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Given a permutation ¢ = o1 . ..o, in the symmetric group S,,, we say that o; matches the quadrant marked mesh
pattern MMP(a, b, ¢, d) in o if there are at least a points to the right of o; in o which are greater than o5, at least b
points to the left of o; in o which are greater than o;, at least ¢ points to the left of o; in ¢ which are smaller than o,
and at least d points to the right of o; in o which are smaller than ;. Kitaev, Remmel, and Tiefenbruck systematically
studied the distribution of the number of matches of MMP(a, b, ¢, d) in 132-avoiding permutations. The operation
of reverse and complement on permutations allow one to translate their results to find the distribution of the number
of MMP(a, b, ¢, d) matches in 231-avoiding, 213-avoiding, and 312-avoiding permutations. In this paper, we study
the distribution of the number of matches of MMP(a, b, ¢, d) in 123-avoiding permutations. We provide explicit
recurrence relations to enumerate our objects which can be used to give closed forms for the generating functions
associated with such distributions. In many cases, we provide combinatorial explanations of the coefficients that
appear in our generating functions.
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1 Introduction

Given a sequence w = wy . .. w, of distinct integers, let red|[w] be the permutation founded by replacing
the ¢-th smallest integer that appears in o by i. For example, if o = 2754, then red[o] = 1432. Given a
permutation 7 = 7y ... 7; in the symmetric group .S;, we say that the pattern 7 occursino = o0y ...y, €
Sy, provided there exist 1 < 4; < --- < 7; < n such that red[o;, ... UZ-].] = 7. We say that a permutation
o avoids the pattern 7 if 7 does not occur in 0. Let S,,(7) denote the set of permutations in S,, which
avoid 7. In the theory of permutation patterns, 7 is called a classical pattern. See Kitaev| (2011) for a
comprehensive introduction to patterns in permutations.

The main goal of this paper is to study the distribution of quadrant marked mesh patterns in 123-
avoiding permutations. The notion of mesh patterns was introduced by Brandén and Claesson| (2011) to
provide explicit expansions for certain permutation statistics as, possibly infinite, linear combinations of
(classical) permutation patterns. This notion was further studied in |Avgustinovich et al.| (2013)); [Hilmars-
son et al|(2015); Kitaev and Liese (2013); [Kitaev and Remmel (2012a); [Ulfarsson (2015). Kitaev and
Remmel| (2012a) initiated the systematic study of distribution of quadrant marked mesh patterns on per-
mutations. The study was extended to 132-avoiding permutations by Kitaev et al.| (2012} [2015alb). Kitaev
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and Remmel| (2012b} [2013) also studied the distribution of quadrant marked mesh patterns in up-down
and down-up permutations.

Leto = o7 ... 0, be a permutation written in one-line notation. We will consider the graph of o, G(0),
to be the set of points (i, 0;) fori = 1, ..., n. For example, the graph of the permutation o = 471569283
is pictured in Figure Then if we draw a coordinate system centered at a point (i,0;), we will be
interested in the points that lie in the four quadrants I, II, III, and IV of that coordinate system as pictured
in Figure For any a,b,c,d € N, where N = {0,1,2,...} is the set of natural numbers, and any
o =01...0, € Sy, we say that o; matches the quadrant marked mesh pattern MMP(a, b, ¢, d) in o
if in G(o), there are at least a points in quadrant I, at least b points in quadrant II, at least ¢ points in
quadrant III, and at least d points in quadrant IV relative to the coordinate system which has the point
(i,0;) as its origin. For example, if ¢ = 471569283, the point 04 = 5 matches the marked mesh
pattern MMP(2, 1,2, 1) since, in G(o) relative to the coordinate system with the origin at (4,5), there
are 3 points in quadrant I, 1 point in quadrant II, 2 points in quadrant III, and 2 points in quadrant I'V.
Note that if a coordinate in MMP(a, b, ¢, d) is O, then there is no condition imposed on the points in the
corresponding quadrant. Another way to state this definition is to say that o; matches the marked mesh
pattern MMP (a, b, ¢, d) in o if there are at least a points to the right of ¢; in o which are greater than o,
at least b points to the left of o; in o which are greater than o, at least ¢ points to the left of ; in ¢ which
are smaller than o;, and at least d points to the right of o, in o which are smaller than o;.

In addition, we shall consider the patterns MMP(a, b, ¢, d) where a,b,c,d € N U {(}. Here when a
coordinate of MMP (a, b, ¢, d) is the empty set, then for o; to match MMP(a,b,¢,d)inoc =01...0, €
S, it must be the case that there are no points in G(o) relative to the coordinate system with the origin
at (i,0;) in the corresponding quadrant. For example, if o = 471569283, the point o3 = 1 matches the
marked mesh pattern MMP (4,2, (, @) since, in G(o) relative to the coordinate system with the origin
at (3,1), there are 6 points in quadrant I, 2 points in quadrant II, no points in quadrants III and IV. We
let mmp(®**9(g) denote the number of i such that o; matches MMP(a, b, ¢, d) in o. For example,
mmp(>2:09 (g) = 2 for o = 471569283, since o3 = 1 and o7 = 2 match MMP(2,2,0,0) in 0.

Fig. 1: The graph of 0 = 471569283
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Next we give some examples of how the (two-dimensional) notation of Ulfarsson (2015)) for marked
mesh patterns corresponds to our (one-line) notation for quadrant marked mesh patterns. For example,

*
MMP(0,0, k, 0) = , MMP(k,0,0,0) = ,

MMP(0,a,b,c) =

Given a permutation 7 = 71 ...7; € .S;, it is a natural question to study the distribution of quadrant
marked mesh patterns in S,, (7). That is, one wants to study generating function of the form

Qb et z) =14 31"t () @

n>1

where for any a, b, c,d € {0} UN,

QSLaTb ,Cy d Z ™ P(a"b‘c‘d)(o')' (2)
c€S,(T)
For any a, b, ¢, d we let Q' (z)| .+ denote the coefficient of z* in Q{">*“” (x). Given a permutation

0 =010%...0, €Sy, we let the reverse of o, ¢, be defined by ¢” = 0, ... 02071, and the complement
of o, 0¢ bedefinedby 0¢ = (n+1—01)(n+1—02)...(n+1—0,). Itis easy to see that the family of

generating functions Q(a b’p’d)( x), Q(T(i’b’c’d)( x), and Q(;I})f ) (t,x) can be obtained from the family
(a b,c,d) (t QIJ)
Kitaev et al.| (2012} [2015alb) systematically studied the generating functions Ql‘;j ) (t,z). Since

S,,(132) is closed under inverses, there is a natural symmetry on these generating functions. That is, we
have the following lemma.

Lemma 1. (Kitaev et al.|(2012)) For any a,b,c,d € {0} UN,

,b,e,d d,c,b
QU (@) = QU (). 3)

In Kitaev et al.|(2012), Kitaev, Remmel and Tiefenbrick proved the following.
Theorem 1. ((Kitaev et al.| 2012, Theorem 4))

of generating functions

Q%50 (t,2) = C(at) = Tﬂi "’

and, fork > 1,
1
Qs " (t,2) = . : 5)
132 1— tQ%;l’O’O’O)(t,x)
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Theorem 2. ((Kitaev et al.l 2012, Theorem 15))

(0.00.0)(; 4y (1+t—tx) — /(1 +t—tx)? —4t.

132 2% (6)
Fork > 1, .
(k,0,0,0) (t,2) = . 7
132 1= Q=TT
Theorem 3. ((Kitaev et al.l 2012, Theorem 8)) For k > 1,
00k0) L (to = (5520 Cit?) = /(1 + (te — )52 Cyt))? — dte
Q13 (t,z) = or
2
= : (8)

L (t = 1)(S320 Cit?) + 4/ (1 + (ta — £)(S4Z) Cjt9))2 — dta

By Lemma OR00 (¢, 2) = Q%M (¢, 2) so the remaining two cases of Q'%*"

a, b, c,d € N and exactly one of a, b, ¢, d is not zero is covered by the following theorem.
Theorem 4. ((Kitaev et al.|l 2012, Theorem 12))

)(t, x) where

(0,1,0,0) 1
t,r) = ————. 9
132 (t,z) 1—tC(tz) ©))
Fork > 1,
k—2 i ~(0,k—1—3,0,0
0500, o _ LHIE0 Ot Qi O ta) - Ct) 0
192 ’ 1—tC(tx)
and k—2 (0,k—1—4,0,0)
1+t o Gt RPN, 0) -1
g%,zk,0,0) (t, 0) Z ( 132 ( ) ) (11)

1—t

In Kitaev et al.| (2015a), Kitaev, Remmel, and Tiefenbruck used the results above to cover the cases
Qg‘;’;’c’d) (t,z) where a,b,c,d € N and exactly two of a, b, ¢, d are not zero. For example, they proved
the following.

