless λ-keys.
(c) The set CR of gapless R-tuples and the set Rλ of their λ-row end max tableaux.
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Theorem 5.2. Let λ be a partition and set R := Rλ.
(i) The three sets of tableaux coincide: Pλ = Qλ = Rλ.
(ii) An R-permutation is R-312-avoiding if and only if its λ-key is gapless.
(iii) If an R-permutation is R-312-avoiding, then the λ-row end max tableau of its rank R-tuple is its
λ-key.
The restriction of the global bijection B 7→ Y from all R-chains to R-rightmost clump deleting chains
is a bijection from BR to Qλ. The process of constructing the λ-row end max tableau is a bijection from
CR to Rλ. The bijection π 7→ B from AR to BR induces a map from Pλ to Qλ that is the identity. The
bijection ΨR from AR to CR induces a map from Pλ to Rλ that is the identity.

Part (iii) will again be used in [PW3] to prove Theorem 9.1; there it will also be needed for the discussion
in Section 12. In the full case when λ is strict and R = [n− 1], the converse of Part (iii) holds: If the row
end max tableau of the rank tuple of a permutation is the key of the permutation, then the permutation is
312-avoiding. For a counterexample to this converse for general λ, choose n = 4, λ = (2, 1, 1, 0), and
π = (4; 1, 2; 3). Then Yλ(π) = Mλ(ψ) with π /∈ SR-312

n . The bijection from CR to Rλ and the equality
Qλ = Rλ imply that an R-tuple is R-gapless if and only if it arises as the λ-row end list of a gapless
λ-key.

Proof:
For the first of the four map statements, use the B 7→ Y bijection to relate Fact 4.4(i) to the definition
of gapless λ-key. The map in the second map statement is surjective by definition and is also obviously
injective. Use the construction of the bijection π 7→ B and the first map statement to confirm the equality
Pλ = Qλ and the third map statement. Part (ii) follows.

To prove Part (iii), let π ∈ SR-312
n . Create the R-chain B corresponding to π and then its λ-key

Y := Yλ(π). Set γ := ΨR(π) and then M := Mλ(γ). Clearly B(Yλv ) = B1 = {γ1, ..., γv} =
B(Mλv ) for v := q1. Proceed by induction on h ∈ [r]: For v := qh assume B(Yλv ) = B(Mλv ). So
max[B(Yλv )] = Yλv (v) = Mλv (v) = γv . Rename the example α before Lemma 5.1 as γ. Viewing that
tableau as Mλ(γ) =: M , for h = 2 we have M5(9) = γ9 = 10. Set v′ := qh+1. Let sY be the number
of values in B(Yλv′ )\B(Yλv ) that are less than γv . Viewing the example tableau as Y , for h = 2 we have
sY = 1. Since γv ∈ B(Yλv ), the number of values in B(Yλv′ )\B(Yλv ) that exceed γv is ph+1 − sY .
These values are the entries in {πv+1, ..., πv′} that exceed γv . So from γ := ΨR(π) and the description
of Mλ(γ) it can be seen that these values are exactly the values in B(Mλv′ )\B(Mλv ) that exceed γv . Let
sM be the number of values in B(Mλv′ )\B(Mλv ) that are less than γv . Since M is a key by Lemma
5.1 and γv ∈ B(Mλv ), we have sM = ph+1 − (ph+1 − sY ) = sY =: s. From Proposition 4.6(i) we
know that B is R-rightmost clump deleting. By Fact 4.4(iii) applied to B and Lemma 5.1 applied to
γ, we see that for both Y and for M the “new” values that are less than γv are the s largest elements
of [γv]\B(Yλv ) = [γv]\B(Mλv ). Hence Yλv′ = Mλv′ . Since we only need to consider the rightmost
columns of each length when showing that two λ-keys are equal, we have Y = M . The equality Pλ = Rλ
and the final map statement follow.

Corollary 5.3. When λ is strict, there are Cn gapless λ-keys.