Theorem 5. Forall k,{ > 1,

(,0,£,0) 1
132 (t,r) = 5—1.0.0.0 . (12)
1- tQ§32 )( t,x)

Theorem 6. Forallk,l > 1,
(k,0,0,0) (t,2) =

132
/—1 ; k—1,0,0,0 k—1,0,0,6—75 l—5—1 s
Cot’ + 3070 Cit7 (1 — QU5 000 (2, 2) + t(Ql, Mt,a) = S Cur))

13
- @, " (t,2) "
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Finally, in Kitaev et al.| (2015b), Kitaev, Remmel, and Tiefenbruck used these results to find generating

functions to obtain similar recursions for Qfg; o) (t, z) for arbitrary a, b, ¢, d € N.
The situation for the generating functions Qg(;gb’c’d) (t,x) is different. First of all it is easy to see that

S5,(123) is closed under the operation reverse-complement. Thus we have the following lemma.
Lemma 2. Forany a,b,c,d € {0} UN,

Qe (x) = QLbe ) (). (14)

Next it is obvious that if there is a 0; in ¢ = 01 ...0, € S, such that o; matches MMP(a, b, ¢, d)
where a,c¢ > 1, then o contains an occurrence of 123. Thus there are no permutations o € S,,(123)
that can match a quadrant marked mesh pattern MMP(a, b, ¢, d) where a,¢ > 1. Thus if a > 1, then

gggb’o’d) (t,x) = Q(l';’gb’@’d) (t,x). Our first major result is that for all a, b,d € N such that a > 0,
a,b,0,d a,b,0,d
i35 " () = Qi " (1), (15)

We will prove this result by using a bijection of [Krattenthaler| (2001) between S,,(132) and D, the

set of Dyck paths of length 2n, and a bijection of |[Elizalde and Deutsch (2003) between S,,(123) and

D,,. It is easier to compute the generating functions of the form Q a.b.0.d) (t, ), so we will use them to

compute Qg%; 0.) (t,x). The only generating functions of the form Q%’Qb’m’d) (t,z) where a > 0 that
(a,0,0,0) (t l’)

were computed by [Kitaev et al.[(2012}[2015alb) were the generating functions of the form Q1)

given in Theoremabove However their techniques can be used to compute Qgg’é)’o’d) (t,z) whena > 0

for arbitrary b and d. By Lemma |2 l Qla 0.0.d) (t, x) = gf’“*b) (t,x) so that such computations will

cover all the cases of Q(a obie,d) (t, ) where exactly one of a and ¢ equals zero. Thus to complete our

abcd)(

analysis of () t,x) when a,b,c,d € N, we need only compute generating functions of the form

ng’;’o ) (t, ) which we will compute by other methods.

As it was pointed out in |Kitaev et al.| (2012)), avoidance of a marked mesh pattern without quadrants
containing the empty set can always be expressed in terms of multi-avoidance of (possibly many) classical
patterns. Thus, among our results we will re-derive several known facts in permutation patterns theory as
well as several new results. However, our main goals are more ambitious aimed at finding distributions in
question.

The outline of this paper is as follows. In Section 2, we shall review the bijections of Krattenthaler
(2001) and [Elizalde and Deutsch| (2003). In Section 3, we shall prove . In Section 4, we shall prove
that

k,£,0,m k,£,0,m
Quizs™ (@)],0 = Q0™ @), (16)
and
k,£,0,m) k,£,0,m
Qs ™ @), = Q5™ @) (17
so that as far as constant terms and the degree 1 terms that occur in the polynomials of the form QELk ’é’g’m),

they reduce to constant terms and the degree 1 terms that appear in polynomials of the form Q(’“ég ™)
which were analyzed in [Kitaev et al.| (2012, 2015alb). we shall also prove some general results about the

coefficients of the highest power of = that occur in the polynomials Qfﬁ’lbég’d) (z). In Section 5, we shall
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show how to compute generating functions of the form Qggf’o’m)( 1) = §’§§*@’m) (x,t). In Section 6,
we will show how to compute generating functions of the form Q(lg’gk’@’e) (z,t). Finally, in Section 7, we

will show how to compute generating functions of the form Qgg’;’o’o) (z,t) and Qggf’o’z) (z,1t).

2 Bijections from §,,(132) and S,,(123) to Dyck paths on ann x n
Lattice

Given an n X n square, we will label the coordinates of the columns from left to right with 0, 1, ..., n and
the coordinates of the rows from top to bottom with 0,1,...,n. A Dyck path is a path made up of unit
down-steps D and unit right-steps R which starts at (0, 0) and ends at (n,n) and stays on or below the
diagonal x = y. The set of Dyck paths on an n x n lattice is denoted by D,,. Given a Dyck path P, we let

Ret(P) = {i > 1 : P goes through the point (%,7)}

be the return positions of P, and we let ret(P) = |Ret(P)| be the number of return positions of P. For
example, for the Dyck path

P=DDRDDRRRDDRDRDRRDR

shown on the right in Figure[2] Ret(P) = {4, 8,9} and ret(P) = 3.

It is well known that for all n > 1, |5, (132)| = [S,(123)| = [Dy,| = C, where C,, = A= (%) is
the n*® Catalan number. Krattenthaler| (2001) gave a bijection between S,,(132) and D,,. Later, Elizalde
and Deutsch| (2003) gave a bijection between S,,(123) and D,,. The main goal of this section is to review
these two bijections because the recursions that we can derive from these bijections will help us develop

recursions that allow us to compute generating functions of the form Qggb’c"d) (z,1).

2.1 The bijection @ : S,,(132) — D,

In this subsection, we describe the bijection of Krattenthaler(2001) between S,,(132) and D,,. Given any
permutation ¢ = 0 ... 0, € S,(132), we write it on an n x n table by placing ¢; in the i** column and
ozt»h row, reading from bottom to top. Then, we shade the cells to the north-east of the cell that contains
0;. Then the path ®(o) is the path that goes along the south-west boundary of the shaded cells. For
example, this process is pictured in Figure [2|in the case where o = 867943251 € Sg(132). In this case,
®(0c) = DDRDDRRRDDRDRDRRDR.

Given o = 0y ...0,, We say that o is a left-to-right mininum of o if o; > o forall i < j. It is easy
to see that the left-to-right minima of o correspond to peaks of the path ®(o), i.e. they occupy cells along
the inside boundary of the ®(o) that correspond to a down-step D immediately followed by a right-step
R. We call such cells, the outer corners of the path. Thus we shall often refer to the left-to-right minima
of the o as the set of peaks of o, and o;’s which are not left-to-right minima as the non-peaks of o. For
example, for the permutation o pictured in Figure there are 6 peaks, {8, 6,4, 3,2, 1}, and 3 non-peaks,
{7,9,5}. The horizontal segments of the path ®(o) are the maximal consecutive sequences of R’s in
(o). For example, in Figure the lengths of the horizontal segments, reading from top to bottom, are
1,3,1,1,2,1. We will be interested in the set of numbers that lie to the north of each horizontal segments
in ® (o). For instance, in our example, {8} is the set associated with the first horizontal segment of ®(¢),
{6,7,9} is the set of numbers associated with the second horizontal segment of ®(c), etc.. Because o
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0 diagonal

9 1% diagonal
8 2" diagonal
7
6 eturn |1
5 —
4
3
2 return 2
1 return 3

Fig. 2: S,(132) to D,

is a 132-avoiding permutation, it follows that set of numbers above a horizontal segment must occur in
increasing order. That is, since the cell immediately above the first right-step of the horizontal segment
must be occupied with the least element in the set associated to the horizontal segment, then the remaining
numbers must appear in increasing order if we are to avoid 132.

We shall also label the diagonals that go through corners of squares that are parallel to and below the
main diagonal with 0,1, 2, ... starting at the main diagonal. In this way, each peak of the permutation
corresponds to a diagonal. In the example in Figure we have 1 peak on the 0" diagonal, 4 peaks on the
1% diagonal and 1 peak on the 2™ diagonal.

The map ® ! is easy to describe. That is, given a Dyck path P, we first mark every cell corresponding
to a peak of the path with a “x”. Then we look at the rows and columns which do not have a cross.
Starting from the left-most column, that does not contain a cross, we put a cross in the lowest possible
row without a cross that lies above the path. In this ways we will construct a permutation o = ®~1(P).
This process is pictured in Figure[3]

Fig. 3: D, to S,(132)

Details that ® : S,,(132) — D, is a bijection can be found in Krattenthaler, (2001). However, given
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that @ is a bijection, the following properties are easy to prove.

Lemma 3. Given any Dyck path P, let 0 = 0132(P) = ®~1(P). Then the following hold.

(1) Foreach horizontal segment H of P, the set of numbers associated to H form a consecutive increasing
sequence in o and the least number of the sequence sits immediately above the first right-step of H.
Hence the only decreases in o occur between two different horizontal segments of P.

(2) The number n is in the column of last right-step before the first return.

(3) Suppose that o; is a peak of o and the cell containing o; is on the k*"-diagonal. Then there are k
elements in the graph G(o) in the first quadrant relative to coordinate system centered at (i, 0;).

Proof:

(1) easily follows from our description of the bijections ® and ®~*.

For (2), we consider two cases. Firstif 1 € Return(P), then P must start out DR . .. so that the first
outer corner of P is in row n reading from bottom to top, which must be occupied by n so that n is in the
column of the last right-step before the first return. If ¢ > 1 is the least element of Return(P), then there
are ¢ right-steps in the first 2¢ steps of P. The outer corners in the first 2¢ steps of P must all be occupied
by numbers greater than n — . Thus we can only place the numbers n,...,n — ¢ + 1 in the columns
above the horizontal segments that occur in the first 2; steps of P. After we place numbers in the outer
corners of the first 2¢ steps, we always place x’s in the lowest row that is above the path starting from the
left-most column. This means that we will place x’s in the rowsn — 1,...,n — ¢ + 1, before we place a
X in row n, reading from bottom to top. It follows that the position of the x in row n is in column i.

For (3), suppose that ¢; is a peak of o and o; is in the k*"-diagonal. This means that the right-step that
sits directly below o; in P is the i*? right-step in P and is preceded by i + k down-steps. Hence there are
i+ k — 1 rows above o; in the graphs of 0. There are < — 1 elements that are associated with the horizontal
segments to the left of o; which means by the time that we get to o, in the construction of o132 (P) from
P, there are ¢ — 1 elements to the left of o; in ¢ which are larger than ;. Hence there must be exactly k
elements to the right of o; in o which are larger than o;. O

2.2 The bijection ¥ : S,,(123) — D,

In this section, we will describe the bijection ¥ : S,,(123) — D,, given by [Elizalde and Deutsch| (2003).
Given any permutation o € S,,(123), ¥(0) is constructed exactly as in the previous section. Figure E]
shows an example of this map, from o = 869743251 € Sy(123) to the Dyck path DDRDDRRRDDRDR-
DRRDR.

Given any Dyck path P, we construct ¥~ (P) = o123(P) as follows. First we place an “x” in every
outer corner of P. Then we consider the rows and columns which do not have a x. Processing the rows
from top to bottom and the columns from left to right, we place an x in the i*" empty row and i*" empty
column. This process is pictured in Figure [5| The details that ¥ is a bijection between S,,(123) and D,,
can be found in [Elizalde and Deutsch/|(2003)).

We then have the following lemma about the properties of this map.

Lemmad. Let P € D,, and o = 0123(P) = V~1(P). Then the following hold.
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9

Fig. 4: S,,(123) to Dy,

Fig. 5: D, to S (123)

(1) For each horizontal segment H of P, the least element of the set of numbers associated to H sits
directly above the first right-step of H and the remaining numbers of the set form a consecutive
decreasing sequence in o.

(2) o can be decomposed into two decreasing subsequences, the first decreasing subsequence corre-
sponds to the peaks of o and the second decreasing subsequence corresponds to the non-peaks of
o.

(3) Suppose that o; is a peak of o and the cell containing o; is on the k*"-diagonal. Then there are k
elements in the graph G(o) in the first quadrant relative to coordinate system centered at (i, 0;).

Proof: It is easy to see that parts (1) and (2) follow from the construction of W1, The proof of part (3) is
the same as the proof of part (3) of Lemma 3] O

3 General results about Q{47 (¢, z) and Q\%> " (¢, x)

In this section, we shall prove several general results about the generating functions Qgg’;’c’d) (t,z) and
(a,b,c,d)
132 (t, ).
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First suppose that £ > 0. Then since in a 123-avoiding permutation ¢ = o1 ...0, € S,(123), no o;
can have elements in the first and third quadrants in G(o) relative to the coordinate system centered at
(1,0;), it follows that o; matches MMP(k, £,0,m) in o if and only if it matches MMP(k, £,(,m) in o.
Thus

(BL0m) (4 2) = Q0™ (¢, ) for all k > 0 and £,m > 0. (18)

Similarly, one can prove that
Oatm)(t,2) = Q™™ (¢, ) for all k > 0 and £,m > 0. (19)

Next suppose that P is a Dyck path in D,, and consider the differences between ¢ = ®~!(P) and
7 = W~Y(P). Clearly, the elements corresponding to the outer corners of P are the same in both o
and 7, thus ¢ and 7 have the same peaks. The only difference is how to order the non-peaks. Note
that, by construction, the non-peaks in ¢ and 7 cannot match a quadrant marked mesh pattern of the
form MMP(k, £, (), m). That is, a non-peak o; of o must have at least one element occurring in the third
quadrant of G(o) relative to the coordinate system centered at (4, o; ), namely, the least element of the set
associated with the horizontal segment H whose associated set contains o;. A similar statement holds for
7. Now suppose that the number o; is a peak of o. Thus o; sits directly above the first right-step of some
horizontal segment H of P in the graph of 0. By Lemma if the cell containing o; is in the r*"-diagonal,
then in G(0), there are exactly r-elements in the first quadrant relative to the coordinate system centered at
(4,0;). It is easy to see that the number of elements in the second quadrant in G(o) relative to coordinate
system centered (j, ;) is s = j — 1 where s is the sum of lengths of the horizontal segments to the left
of H and, hence, the number of elements in the fourth quadrant in G(o) relative to coordinate system
centered (j, o) is equal ton — k — s — 1 = n — k — j. However, by Lemma the exact same statement
holds for o; in the graph G(7) relative to the coordinate system center at (j,0;). It follows that for any
k,,m > 0, o; matches MMP(k,¢,(), m) in o if and only if o; matches MMP(k, ¢,(,m) in 7. For
example, Figure |§|illustrates this correspondence. It follows that the map W o @1 : S,,(132) — S,,(123)
shows that for all £ > 0 and ¢, m > 0,

QU™ (x) = QY50 ™ (). (20)
9 9
8 8
7 7
6 6
5 - 5
4 4
3 3
2 2
1

Fig. 6: S,,(132) to S,,(123) preserves MMP (k, £, (0, m)

Combining the remarks above with Lemma[2] we have the following theorem.
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Theorem 7. Forany k > 0 and £, m > 0,

k,£,0,m k,£,0,m k,£,0,m
523 m)(tax) = (123 L)( ):Q(132 L)(t»x) 2D
0,m,k,£ 0,m,k,0
= QUM () = QM @),

It follows that the only generating functions of the form Qg‘;f’c’d) (t, z) that cannot be reduced to gen-

erating functions of the form Q%’Qb’c’d) (t,x) are generating functions of the form Q(O -b:0.d) (t,x). In the
series of papers of [Kitaev et al.[(2012,/2015alb)), the only generating functions of the form le;,;,(o,m) (t,x)
(k,0.0, 0)(15, x) given in Theorem [2| Our

main interest in this paper is to compute generating functions of the form Q(l';?f” ) (t,z) fora,b,c,d € N.

that were computed were the generating functions of the form Q1

Thus we will show how to compute generating functions of the form Qlk fo0.m) (t,z) for k,¢,m € N and
of the form Qlo k.0, z)(t, x) for k, £ € N.

4 The coefficients of 2, 2! and the highest power of x in polyno-
mials Qi35 (x)

Before we compute the generating functions, we shall prove some general results about the constant terms

and the coefficients of the highest power of x in the polynomials Qn“ll;g d)( ) in this section.

4.1 The coefficients of z° and x' in polynomials anég ™ ()

Since the coefficients of z* in polynomials of the form ng’é’g’m) (x) and ng ’f;lék’e) (x) can be found from
the coefficients of z* in polynomials of the form Qﬁb’“ﬁ;g ’m)( ), we start out with an observation about the
coefficients of z° and x! in polynomials of the form anég m)( ).
Theorem 8. (k0 (0

Quiz  (x )’ =Qn15 (2 )’$0 (22)
and

Qs @), = Q™ @), 23)

Proof: For (22), note that any permutation in S, (132) avoiding the pattern MMP (k, £, 0, ) must also
avoid the pattern MMP (k, ¢, ), m). Thus to prove (22), we need to show that any permutation in S,, (132)
avoiding the pattern MMP (k, £, 9, m) must also avoid the pattern MMP (k, £,0,m). We know that only
the peaks of o can match patterns of the from MMP (k, £, 9, m). Thus we must show that if the peaks of
o do not match MMP (%, ¢, 0, m), then the non-peaks of o do not match MMP (k, ¢, 0, m) either.

To show this, we appeal to part (a) of Lemma [3] That is, we know that on each horizontal segment
H of ®(0), the elements in the columns above H form a consecutively increasing sequence in o. But
it is easy to see that if 0; < 0,1, then in the graph of G(c), the number of elements in quadrant A
relative to the coordinate system centered at (4, ;) is greater than or equal to the number of elements in
quadrant A relative to the coordinate system centered at (¢ + 1,0;41) for A € {I,II,IV}. Thus if the
peak corresponding to the horizontal segment H does not match MMP (k, £, 0, m), then no other element
associated with H can match MMP (k, ¢, 0, m). For example, Figureillustrates this observation for the
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horizontal segment corresponding to the set {6, 7,9}. Thus we have proved that if the peaks of o do not
match MMP(k, ¢, 0, m), then the non-peaks of o do not match MMP(k, ¢, 0, m) either.

9 9 9

Fig. 7: MMP(k, ¢, 0, m)-mch for the peak and non-peaks on a horizontal segment

To prove (23), suppose that 0 = o1 ...0, € S,(132) is such that there is exactly one o; that match
MMP (k, £,0,m). We claim that o; must be a peak. That is, by our argument above, if o; sits above a
horizontal segment H of ® (o), then the peak corresponding to H must match MMP(k, £, 0, m) as long as
o; matches MMP(k, ¢,0,m). Thus if o, is the only element of o that matches MMP(k, ¢,0,m), then it
must be a peak and hence it also matches MMP (k, £, (), m). Clearly, there cannot be two elements of o that
match MMP (k, £, (), m) as this would imply that these two elements of o would match MMP(k, ¢,0,m).
Thus 23) follows. 0O

Thus we have the following corollary.