6 Sufficient condition for Demazure convexity
Fix a λ-permutation π. We define the set Dλ(π) of Demazure tableaux. We show that if π is λ-312-
avoiding, then the tableau set Dλ(π) is the principal ideal [Yλ(π)].
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First we need to specify how to form the scanning tableau S(T ) for a given T ∈ Tλ. See page
394 of [Wi2] for an example of this method. Given a sequence x1, x2, ..., its earliest weakly increasing
subsequence (EWIS) is xi1 , xi2 , ..., where i1 = 1 and for u > 1 the index iu is the smallest index satisfying
xiu ≥ xiu−1 . Let T ∈ Tλ. Draw the shape λ and fill its boxes as follows to produce S(T ): Form the
sequence of the bottom values of the columns of T from left to right. Find the EWIS of this sequence, and
mark each box that contributes its value to this EWIS. The sequence of locations of the marked boxes for a
given EWIS is its scanning path. Place the final value of this EWIS in the lowest available location in the
leftmost available column of S(T ). This procedure can be repeated as if the marked boxes are no longer
part of T , since it can be seen that the unmarked locations form the shape of some partition. Ignoring the
marked boxes, repeat this procedure to fill in the next-lower value of S(T ) in its first column. Once all of
the scanning paths originating in the first column have been found, every location in T has been marked
and the first column of S(T ) has been created. For j > 1, to fill in the jth column of S(T ): Ignore the
leftmost (j − 1) columns of T , remove all of the earlier marks from the other columns, and repeat the
above procedure. The scanning path originating at a location (l, k) ∈ λ is denoted P(T ; l, k). It was
shown in [Wi2] that S(T ) is the “right key” of Lascoux and Schützenberger for T , which was denoted
R(T ) there.

As in [PW1], we now use the λ-key Yλ(π) of π to define the set of Demazure tableaux: Dλ(π) :=
{T ∈ Tλ : S(T ) ≤ Yλ(π)}. We list some basic facts concerning keys, scanning tableaux, and sets of
Demazure tableaux. Since it has long been known that R(T ) is a key for any T ∈ Tλ, having S(T ) =
R(T ) gives Part (i). Part (ii) is easy to deduce from the specification of the scanning method. The
remaining parts follow in succession from Part (ii) and the bijection π 7→ Y .

Fact 6.1. Let T ∈ Tλ and let Y ∈ Tλ be a key.
(i) S(T ) is a key and hence S(T ) ∈ Tλ.
(ii) T ≤ S(T ) and S(Y ) = Y .
(iii) Yλ(π) ∈ Dλ(π) and Dλ(π) ⊆ [Yλ(π)].
(iv) The unique maximal element of Dλ(π) is Yλ(π).
(v) The Demazure sets Dλ(σ) of tableaux are nonempty subsets of Tλ that are precisely indexed by the
σ ∈ Sλn .

For U ∈ Tλ, define m(U) to be the maximum value in U . (Define m(U) := 1 if U is the null tableau.)
Let T ∈ Tλ. Let (l, k) ∈ λ. As in Section 4 of [PW1], define U (l,k) to be the tableau formed from T by
finding and removing the scanning paths that begin at (l, ζl) through (l, k+ 1), and then removing the 1st

through lth columns of T . (If l = λ1, then U (l,k) is the null tableau for any k ∈ [ζλ1
].) Set S := S(T ).

Lemma 4.1 of [PW1] states that Sl(k) = max{Tl(k),m(U (l,k))}.
To reduce clutter in the proofs we write Yλ(π) =: Y and S(T ) =: S.

Proposition 6.2. Let π ∈ Sλn and T ∈ Tλ be such that T ≤ Yλ(π). If there exists (l, k) ∈ λ such that
Yl(k) < m(U (l,k)), then π is λ-312-containing.

Proof: Reading the columns from right to left and then each column from bottom to top, let (l, k) be the
first location in λ such that m(U (l,k)) > Yl(k). In the rightmost column we have m(U (λ1,i)) = 1 for all
i ∈ [ζλ1 ]. Thus m(U (λ1,i)) ≤ Yλ1(i) for all i ∈ [ζλ1 ]. So we must have l ∈ [1, λ1). There exists j > l
and i ≤ k such that m(U (l,k)) = Tj(i). Since T ≤ Y , so far we have Yl(k) < Tj(i) ≤ Yj(i). Note that
since Y is a key we have k < ζl. Then for k < f ≤ ζl we have m(U (l,f)) ≤ Yl(f). So T ≤ Y implies
that Sl(f) ≤ Yl(f) for k < f ≤ ζl.
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Assume for the sake of contradiction that π is λ-312-avoiding. Theorem 5.2(ii) says that its λ-key Y is
gapless. If the value Yl(k) does not appear in Yj , then the columns that contain Yl(k) must also contain
[Yl(k), Yj(i)]: Otherwise, the rightmost column that contains Yl(k) has index λqh+1

for some h ∈ [r − 1]
and there exists some u ∈ [Yl(k), Yj(i)] such that u /∈ Yλqh+1