Corollary 1.
k,2,0,m k,0,0,m k.£,0,m
523 )(t, 0) = 532 )(t, 0) = 532 )(t,O) (24)

and
k0,0, k0,0, k,£,0,
gzs m)(tvx)|11 = 532 m)(tvi)}wl = 532 " (t,2)] .- (25)

We note that Kitaev et al.| (2012} [2015alb) have many results on special cases of the coefficients of z0

and z' in polynomials of the form ngfg’g ™ ().

4.2 The coefficients of the highest power of = that occurs in the polynomials
Qris” (x)

By our results in the Section 3, to analyze the coefficients of the highest power of = that occurs in the
polynomials Qfla ’f;’;’d) (x), we need only consider two cases. Namely, we need to analyze the coefficients

of the highest power of x that occurs in polynomials of the form leo,ig’g 4 () and we need to analyze the

coefficients of the highest power of  that occurs in polynomials of the form ng’lgg’m) (x).

We shall start with analyzing the coefficients of the highest power of z in polynomials of the form
le”lg’g’e)(m). Clearly, in any permutation o € S,,(123), none of the numbers 1,...,forn,n—1,... ,n—

k + 1 can match MMP(0, k,0, ¢). It follows that the highest possible power of x that can occur in
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Q(O,k,o,f) n—k—¢

niz3  (z)isw and its coefficient can be non-zero only if n > k4 ¢+ 1. Moreover, if o; matches
MMP(0, k,0,¢) in o, then i € {k 4+ 1,...,n — £}. It follows that if mmp(®*:9-9) (5) = n — k — ¢, then
(@ n—k+1,n—k+2,...nmustbe in positions 1, ..., k,
(b) +1,...,n — kmust be in positions k + 1,...,n — £, and

(c) 1,...,¢ mustbein positionsn — £+ 1,...,n.

These observations lead to the following theorem.
Theorem 9. Ifn > k+ ¢+ 1, then

Qslolkzg Z)( )}xn—k—l = ngo,i%g’[) (’I)|wn—k—£ = Ckcn—k—ecz- (26)

Proof: Suppose n >k + ¢ + 1.
To have a o0 € S,,(123) where mmp(®*:99(5) = n — k — ¢, we need only have o; . ..o} be any

rearrangement of n — k + 1,...,n, which reduces to an element of Sj;(123) which we can choose in
Cy ways, Opy1...0,_¢ be any rearrangement of ¢ + 1,...,n — k, which reduces to an element of
Spn—k—¢(123) which we can choose in C,,_j,_¢ ways, and 0,,_¢41 . . . 0, be any rearrangement of 1, . . ., £,
which is in S;(123) which we can choose in C; ways.
O
In the special case where ¢ = 0, we have the following corollary.
Corollary 2. Ifn > k + 1, then
0,£,0,0 0,k,0,0)
Q;,IQS )( ) zn—k Qg 132 ( ) gk = CrCrk. 27

If we are considering the pattern MMP(0, k, 0, £), we can do a similar analysis. The only difference is
that for the numbers £ + 1,...,n — k to match MMP(0, k, }, £) in a 123-avoiding permutation o, they
must all be peaks of ¢ so that these numbers must occur in decreasing order. Thus we have the following
theorem.

Theorem 10. Foranyn > k+ ¢+ 1,

k,0,0 k,0,0
Qg)us )( )’_Ln—k ¢ leouz )( )|£n_k_g = C,Cy. (28)

In the special case where ¢ = 0, we have the following corollary.
Corollary 3.
Q58" (@) puor = Q5 (@) 0o = Ci (29)
Notice that the numbers that match the pattern MMP(0, k, (), £) are on the diagonal under the maps

® and ¥ which means that they also have nothing in their first quadrant. Thus we have the following
corollary.

Corollary 4.

0,k,0,0 0.k,0.¢
le 123 )(33) gn—k—t le,wz )(x)|xn—k—é = CyCy, (30)

0,k,0, 0,k,0,
Quizs @)oo = Qise” @)y s = Ch. 31
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Next we continue our analysis of the coefficients of the highest power of x that can occur in polynomials

of the form stf’é’g ™) (z). We start by considering the special case where m = 0. Again, the highest

power of x that can occur in fo’é’g’o) (z) = ng’lgg’o)(q:) isa" R tifn > k+ 0+ 1.

Theorem 11. Foralln > k+ 041,

k+1 [(k+2¢
=@ = o (M), >

Quizs"” () oo =TT g
Proof: Given 0 = 01 ...0, € S8,(132), if o; matches MMP(k, £, 0, 0), it must be the case that o; is a
peak and there are k + ¢ numbers larger than o; in o. Thus if we want mmp*:¢%:9(g) = n — k — 1,
then the numbers {1,2,...,n — k — £} must be peaks and appear between the £ + 1 position and n — k™"
position. Moreover, there should be k& + ¢ numbers in the first £ 4+ ¢ rows, of which ¢ numbers appear
before the numbers {1,2,...,n — k — £} and k numbers appear after the numbers {1,2,...,n—k — (}.
In Figure [8] the position of the numbers {1,2,...,n — k — ¢} are marked red while the position of the
k + ¢ numbers are marked blue. The numbers {1,2,...,n — k — £} must appear in decreasing order since
they are all peaks. The numbers in the blue region must reduce to a 132-avoiding permutation 7 of size
k + ¢ with an additional restriction that the numbers in the last £ columns must be increasing. Thus, we
must count the number of Dyck paths of length 2(k + ¢) that end in k right-steps which is also equal to
the number of standard tableaux of shape (¢, k + £) which is equal to =1 (*1%) by the hook formula

k11
for the number of standard tableaux. This fact is also proved by |[Forder| (1961); Shapiro| (1976).
k2,0,
Thus we have ng,i:sz 9 (z) | e = 22 (5529, O
14 k
k+¢

Fig. 8: Structure of Qi’f’ég’o) (z) |xn_k_z

Theorem 12. Forn > k+/{+m+ 1landk > 0,

(k+1)? <k+2£) <k+2m _

(k,£,0,m) A (kL,0,m) o
QYL,123 (x)’mn—k—l—m - Qn7132 (x)’mn—k—l—m - (k+‘€+ 1)(k+m+ 1) € m

(33)

Proof: Assume thatn > k + ¢+ m + 1 and £ > 0. Then for o; to match MMP (k, £,0,m) in 0 =
01...0, € 8,(132), 0; must be a peak of ¢ and ¢; must have m numbers to its right in o which are
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smaller than o;, £ numbers to its left in o which are larger than o;, and k£ numbers to its right in o which
are larger than o;. It follows that the maximum power of z that can appear in Qiﬁ’é’g ™) (z)isx
Now if mmp%49™)(¢) = n — k — £ — m, then the numbers {m + 1,m + 2,...,n — k — £} must
be peaks and appear between the £ + 1% position and n — k — m™ position in decreasing order. These
positions are marked red in Figure[9(a)] There should be k + ¢ numbers in the first k& + ¢ rows, of which

n—k—~f0—m

£ numbers appear before the numbers {m + 1,m + 2,...,n — k — ¢} and k numbers appear after the
numbers {m+1,m+2,... ,n—k—{}; and there should be k +m numbers in the last k£ 4+ m columns, of
which m numbers appear under the numbers {m + 1,m+2,...,n —k — ¢} and k numbers appear above

the numbers {m+1,m+2,....,n—k—{}. In Figure the position of these k + ¢ 4+ m numbers are
marked blue. The numbers in the blue region must reduce to a 132-avoiding permutation 7 of size k + ¢
with an additional restriction that the numbers in the last k£ 4+ m columns and top k + ¢ rows (region A in
Figure [9(a)) must be increasing. It is easy to see that under the map ® such permutations correspond to
Dyck paths in the join of the 3 blue regions as pictured in Figure[0(b)} There have to be no peaks in region

A since the numbers in region A are in an increasing order. It follows that the coefficient of "~ *—¢=" in
Qif“é? ™) (x) equals the number of Dyck paths U of length 2(k + ¢ + m) which pass through the points

P, Q and R in Figure[9(b)] For each such path U, we can uniquely associate two paths U; and U, where
U, starts at P and goes to the point (), and Us starts at () and goes to the point R. By our results in the

previous theorem the number of such U; is kﬁ}f}rl (j ;%) and the number of such Uz is 3 f:{li T (k-tsm) It
(k,2,0,m) o k41 k+20\ (k+2
follows that Q,, 355" (%) v = (k+z+(1)(k)+m+1) ).
4 k+m
ptl k+m
A k4t
A k4t
Q
m
m
R

() (b)