. Then Y would not satisfy the definition of
gapless λ-key, since for this h + 1 in that definition one has b ≤ u and u ≤ m. If the value Yl(k) does
appear in Yj , it appears to the north of Yj(i) there. Then i ≤ k implies that some value Yl(f) < Yj(i)
with f < k does not appear in Yj . As above, the columns that contain the value Yl(f) < Yl(k) must also
contain [Yl(f), Yj(i)]. In either case Yl must contain [Yl(k), Yj(i)]. This includes Tj(i).

Now let f > k be such that Yl(f) = Tj(i). Then we have Sl(f) > Sl(k) = max{Tl(k),m(U (l,k))}
≥ Tj(i) = Yl(f). This is our desired contradiction.

As in Section 5 of [PW1]: When m(U (l,k)) > Yl(k), define the set Aλ(T, π; l, k) := ∅. Otherwise,
define Aλ(T, π; l, k) := [k,min{Yl(k), Tl(k + 1) − 1, Tl+1(k)}]. (Refer to fictitious bounding values
Tl(ζl + 1) := n+ 1 and Tλl+1(l) := n.)

Theorem 6.3. Let λ be a partition and π be a λ-permutation. If π is λ-312-avoiding, then Dλ(π) =
[Yλ(π)].

Proof: The easy containment Dλ(π) ⊆ [Yλ(π)] is Fact 6.1(iii). Conversely, let T ≤ Y and (l, k) ∈ λ.
The contrapositive of Proposition 6.2 gives Aλ(T, π; l, k) = [k,min{Yl(k), Tl(k + 1) − 1, Tl+1(k)}].
Since T ≤ Y , we see that Tl(k) ∈ Aλ(T, π; l, k) for all (l, k) ∈ λ. Theorem 5.1 of [PW1] says that
T ∈ Dλ(π).

This result is used in [PW3] to prove Theorem 9.1(ii).

7 Necessary condition for Demazure convexity
Continue to fix a λ-permutation π. We show that π must be λ-312-avoiding for the set of Demazure
tableaux Dλ(π) to be a convex polytope in Z|λ|. We do so by showing that if π is λ-312-containing, then
Dλ(π) does not contain a particular semistandard tableau that lies on the line segment defined by two
particular keys that are in Dλ(π).

Theorem 7.1. Let λ be a partition and let π be a λ-permutation. If Dλ(π) is convex in Z|λ|, then π is
λ-312-avoiding.

This result is used in [PW3] to prove Theorem 9.1(iii) and Theorem 10.3.

Proof: For the contrapositive, assume that π is λ-312-containing. Here r := |Rλ| ≥ 2. There exists 1 ≤
g < h ≤ r and some a ≤ qg < b ≤ qh < c such that πb < πc < πa. Among such patterns, we specify one
that is optimal for our purposes. Figure 7.1 charts the following choices for π = (4, 8; 9; 2, 3; 1, 5; 6, 7) in
the first quadrant. Choose h to be minimal. So b ∈ (qh−1, qh]. Then choose b so that πb is maximal. Then
choose a so that πa is minimal. Then choose g to be minimal. So a ∈ (qg−1, qg]. Then choose any c so
that πc completes the λ-312-containing condition.

These choices have led to the following two prohibitions; see the rectangular regions in Figure 7.1:
(i) By the minimality of h and the maximality of πb, there does not exist e ∈ (qg, qh] such that πb < πe <
πc.
(ii) By the minimality of πa, there does not exist e ∈ [qh−1] such that πc < πe < πa.
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If there exists e ∈ [qg] such that πb < πe < πc, choose d ∈ [qg] such that πd is maximal with respect to
this condition; otherwise set d = b. So πb ≤ πd with d ≤ b. We have also ruled out:
(iii) By the maximality of πd, there does not exist e ∈ [qg] such that πd < πe < πc.

Figure 7.1. Prohibited regions (i), (ii), and (iii) for π = (4, 8; 9; 2, 3; 1, 5; 6, 7).