Fig. 9: Structure of Qf’f?jg’m)(x)

fork=2,l=1,m=3

gn—k—t—m

Since ng’é"g’m) (x) = ng’l%g’m)(a:), the theorem follows. O

5 The functions of form Q%™ (¢, ) = Q&™) (¢, 2)
bl 7@7m
= Q5" (¢ )

In this section, we shall show how we can compute generating functions of the form Q%f’o’m)(t, x) =

ggf’m’m) (t,z) = Q(llgf’m’m)(t,x). In this case, it is easier to compute generating functions of the
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form Qlk 40, m)(t x). To do this, we will start by computing the marginal distributions Q(k :0,0.0) (t,x),
ggf 0, 0 (¢, 2), and Q(O 0.0, ") (t, ). Then we can find expressions for Qg’;; 0, Ot 2), ggf 0, (L, ),

and QY;; -0.m) (t,x) in terms of the marginal distributions Q%QO -0:0) (t,x), %’@’0) (t,x), and
5%20’@’7”) (t,x). Finally we show how we can express Q(M’ ’m)(t,a:) in terms of the distributions

k,2,0,0 0,0,0,m k,0,0,m
532 )(t, ), 532 )( t,x), and Qg:sz )(t,x).
Recall that Kitaev et al.|(2012) proved that

0,0,0,0 (1+t—tl‘) — (1 +t—tl’)2 — 4t
§32 (t,2) = \/Qt ; (34)
and for k > 1,
(£0.0.0)(f 1y _ 1 . (35)
132 1—tQ§]§21O®0(1§,.’L’)
By Lemma we have that Qggf 0, O)( t,x) = 52’20’@”6) (t,z). Thus to complete our computations of
the marginal distributions we need only compute Q(1?3,21f,0),0) (t,z) when k > 0.

Let Sr(f)(132) be the set of 0 = 01 - - -0, € S,(132) such that o; = n. Then the graph G (o) of each
s 8@(132) has the structure showed in Figure That is, in G(o), the numbers to the left of
n, A;(o), have the structure of 132-avoiding permutation, the numbers to the right of n, B;(o), have the
structure of 132-avoiding permutation, and all the numbers in A;(o) lie above all the numbers in B; (o). If
we apply the map  to such permutations, then for o € S (132), ®(o) will be a Dyck path of the form in

Figure [T0(b)] where the smaller Dyck path structures A; and B; correspond to 132-avoiding permutation
structures A;(o) and B; (o).

1 i n 1 i n
(a) (b)
Fig. 10: Structures of S,,(132) and D,,

Now assume that & > 0. Then we can derive a simple recursion for S,,(132) based on the position of n
in a permutation o = 05 ... 0, € S,(132). That is, suppose o; = n and A;(o) and B; (o) are as pictured
in Figure Clearly o; = n does not match MMP(0, k, (), 0) in o. Then we have two cases.

Casel. i < k.
Then elements in A;(o) cannot match MMP(0, k,(,0) in o since no element of A;(c) has



Quadrant marked mesh patterns in 123-avoiding permutations 17

k elements to its right which are larger than it. However, an element ¢; in B;(c) matches
MMP(0, k,®,0) in o if and only if it matches MMP(0, k — 4,0, 0) in B;(c). Thus such permu-

tations contribute C’i_lQSLO;’;é’Q@ O (x ) to Qno 1’;? 0) ().

Case2. i > k.
Then elements in A;(co) match MMP(0, k,0,0) in o if and only if the corresponding element
matches MMP(0, &, 0, 0) in the reduction of A;(c). An element o in B;(o) automatically has
k elements in the graph G(o) in the second quadrant relative to the coordinate system centered
at (j,0,), namely, the elements in A;(c) U {n} so that o; matches MMP(0, k, (), 0) in o if and
only if o, is a peak of o, or, equivalently, if and only if o; matches MMP(0, 0,0, 0) in B;(0).

Thus such permutations contribute Qgg’f’?ég) (x)Qflo o ?302( ) to Qﬁ?l’gf :0) (x).

It follows that forn > k + 1,
k, Jk—i,0 Sk, ,0,
Q5 (@ Z Cima Q50 (@) + Z QT ()15 (). (36)

Multiplying both sides of the equation by ¢" and summing for n > 1 gives that

k—1
k0, 2,0, ,k,0, ,0,
i " () = 143 Coat QI w) + Qg Zw Q" (1),
i=1
37
Thus, we have the following theorem.
Theorem 13.
1+t—tx— 1+t —tx)2—4t
(000.0)(; ) +t—tx \/(2t+ ) ' (38)
Fork > 0,
1 t ]?_1 Oi— ti71 (0,k—1i,0,0) t _ (0,0,0,0) t
g%,zkﬂ,o) (t,z) = + Zz:l 1 (Qi32 (t,7) — Q35 ( ,x)) (39)

0,0,0,0
1 tQ% "0 (1, x))

We list the first 10 terms of function Qg%’;’@’o)(t, x)fork=1,...,5.

QU "V (t, ) =1+t + (1 + )t + (1 + 3z + 22) 3 + (1 + 62 + 62 4 2°) ¢*
+ (1 + 10z + 202* + 102® + ) t° + (1 4 15z + 502% 4 502° + 152" + 2°) ¢°
+ (14 21z + 1052® + 1752° + 1052 + 212° + 2°) ¢
+ (14 28z + 1962” + 4902° + 490z + 1962° + 282° + 27) 13
+ (14 362 + 3362” + 11762° + 17642" + 11762° + 3362° + 362" + 2°) t* + -
(40)

We note that if o; matches MMP(0,1,0,0) ino = 01...0, € S,(132), then o; must be a peak of
o which has at least one element to its left which is larger than o;. However, it is easy to see from our
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description of ®~!, the every peak except the first one in ¢ satisfies this condition. However such peaks
are just the descents of ¢ so that Qno’llg’g 0 (x) = Zoesn(132) pdes(a)

2P0t 2) =1+t + 262 + (34 22)t% + (4 + 8z + 227) t* + (5+ 20z + 1522 + 22°) 7
+ (6 4 40z + 602> + 242° 4 2z*) ¢°
+ (7 + 70z + 1752° 4 1402° + 352" 4 22°) t7
+ (8 + 112z + 4202” + 5602° + 2802 + 482° + 22°) ¢*
+ (9 + 168z + 8822° + 17642” + 14702 + 5042° + 632° + 227) t° + -+ (41)
O30 (¢ ) =1 4+t + 262 + 563 + (9 + 5a)t* + (14 + 23z + 52%) £
+ (20 + 652 + 422° + 52°) t° + (27 + 145z + 1862 + 662° + 52) 7
+ (35 + 280z + 5952° + 420z° + 952 + 52°) ¢°
+ (44 + 490z + 15542 + 18202° + 8202* 4 1292° 4 52°) ¢ + - .- (42)
t,x) =14t + 2t + 5¢° + 14¢* + (28 + 14a)t° + (48 4 70z + 142?) ¢°
+ (75 + 214z + 1262° + 142°) t7 + (110 + 514 + 5962 + 1962° + 142*) ¢*
+ (154 + 1064z + 20302% + 13202° + 280z + 142°) t? + - -- (43)
QPO (1, ) =1+t + 262 + 53 + 14¢* + 427 + (90 + 4225 + (165 + 222 + 4227) ¢
+ (275 + 717z + 3962” + 422°) t°

(0,4,0,0)
132 (

+ (429 + 1817z + 196222 + 6122° + 422*) 7 + - -- (44)
Next we consider Q%’;’@’O)(t, x) where both k and ¢ are nonzero. Again we will develop a simple

recursion for anlgg 0)(x) based on the position of n in . That is, let 0 = o1 ...0, € S,(132) and

o; = n. Again o; = n does not match MMP(k, ¢, (), 0) in o. Then we have two cases.

Casel. i < /.
Then no element in A;(c) cannot match MMP(k, £, ), 0) in o since no element of A;(c) has ¢
elements to its left which are larger than it. An element o; in B;(c) matches MMP(k, ¢, ), 0)
in o if and only if it matches MMP(k, £ — ¢,(),0) in B;(c). Thus such permutations contribute

-1 (k£—3,0,0) (k,0,0,0)

Zi:l Cina@Q,” 1,132 (z) t0 Qn 132 (z).

Case 2. 7 > /.
For an element o in A;(0), since the number n is to its right and larger than it, o; matches
MMP (%, ¢,,0) in o if and only if, in the reduction of A; (o), the corresponding element matches
MMP(k — 1,¢,0,0). An element o; in B;(o) automatically has ¢ elements to its left which are
larger than it so that o; matches MMP (k, ¢, (0, 0) in o if and only if it matches MMP(k, 0,0, 0)

in B;(o). Thus such permutations contribute Y ", sz 1 11§2® -0) (:E)lek_’(;:?é%)( ) to Qﬁfég 0 ().
It follows that forn > k + ¢ + 1,

QU (x ZOZ QU500 (a +ZQJZ%§£’ D (@)QUF0 1) (). (45)



Quadrant marked mesh patterns in 123-avoiding permutations 19

Multiplying both sides of the equation by ¢t™ and summing for n > 1 gives that

-1
k,£,0,0 i1 (K, £—i,0,0 k—1,£,0,0 i k,0,0,0)
U "Vt 2) =1+t Ciat QU M m) + QU (e ZOt U "0, @),
i=1
(46)
Thus, we have the following theorem.
Theorem 14. Forall k,¢ > 0,
0, = 0 0, 0,
k,£,0,0 i1 (k6—i,0,0 k—1,£,0,0 i kO 0
532 (¢, ):1+tZCi_1t 1Q§32 (t,2) + ( 532 (¢ ZCt ( (t,).
i=1
47

We list the first 10 terms of function Q132 0.0) (t,x)forl <k, ¢<3.

QU "V (t, ) =1+t + 262 + (34 22)t% + (4 + 8z + 22°) t* + (5+ 20z + 1522 + 22°) 7
+ (6 4 40z + 602® 4 242® 4 2z*) ¢°
+ (74 702 + 17522 + 1402° + 352" + 22°) ¢
+ (8 4 1122 + 4202” + 5602° + 2802 + 482° + 22°) ¢°
+ (9 + 168z + 8822% + 17642® + 1470z + 5042° + 632° + 227) ¢7 + .- (48)
200 (4, 2) =1+t + 262 + 56% + (9 + 52)t* + (14 + 23z + 52%) £
+ (20 + 652 + 422° + 52%) 5 + (27 + 145z + 1862 + 662° + 52) t*
+ (35 + 280z + 5952° + 4202° + 952 + 52°) ¢°
+ (44 + 490z + 15542% + 18202% + 820z + 1292° + 52°) 7 + - - (49)
00 (4, 2) =1+t + 262 + 56% + 14¢* + (28 + 1427 + (48 + 70z + 1422) 18
+ (75 + 214 + 1262% + 142°) t” + (110 + 514z + 5962 + 1962° + 142*) t°
+ (154 + 1064z + 2030z + 13202° + 280z* + 142°) 7 + - - (50)
QU "0 (t,2) =1+t + 262 + 5% + (11 + 32)t* + (23 + 162 + 327) £
+ (47 + 562 + 262° + 32%) t° + (95 + 163z + 129z% + 392° + 32) 7
+ (191 + 4292 + 4892° + 2632° + 552" + 32°) *
+ (383 + 1062z + 158327 + 12702° + 4872* + 742® + 32%) ¢ + - .- (51)
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G200 (4, 0) =1+t + 262 + 56° + 14¢* + (33 + 92)t° + (72 + 51 + 92°) t°

+ (151 + 186z + 83z + 92°) t” + (310 + 556 + 4312> + 1242° + 92*) ¢3

+ (629 + 1487z + 16882” + 8752° 4 174z* 4+ 92°) 17 + - .- (52)
GO, 2) =1+t + 26 4+ 563 + 14¢* 4 426° 4 (104 + 282)t5 + (235 + 1662 + 2827) 7

+ (505 + 627 + 2702” + 282%) ¢°

+ (1054 + 1924 + 145427 + 4022° + 282*) 17 + - - (53)
GVt ) =1 4t + 262 + 56> + 14¢* + (38 + 42)t° + (101 + 272 + 42?) {°

+ (266 + 1192 + 402” + 42°) t” + (698 + 439z + 2322> 4 572" + 4a*) ¢°

+ (1829 + 1477z + 10442 + 4302° + 782" + 42°) " + - -- (54)
GVt w) =14 £+ 262 + 56° + 14t + 4265 + (118 + 14a)t° + (319 + 962 + 1422) 7

+ (847 + 425z + 1442* + 142°) ¢°

+ (2231 4 1563z + 848z” + 2062° + 142*) t* + - -- (55)
QEIPV (4, 2) =1 4t + 262 + 563 + 14¢* + 4265 + 132¢° + (381 + 48)¢7
+ (1046 + 336z + 482%) t° + (2801 + 1506z + 507z* + 482%) t° .- (56)

If one compares the polynomials Qfg 1’%3 0) (x) and Qgﬁ;l’g’o) (x), one observes that they are equal for
k > 1. Thus we make the following conjecture.

Conjecture 1. Forall k > 1, we have
0,k,0,0 1,k—1,0,0
G 00 (1, 2) = Q0 (1, ). (57)

We have verified the conjecture for £ = 1, 2, 3 by directly computing the generating functions. That is,
we can prove that

0,1,@,0 1,0,@,0

%"t = QU (ta), (58)
12,0, ,1,0,

Q% "t 2) = Qi "Vt a), (59)
0,3,0),0 1,2,(0,0

532 )(t,z) = 532 )(t,x). (60)

However, it is not obvious from the corresponding recursions for Qg]lgg) 0) (x) and Qgi’lgl’@’o) (x) that
these two polynomials are equal.

Next we consider the generating functions ng 0.6) (t,z) = Qig’;’w’@ (t,x) where k, ¢ > 0.

When n < k + ¢, there is no element of a o € S,,(132) that can match MMP(0, &, 0, ¢) in o. Thus
Qgg’lg’g’e) () = C,, in such cases. Thus assume thatn > k+ ¢+ land o = 01 ...0, € S5,(132) is such
that o; = n. Clearly o; cannot match MMP (0, k, (), £) in o. We then have 3 cases.

Casel. i < k.
Clearly no o; in A;(o) can match MMP (0, k, 0, ¢) since it cannot have k elements to its left
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which are larger than it. A o; € B;(c) matches MMP(0, k&, 0, £) in o if and only if it matches
MMP(0, k — ¢,0,£) in B;(o). Thus such permutations contribute Zi:ll Ci_nglO_’]Z)_lg’g ’Z)(:z:) to

Ok@i
QU (x).

Case2. k<i<n-—V/.
For each peak 0; € A;(0), there are n — ¢ > ¢ numbers in B;(c) which are to its right and
smaller than it so that o; matches MMP (0, k, (), ¢) in o if and only if, in the reduction of A;(c),
its corresponding element matches MMP (0, k, 0, 0). For each peak o; € B;(0), there are > k
numbers in A;(o) U{n} which are to its left and larger than it so that o; matches MMP(0, k, 0, £)
in o if and only if o; matches MMP(0,0,0,¢) in B;(c). Thus such permutations contribute

n—t ~(0,k,0,0 0,0,0,6) (0,k.0,0)
ik ngl,lgz)( )Q; i, 132( ) to Qn 1132 ( )-
Case3. i1 >n— ¢+ 1.
For each peak o; € A;(0), there are n — ¢ > ¢ numbers in B;(o) which are to its right and
smaller than it so that o; matches MMP(0, k, (), ¢) in o if and only if, in the reduction of A;(c),

its corresponding element matches MMP(0, k, 0, 0). Clearly no element of B;(c) can match
MMP (0, k, 0, £) since it cannot have ¢ elements to its right which are smaller than it. Thus such

(0,k,0,6—(n—i (0,k,0,¢
permutations contribute 7", Ql 1132 (n Z))( )Cpi to Qn 155 )( ).

It follows that forn > k + ¢ + 1,

0,k,0,¢ 0,k—1i,0,0 0,k,0,0 0,0,0,¢
le 132 ) Z Ci- 1Q51 1,132 ) ) + Z Q§ 1 132) 7(1 i,132) (2)
b QU e, (61)
i=n—_¢+1

Multiplying both sides of the equation by ™ and summing for n > k + £ 4 1 gives that

k+2£ k+£—i—1

0,k,0,¢ P im1/(0,k—i,0,¢ 4
S (FORD ST tZa HHQUET O ey - ST oyt
=0 =

k—2 -1
0,k,0,0 i 0,0,0,¢ i
+H(Q% " (t2) = Y Ct) (@G (t,x) = D Cit?)
i=0 i=

—1 k+0—i—2
+#Y Ot QG T ) - Y opth). (62)
i=0 3=0
Note the first term of the last term ¢ Y0} Cit#( (Ok0-L=0) (¢ ) — Zfﬂf =2 C;t7) on the right-hand
side of the equation above is #( ggék,a),e) (t,x) — 2525—2 C;t7), so we can bring tQ132 b, é)( x) to the
other side and solve Q%Qk’w’z) (t, ) to obtain the following theorem.
Theorem 15. Forall k,¢ > 0,
.0, Dpet,
O " (t,2) = Lrelt,2) (63)

1—t
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where
k+e k+e—2 k+e—i—1

Trelt,z) = > Cit' — Z Ct’“+tZOz T (0) A () I S o))
i=0 3=0

-l—t( gOZkQO) thz OO@F) thz
-1 ) k+l—i—2
+ Y CH QM Z Cith). (64)

We list the first 10 terms of function Qg%’;’@’f)(t, x)forl <k <£<3.