Set Y := Yλ(π). Now let χ be the permutation resulting from swapping the entry πb with the entry πd
in π; so χb := πd, χd := πb, and χe := πe when e /∈ {b, d}. (If d = b, then χ = π with χb = πb =
χd = πd.) Let χ̄ be the λ-permutation produced from χ by sorting each cohort into increasing order. Set
X := Yλ(χ̄). Let j denote the column index of the rightmost column with length qh; so the value χb = πd
appears precisely in the 1st through jth columns of X . Let f ≤ h be such that d ∈ (qf−1, qf ], and let
k ≥ j denote the column index of the rightmost column with length qf . The swap producing χ from π
replaces πd = χb in the (j + 1)st through kth columns of Y with χd = πb to produce X . (The values in
these columns may need to be re-sorted to meet the semistandard criteria.) So χd ≤ πd implies X ≤ Y
via a column-wise argument.
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Forming the union of the prohibited rectangles for (i), (ii), and (iii), we see that there does not exist
e ∈ [qh−1] such that πd = χb < πe < πa. Thus we obtain:
(iv) For l > j, the lth column of X does not contain any values from [χb, πa).
Let (j, i) denote the location of the χb in the jth column of X (and hence Y ). So Yj(i) = πd. By (iv)
and the semistandard conditions, we have Xj+1(u) = πa for some u ≤ i. By (i) and (iii) we can see that
Xj(i+ 1) > πc. Let m denote the column index of the rightmost column of λ with length qg . This is the
rightmost column of X that contains πa. Let µ ⊆ λ be the set of locations of the πa’s in the (j + 1)st

through mth columns of X; note that (j + 1, u) ∈ µ. Let ω be the permutation obtained by swapping
χa = πa with χb = πd in χ; so ωa := χb = πd, ωb := χa = πa, ωd := χd = πb, and ωe := πe when
e /∈ {d, a, b}. Let ω̄ be the λ-permutation produced from ω by sorting each cohort into increasing order.
Set W := Yλ(ω̄). By (iv), obtaining ω from χ is equivalent to replacing the πa at each location of µ in X
with χb (and leaving the rest of X unchanged) to obtain W . So χb < πa implies W < X .

Let T be the result of replacing the πa at each location of µ in X with πc (and leaving the rest un-
changed). So T < X ≤ Y . See the conceptual Figure 7.2 for X and T ; the shaded boxes form µ. In
particular Tj+1(u) = πc. This T is not necessarily a key; we need to confirm that it is semistandard. For
every (q, p) /∈ µ we have Wq(p) = Tq(p) = Xq(p). By (iv), there are no values in X in any column to
the right of the jth column from [πc, πa). The region µ is contained in these columns. Hence we only
need to check semistandardness when moving from the jth column to µ in the (j + 1)st column. Here
u ≤ i implies Tj(u) ≤ Tj(i) = πd < πc = Tj+1(u). So T ∈ Tλ.

Figure 7.2. Values of X (respectively T ) are in upper left (lower right) corners.
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Now we consider the scanning tableau S(T ) =: S of T : Since (j, i + 1) /∈ µ, we have Tj(i + 1) =
Xj(i+1). SinceXj(i+1) > πc = Tj+1(u), the location (j+1, u) is not in a scanning path P(T ; j, i′) for
any i′ > i. Since Tj(i) = χb = πd < πc, the location (j+1, v) is in P(T ; j, i) for some v ∈ [u, i]. By the
semistandard column condition one has Tj+1(v) ≥ Tj+1(u) = πc. Thus Sj(i) ≥ πc > χb = πd = Yj(i).
Hence S(T ) � Y , and so T /∈ Dλ(π). Since T ∈ [Y ], we have Dλ(π) 6= [Y ].

In R|λ|, consider the line segment U(t) = W + t(X − W ), where 0 ≤ t ≤ 1. Here U(0) = W
and U(1) = X . The value of t only affects the values at the locations in µ. Let x := πc−χb

πa−χb . Since
χb < πc < πa, we have 0 < x < 1. The values in µ in U(x) are χb + πc−χb

πa−χb (πa − χb) = πc. Hence
U(x) = T . Since X and W are keys, by Fact 6.1(ii) we have S(X) = X and S(W ) = W . Then
W < X ≤ Y implies W ∈ Dλ(π) and X ∈ Dλ(π). Thus U(0), U(1) ∈ Dλ(π) but U(x) /∈ Dλ(π). If a
set E is a convex polytope in ZN and U(t) is a line segment with U(0), U(1) ∈ E, then U(t) ∈ E for any
0 < t < 1 such that U(t) ∈ ZN . Since 0 < x < 1 and U(x) = T ∈ Z|λ| with U(x) /∈ Dλ(π), we see
that Dλ(π) is not a convex polytope in Z|λ|.