OaPD(t, ) =1+t + 262 + (4 + )t + (T+ 62+ 22) t* + (11 + 202 + 102 + 27) 7

+ (16 4 502 + 502° + 152° + z*) ¢°

+ (22 4 105z + 17527 + 1052° + 212 + 2°) *

+ (29 + 1962 + 49027 + 4902° + 1962 + 282° + 25) ¢3

+ (37 + 3362 + 11762° + 17642> + 11762* + 3362° + 362° +27) 7 + -+ (65)
O002)(8,2) =1+t + 262 + 563 + (12 + 22)t* + (25 + 152 + 227) 7

+ (46 + 60z + 242® + 22%) 5 + (77 + 175z + 14027 + 352° + 22) 7

+ (120 + 420z + 5602” + 2802° + 482" + 22°) ¢°

+ (177 + 882z + 17642* + 14702° + 5042 + 632° +22°) 7 + - -- (66)
O0 03 (8, 2) =1+ t + 262 + 563 + 14¢* + (37 + 5a)t + (85 + 42z + 522) 16

+ (172 + 1862 + 662 + 52°) t” + (315 + 595z + 42022 + 952% + 52) 5

+ (534 + 1554z + 182027 + 8202° + 129z* + 52°) t? + - - - (67)
O202) (1, 2) =1+ t + 262 + 563 + 14t* + (38 + 42)t> + (91 + 372 + 42?) 10

+ (192 + 1762 + 572° + 42°) t7 + (365 + 5952 + 3852 + 81a° + 4a) t*

+ (639 + 1624z + 17502> 4 7362° + 1092 + 42°) ¢ + - -- (68)
O203) (1, 0) =1+t + 262 + 56° + 14¢* + 4265 + (122 4 102)t° + (316 + 103z + 1022) 7

+ (724 + 540z + 1562 + 102%) ¢°

+ (1493 + 1995z + 11452° + 2192° + 102*) 17 + - -- (69)
O803) (4 2) =1+ ¢ + 22 + 5¢5 + 14¢* + 426° + 13245 + (404 + 252)¢7

+ (1119 + 2862 + 252%) ¢® + (2762 + 1649z + 4262> + 252°) ¢ + - .- (70)

We are now in position to compute the generating functions Qla k.0,6) (t,xz) = Q%’f’o’“ (t,z) =

g‘; k.0.6) (t,x) in the case where a, k,¢ > 0. Again, we shall show that the polynomials Qgﬁ%’g’a (x)

satisfy simple recursions.



Quadrant marked mesh patterns in 123-avoiding permutations 23

When n < a + k + ¢, there is no element of a o € S,,(132) that can match MMP (a, k, 0, ¢) in . Thus

QE;’I’;S Z)( ) = C,, in such cases. Thus assume thatn > a+k+ ¢+ lando =01 ...0, € §,(132) is
such that o; = n. Clearly o; cannot match MMP(a, k, @, £) in 0. We then have 3 cases.

Casel. i < k.
Clearly no o; in A;(o) can match MMP(a, k, 0, £) since it cannot have k elements to its left
which are larger than it. A 0; € B;(o) matches MMP (a, k, 0, £) in o if and only if it matches
MMP(a, k — 4,0, ¢) in Bi(c). Thus such permutations contribute S CZ-JQSLH_J;;Q@’Z)(%) to

(a,k,0,0)

Qi (@),

Case2. k<i<n-—V/.
For each peak o; € A;(o0), there are n — ¢ > ¢ numbers in B;(o) which are to its right
and smaller than it. Moreover, the number n is to its right and is larger than it. Thus o}
matches MMP(a, k, 0, ¢) in o if and only if, in the reduction of A4;(c), its corresponding el-
ement matches MMP(a — 1,k,0,0). For each peak o; € B;(c), there are > k numbers
in A;(o) U {n} which are to its left and larger than it so that o; matches MMP(a, k, 0, £)
in o if and only if o; matches MMP(a,0,(,¢) in B;(0). Thus such permutations contribute

n—~¢ a—1,k,0,0 a,0,0,¢ a, k 0,6)
Dick Qz(el,132 )(x)szfi,132)( ) to Q; 132 ( )-
Case3. i >n—/(+1.
For each peak 0; € A;(0), there are n—¢ > ¢ numbers in B, (o) which are to its right and smaller
than it and the number n is to its right. Thus o; matches MMP (a, k, 0, £) in o if and only if, in

the reduction of A; (o), its corresponding element matches MMP (a—1, k, 0, £ — (n—1)). Clearly
no element of B; (o) can match MMP (0, k, @, £) since it cannot have £ elements to its right which

are smaller than it. Thus such permutations contribute 1", anz}l’g@’h("%)) ()Ch—; to
(a,k,0,0)
Qn gz (2)-
It follows that forn > a + k + ¢+ 1,

a,k,0,0) a,k—i,0,¢ a—1,k,0,0) a,0,0,¢
QSL,132 Z Ci- 1Qn 4,132 (@) + Z QE 1,132 )Qéﬂ',wg (2)
+ Z Qs T @) O (71)
i=n—_L+1

Multiplying both sides of the equation by ¢" and summing for n > 1 gives that

k+0—1 k+0—i—1

a,k,0,0 7 i— a,k—i,0,0 i
@k00 (¢ ) = Z Ct+t2q QLTI (4 ) — Z C;t)

1,k,0,0 i 0,0,¢ i
+(Qi5 Z Cit ) (@15 " (¢ ZC ')
k+0—i—2
+tzctz (a 1]?@[ 1)( .T) _ Z Cjtj), (72)

J=0
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and we have the following theorem.
Theorem 16. Forall a,k,? > 0,

k+0—1 k+l0—i—1

g%Qk(DZ)(, ) = Z Ct’+tZCz i 1 %Zk zw) Z Otﬂ
+t( ggzlkw()) thz aO@Z) thz
/—1 ‘ k4+l—1—2
Gt QY Tt Z C,th). (73)

ak@f)(

We list the first few terms of function ()3 t,x)forl<a<3and1 <k <{<3.

o0Vt 2) =1+t + 262 + 563 + (10 + da)t* + (17 + 21z 4 42°) £°
+ (26 + 65z + 372 + 42°) t° + (37 + 1552 + 1762% + 572° + 4a) 7
+ (50 + 315z + 5952% + 3852" + 81a* + 42°) ¢°
+ (65 4 574z + 1624x* + 17502° + 7362 4 1092° + 42°) 7 + - -- (74)
QU "D (t, ) =1+t + 262 + 563 + 14 + (32 + 102)t° + (62 + 60z + 1022) ¢
+ (107 + 2092 + 1032* + 102°) t7 + (170 + 554 + 5402” + 1562° + 102*) t*
+ (254 + 1239z + 199527 + 11452° + 2192* 4 102°) t° + - -- (75)
QU "3 (1, x) =1+t + 26% + 51% + 14¢* + 426% + (104 + 282)t5 + (219 + 182z + 2827) 7
+ (410 + 684z + 3082* + 282%) t°
+ (704 + 1948z + 17202” + 4622° + 282%) t* + - -- (76)
U202 (4, 0) =1+t + 262 4 56% + 14¢* + 4265 + (107 4 252)t° + (233 + 171z 4 2522) 7
+ (450 + 669z + 2862° + 252°) t°
+ (794 + 1968z + 16492> + 4262° + 252" ) 7 + - -- (77)
203 (4 ) =1+t + 242 + 563 + 14t* + 4265 4 13215 + (359 + 702)t7
+ (842 + 518z + 7027) t* + (1754 + 2184z + 8542 + 702°) t°
+ (3332 + 6896 + 52382> + 12602° + 702) ' + - - (78)
(303 (4, ) =1+ ¢+ 262 4+ 53 + 14¢* + 4265 + 13245 4 420¢7 + (1234 + 1962)t5
+ (3098 + 1568 + 1962%) t? + (6932 + 7120z + 25482° + 1962°) '°
+ (14137 + 241172 + 166122° + 37242° + 1962*) t" + - (79)
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Q

Q

Q

Q

Q

Q

CoPV(t,2) =1+t + 262 + 56° + 14¢* + (33 + 92)t° + (71 + 52z + 927) t°

+ (146 + 189z + 8527 + 92°) t7 + (294 + 557 + 4432” + 1272° + 92*) ¢
+ (587 + 1463z + 17222% 4 903z” 4 178z 4 92°) ¢ + - --

Gl (4, ) =14t + 262 + 53 + 14¢* + 425 + (105 + 272)t% + (235 + 167 + 272%) 17
+ (494 + 637 + 2722” + 272%) ¢
+ (1004 + 1938z + 14892° + 4042® + 272*) 17 + - -

GLO3) (4 gy =1+ ¢+ 2% + 565 + 14¢* + 4265 + 13245 + (345 + 8427
+ (800 + 546z + 8427) t* + (1724 + 2168z + 8862 + 842°) t°
+ (3557 + 6803z + 50422° + 13102° + 842) ' + - .-

202 (¢ ) =1+ ¢+ 22 + 53 + 14t* + 425 + 13215 + (348 + 812)t7
+ (811 + 538z + 812?) t® + (1747 + 2163z + 8712* + 812%) ¢?
+ (3587 + 6826 + 50172 + 12852° + 81a*) t'0 + - -

G208 (1 @) =1+ t + 2% + 51° + 141 + 426% + 13245 + 42017 + (1178 + 2522)13
+ (2848 + 1762z + 2522°) t° + (6311 + 7395z + 283827 + 2522%) 7
+ (13201 + 24156 + 170112” + 41662° 4 2522) t" + - - -

Z308) (4 gy =1+ ¢+ 2> + 565 + 14¢* + 426° + 13245 + 420¢7 + 14303 + (4078 + 784x)t?
+ (10236 + 5776x + 7842%) t'0 + (23405 + 25349z + 9248z* + 784a%) ¢!
+ (50086 + 85921 + 5771727 + 135042 + 784a*) t12 + - -

GOVt @) =1+t + 262 + 56% + 14¢* + 4265 + (116 + 162)t° + (308 + 1052 + 1622) 7

25

(80)

(81)

(82)

(83)

(84)

(85)