When one first encounters the notion of a Demazure polynomial, given Facts 6.1(iii)(iv) it is natural to
ask when Dλ(π;x) is simply all of the ideal [Yλ(π)]. Since principal ideals in Tλ are convex polytopes in
Z|λ|, we can answer this question while combining Theorems 6.3 and 7.1:

Corollary 7.2. Let π ∈ Sλn . The set Dλ(π) of Demazure tableaux of shape λ is a convex polytope in Z|λ|
if and only if π is λ-312-avoiding if and only if Dλ(π) = [Yλ(π)].

When λ is the strict partition (n, n−1, ..., 2, 1), this convexity result appeared as Theorem 3.9.1 in [Wi1].

8 Potential applications of convexity
In addition to providing the core content needed to prove the main results of [PW3], our convexity results
might later be useful in some geometric or representation theory contexts. Our re-indexing of the R-312-
avoiding phenomenon with gapless R-tuples could also be useful. Fix R ⊆ [n− 1]; inside G := GLn(C)
this determines a parabolic subgroup P := PR. If R = [n− 1] then P is the Borel subgroup B of G. Fix
π ∈ SRn ; this specifies a Schubert variety X(π) of the flag manifold G/P .

Pattern avoidance properties for π have been related to geometric properties for X(π): If π ∈ Sn is
3412-avoiding and 4231-avoiding, then the varietyX(π) ⊆ G/B is smooth by Theorem 13.2.2.1 of [LR].
Since a 312-avoiding π satisfies these conditions, its variety X(π) is smooth. Postnikov and Stanley [PS]
noted that Lakshmibai called these the “Kempf” varieties. It could be interesting to extend the direct
definition of the notion of Kempf variety from G/B to all G/P , in contrast to using the indirect definition
for G/P given in [HL].

Berenstein and Zelevinsky [BZ] emphasized the value of using the points in convex integral polytopes
to describe the weights-with-multiplicities of representations. Fix a partition λ of some N ≥ 1 such that
Rλ = R. Rather than using the tableaux in Tλ to describe the irreducible polynomial character of G with
highest weight λ (Schur function of shape λ), the corresponding Gelfand-Zetlin patterns (which have top
row λ) can be used. These form an integral polytope in Z(n2) that is convex. In Corollary 15.2 of [PS],
Postnikov and Stanley formed convex polytopes from certain subsets of the GZ patterns with top row λ;
these had been considered by Kogan. They summed the weights assigned to the points in these polytopes
to obtain the Demazure polynomials dλ(π;x) that are indexed by the 312-avoiding permutations. The
convex integral polytope viewpoint was used there to describe the degree of the associated embedded
Schubert variety X(π) in the full flag manifold G/B.
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Now assume that λ is strict. Here R = [n − 1] and the R-312-avoiding permutations are the 312-
avoiding permutations. The referee of [PW3] informed us that Kiritchenko, Smirnov, and Timorin gener-
alized Corollary 15.2 of [PS] to express [KST] the polynomial dλ(π;x) for any π ∈ Sλn as a sum over the
points in certain faces of the GZ polytope for λ that are determined by π. Only one face is used exactly
when π is 312-avoiding. At a glance it may appear that their Theorem 1.2 implies that the set of points
used from the GZ integral polytope for dλ(π;x) is convex exactly when π is 312-avoiding. So that referee
encouraged us to remark upon the parallel 312-avoiding phenomena of convexity in ZN for the tableau
set Dλ(π) and of convexity in Z(n2) for the set of points in these faces. But we soon saw that when λ is
small it is possible for the union of faces used for dλ(π;x) to be convex even when π is not 312-avoiding.
See Section 12 of [PW3] for a counterexample. To obtain convexity, one must replace λ by mλ for some
m ≥ 2. In contrast, our Corollary 7.2 holds for all λ.

Postnikov and Stanley remarked that the convex polytope of GZ patterns in the 312-avoiding case was
used by Kogan and Miller to study the toric degeneration formed by Gonciulea and Lakshmibai for a
Kempf variety. It would be interesting to see if the convexity characterization of the R-312-avoiding De-
mazure tableau sets Dλ(π) found here is related to some nice geometric properties for the corresponding
Schubert varieties X(π) in G/P . For any R-permutation π the Demazure tableaux are well suited to
studying the associated Schubert variety from the Plücker relations viewpoint, as was illustrated by Lax’s
re-proof [Lax] of the standard monomial basis that used the scanning method of [Wi2].

9 Parabolic Catalan counts
The section (or paper) cited at the beginning of each item in the following statement points to the definition
of the concept:

Theorem 9.1. Let R ⊆ [n − 1]. Write the elements of R as q1 < q2 < ... < qr. Set q0 := 0 and
qr+1 := n. Let λ be a partition λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0 whose shape has the distinct column lengths
qr, qr−1, ..., q1. Set ph := qh − qh−1 for 1 ≤ h ≤ r + 1. The number CRn =: Cλn of R-312-avoiding
permutations is equal to the number of:
(i) [GGHP]: ordered partitions of [n] into blocks of sizes ph for 1 ≤ h ≤ r + 1 that avoid the pattern
312, and R-σ-avoiding permutations for σ ∈ {123, 132, 213, 231, 321}.
(ii) Section 2: multipermutations of the multiset {1p1 , 2p2 , ..., (r + 1)pr+1} that avoid the pattern 231.
(iii) Section 2: gapless R-tuples γ ∈ UGR(n).
(iv) Here only: r-tuples (µ(1), ..., µ(r)) of shapes such that µ(h) is contained in a ph× (n− qh) rectangle
for 1 ≤ h ≤ r and for 1 ≤ h ≤ r − 1 the length of the first row in µ(h) does not exceed the length of the
psth+1 (last) row of µ(h+1) plus the number of times that (possibly zero) last row length occurs in µ(h+1).
(v) Sections 4 and 5: R-rightmost clump deleting chains and gapless λ-keys.
(vi) Section 6: sets of Demazure tableaux of shape λ that are convex in Z|λ|.

Proof: Part (i) first restates our CRn definition with the terminology of [GGHP]; for the second claim see
the discussion below. The equivalence for (ii) was noted in Section 2. Use Proposition 4.6(ii) to confirm
(iii). For (iv), destrictify the gapless R-tuples within each carrel. Use Proposition 4.6(i) and Theorem 5.2
to confirm (v). Part (vi) follows from Corollary 7.2 and Fact 6.1(v).

To use the Online Encyclopedia of Integer Sequences [Slo] to determine if the counts CRn had been
studied, we had to form sequences. One way to form a sequence of such counts is to take n := 2m for
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m ≥ 1 and Rm := {2, 4, 6, ..., 2m− 2}. Then the CR2m sequence starts with 1, 6, 43, 352, 3114, ... ; this
beginning appeared in the OEIS in Pudwell’s A220097. Also for n ≥ 1 define the total parabolic Catalan
number CΣ

n to be
∑
CRn , sum over R ⊆ [n − 1]. This sequence starts with 1, 3, 12, 56, 284, ... ; with a

‘1’ prepended, this beginning appeared in Sloane’s A226316. These “hits” led us to the papers [GGHP]
and [CDZ].

Let R be as in the theorem. Let 2 ≤ t ≤ r + 1. Fix a permutation σ ∈ St. Apparently for the
sake of generalization in and of itself with new enumeration results as a goal, Godbole, Goyt, Herdan
and Pudwell defined [GGHP] the notion of an ordered partition of [n] with block sizes b1, b2, ..., br+1

that avoids the pattern σ. It appears that that paper was the first paper to consider a notion of pattern
avoidance for ordered partitions that can be used to produce our R-312-avoiding permutations: Take
b1 := q1, b2 := q2 − q1, ... , br+1 := n − qr, t := 3, and σ := (3; 1; 2). Their Theorem 4.1 implies that
the number of such ordered partitions that avoid σ is equal to the number of such ordered partitions that
avoid each of the other five permutations for t = 3. This can be used to confirm that the CR2m sequence
defined above is indeed Sequence A220097 of the OEIS (which is described as avoiding the pattern 123).
Chen, Dai, and Zhou gave generating functions [CDZ] in Theorem 3.1 and Corollary 2.3 for the CR2m for
R = {2, 4, 6, ..., 2m− 2} for m ≥ 0 and for the CΣ

n for n ≥ 0. The latter result implies that the sequence
A226316 indeed describes the sequence CΣ

n for n ≥ 0. Karen Collins and the second author of this paper
have recently deduced that CΣ

n =
∑

0≤k≤[n/2](−1)k
(
n−k
k

)
2n−k−1Cn−k.

How can the CΣ
n total counts be modeled? Gathering the R-312-avoiding permutations or the gapless

R-tuples from Theorem 9.1(ii) for this purpose would require retaining their “semicolon dividers”. Some
other objects modelCΣ

n more elegantly. We omit definitions for some of the concepts in the next statement.
We also suspend our convention concerning the omission of the prefix ‘[n − 1]-’: Before, a ‘rightmost
clump deleting’ chain deleted one element at each stage. Now this unadorned term describes a chain that
deletes any number of elements in any number of stages, provided that they constitute entire clumps of the
largest elements still present plus possibly a subset from the rightmost of the other clumps. When n = 3
one has CΣ

n = 12. Five of these chains were displayed in Section 6. A sixth is �1 �2 �3. Here are the other
six, plus one such chain for n = 17:

1 2 �3
�1 �2

1 �2 3
�1 �3

�1 2 3
�2 �3

1 �2 �3
�1

�1 2 �3
�2

�1 �2 3
�3

1 2 �3 4 5 �6 7 8 9 10 11 ��12 13 14 ��15 16 17
1 2 4 5 7 �8 9 ��10 11 ��13 ��14 ��16 ��17

1 2 �4 5 �7 �9 ��11
�1 �2 �5

Corollary 9.2. The total parabolic Catalan number CΣ
n is the number of:

(i) ordered partitions of {1, 2, ..., n} that avoid the pattern 312.
(ii) rightmost clump deleting chains for [n], and gapless keys whose columns have distinct lengths less
than n.
(iii) Schubert varieties in all of the flag manifolds SL(n)/PJ for J ⊆ [n−1] such that their “associated”
Demazure tableaux form convex sets as in Section 7.
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Part (iii) highlights the fact that the convexity result of Corollary 7.2 depends only upon the information
from the indexing R-permutation for the Schubert variety, and not upon any further information from
the partition λ. In addition to their count opn[(3; 1; 2)] = CΣ

n , the authors of [GGHP] and [CDZ] also
considered the number opn,k(σ) of such σ-avoiding ordered partitions with k blocks. The models above
can be adapted to require the presence of exactly k blocks, albeit of unspecified sizes.

Added Note. We learned of the paper [MW] after posting [PW2] on the arXiv. As at the end of Section
3, let R and J be such that R ∪ J = [n − 1] and R ∩ J = ∅. It could be interesting to compare the
definition for what we would call an ‘R-231-avoiding’ R-permutation (as in [GGHP]) to Mühle’s and
Williams’ definition of a ‘J-231-avoiding’ R-permutation in Definition 5 of [MW]. There they impose
an additional condition wi = wk + 1 upon the pattern to be avoided. For their Theorems 21 and 24, this
condition enables them to extend the notions of “non-crossing partition” and of “non-nesting partition” to
the parabolic quotient Sn/WJ context ofR-permutations to produce sets of objects that are equinumerous
with their J-231-avoiding R-permutations. Their Theorem 7 states that this extra condition is superfluous
when J = ∅. In this case their notions of J-non-crossing partition and of J-non-nesting partition spe-
cialize to the set partition Catalan number models that appeared as Exercises 159 and 164 of [Sta]. So
if it is agreed that their reasonably stated generalizations of the notions of non-crossing and non-nesting
partitions are the most appropriate generalizations that can be formulated for the Sn/WJ context, then
the mutual cardinality of their three sets of objects indexed by J and n becomes a competitor to our CRn
count for the name “R-parabolic Catalan number”. This development has made the obvious metaproblem
more interesting: Now not only must one determine whether each of the 214 Catalan models compiled in
[Sta] is “close enough” to a pattern avoiding permutation interpretation to lead to a successfulR-parabolic
generalization, one must also determine which parabolic generalization applies.
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