+ (807 + 446z + 161z% + 162°) t* + (2108 + 1586z + 919z% + 2332% + 162*) ¢

+ (5507 + 5169z + 40292° + 17542° + 3212 + 162°) ' + - .-
GLOD (¢ x) =1+t + 22 + 53 + 14t* + 425 + 13215 + (373 + 562)t7
+ (998 + 376z + 562%) t* + (2615 + 1609z + 5822 + 5627)
+ (6813 + 5701 + 33822° + 8442® + 562*) t'0 + - -
GLOS) (1 2) =1+ ¢+ 202 + 53 + 14¢% + 4265 4 13265 4 42047 + (1238 + 1922)t8
+ (3347 + 1323z 4 1922%) t? + (8798 + 5751z + 20552° + 1922°) 7
+ (22909 + 20509 + 121972% + 29792° + 1922) t*' + - .-
G202 (1 2) =1 + ¢+ 20% + 53 + 14¢* + 4265 4 13265 4 42017 + (1234 + 1962)t5
+ (3314 + 1352z + 19622) t? + (8643 + 5849z + 21082” + 1962°) '°
+ (22345 + 20688 + 124972° + 3060z° + 196z") ¢! + - --
G203 (¢ 2) =1+ ¢+ 242 + 563 + 14¢* + 4265 + 1325 + 4297 + 1430¢3 + (4190 + 6722)t°
+ (11354 + 4770z 4 67227) t'° + (29639 + 21023z + 7452z* + 6722%) ¢!
+ (76326 + 75014 + 451942* + 108062° + 6722) 12 4 - --

(86)

87)

(88)

(89)

(90)
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G303 (1, m) =1+t + 207 4 53 + 148" + 4267 + 13215 4 42917 + 1430¢° + 4862¢°

+ (14492 + 23042)t'% + (39625 + 16857z + 230427 t'!
+ (103494 + 75853z + 26361z + 23042°) 2

+ (265047 + 2736602 + 1637202% + 381692° + 23042*) t'> + ... (91)
From the functions list above, we see the coefficient of the biggest power of 2, 2"~ %k~ satisfies that
a,k,0, a 2 :
Qi,féz Z)(a:) |$n7afz = —(a+k(+$(1,2+£+1) (“}fk) (“+2€) as predicted by Theorem

6 Quadrant marked mesh patterns and hills of S,,(132)

In this section, we want to study the generating function Qgg; 0.6 (t, ) where k, ¢ > 0. Note that by part

(c) of Lemma' a o; can match MMP (0, k,0,¢) ino = 01 ...0, € S,(132) if and only if o; is a peak
of o which is on the 0'"" diagonal (main diagonal). In terms of the Dyck path ® (o), this is the number of
steps DR which start and end on the main diagonal which are called hills of the Dyck path by |Deutsch
(1999)); [Deutsch and Shapiro| (2001). We will call such o;, the hills of 0. Moreover, if o0; = n where
i > 1, then there can be no hills in A;(c) as one can see from Figure
First we shall show that Q,f)l%g )(x) satisfies a simple recursion. We have two cases.
Casel. 01 = n.
In this case o3 matches MMP (0, 0, (), 0) which contributes an = and a o; where j > 1 matches
MMP((,0,0,0) in o if and only if o; matches MMP (0, 0,0, 0) in By (o). Thus such permuta-
tions contribute :cQgL@;Ol’?l’gz)( ) to Q£L®1032® :0) ().
Case 2. 0; = n where 1 > 2.
In this case no element of A;(c) U {n} matches MMP (0,0, 0,
MMP((,0,0,0) in o if and only if o; matches MMP (0, 0, 0,

tions contribute Ci,lQﬁbm_’g:?fQ) (x)to Q;wl%g 0)( ).

=)

) and a o in B;(o) matches
) in B;(¢). Thus such permuta-

=}

It follows that for n > 1,
0,0,0,0 (0,0,0,0 (6,0,0,0
Q51132 (@) = 2Q 1132) "‘Z(Jz QY 1132)( )- 92)
Multiplying both sides of the equation by " and summing for n > 1 gives that

QU (t,2) = 1+ H(C(t) + = — 1NQUS " (1, x). 93)
Thus,

(0,0,0,0) 1
t,r) = . 94
) = e ) O
Now we calculate Qig’f 0.6 (t,x) for the case when k£ > 0 and ¢ > 0. Notice by Lemma
0,k,0,¢ 0,60,k (0,k,0,0 0,0,0,k
i (6) = Qi (8 2). Thus Qi (¢, ) = Q15" (1)
First we shall show that Qn ’1 3’2’ )( ) satisfies a simple recursion. Clearly, if n < k + ¢, no element in
ao € 8,(132) can match MMP(0), k, (), ). If n > k + £ + 1, then we have two cases.
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Case 1. 0; = n where i < k.
In this case, even in the case where i = 1, o; = n cannot match MMP (0, k, 0, £). Moreover
if i > 1, then no element in A;(c) can match MMP (), k, 0, ¢). For any o; in B;(c), all the
elements in A;(0) U {n} are to its left and are greater than or equal to o;. Thus, a ¢, in B;(0)

matches MMP((, 0,0, 0) in o if and only if o; matches MMP (), k — ¢,0,¢) in B;(c). Thus

such permutations contribute C; 1Qn0 kl 1@)2 Z)( ) to Qﬁ? 1’%2 4 ().

Case 2. 0; = n where i > k.
In this case no element of A;(0) U {n} matches MMP({), k, 0, ¢). For any o; in B;(o), all
the elements in A;(c) U {n} are to its left and are greater than or equal to ¢; so that such
a 0; automatically has k elements to its left which are larger than ¢;. Thus, a ¢; in B;(o)
matches MMP((), k, 0, ¢) in o if and only if o; matches MMP((, 0,0, ¢) in B;(c). Thus such

permutations contribute C’i_ngw;gi?géQ) (x) to Qﬁ?lﬁg) ().

It follows that forn > k + ¢+ 1,
0,k,0,0) 0,k—13,0,¢ (0,0,0,£)
gb 1];2 Z Ci- 1Q£L '12,132 (@ )+ Z Ci- 1Qn (Z 132( z). 95)
Multiplying both sides of the equation by ™ and summing for n > 1 gives that

ggék,@,f)( 1+tZC’L 1tz lQlwk 4,0,€) (t, thz 1220@K< ) (96)

i=1

Thus, we have the following theorem.
Theorem 17.

(0,0,0,0) 1
t = . 97
132 (,LL’) 17t(0(t)+1'*1) ( )
Fork >0, 0,0,0,k 0,k,0,0
U M8 (t,2) = Q"0 (¢, ), (98)
and
0,k,0 G, ; 0,0,0,
QU Ot x) =1+ Crat QG M0 (¢, 2 Zcf )QU " (t,2).  (99)
=1
For k,£ >0,
g(gékvmve)(t fE —1+tchltz 1Q((bk IWZ)U £L' +t thz 5@3200)5)( ) (100)
=1

By CorollaryEl we know that the highest power of x that appears in Qg)l];g ) () is 2"~ and that

QY (@) vy = CrCu (101
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We start out by listing the first 10 terms in Qg‘fi,f’@’“) (t,x) fork =0,...,5.

O00 4, 2) =1 4+ at + (1 +22) 2 + (24 20+ 2°) £ + (6 + 42 + 32 + ) t*

+ (18 + 13z + 62° + 42® + 2°) t° + (57 + 40z + 212> 4 82° + 5a* + 2°) t°

+ (186 + 130z + 662> + 302° + 102" + 62° + 27) ¢

+ (622 + 4322 + 22022 + 962° + 402* + 122° + 72° + 2%) *

+ (2120 + 1466z + 744a® + 3282% + 1302* + 512° + 142° + 827 + 27) t? + - -

(102)

Ol 2) =1+t + (1 +2) + B+z+2°) 8+ B+4dx+ 2> +2%) ¢!

+ (24 + 11z 4 52° + 2® + 2) t° + (75 + 352 + 142® + 62° 4+ 2" + 2°) ¢°

+ (243 + 113z + 472° + 172° + Ta* + 2° + 2%) 7

+ (808 + 376z + 15627 + 602° + 202" + 82° + 2% +27) ¥+

(2742 + 1276z + 5322° + 204a® + Tda* + 232° + 92° + 27 + 2%) 7 + .- (103)
POt x) =14t + 262 + (34 22)6> + (9 + 3z + 202) ¢t + (26 + 11z + 32 + 22%) £°

+ (81 + 33z + 132® + 32° + 22") ¢°

+ (261 + 108z + 402> + 152° + 32 + 22°) 7

+ (865 + 359z + 1372 + 472° + 172" + 32° + 22°) ¢3

+ (2928 + 1220z + 4682° + 1682” + 542" + 192° 4+ 32% + 227) ¢ + .- (104)
@300 (¢, 2) =1 4+t + 262 + 563 + (9 + 5a)t* + (28 + 9z + 522) £+

(854 332 + 92% 4 52%) t° + (273 4 1042 + 382° + 92° + 5z*) ¢

+ (901 + 349z + 12327 + 432° + 92 + 52°) ¢®

+ (3042 + 11862 + 4302> + 1422° + 48z* + 92° + 52%) 7 + - - - (105)
@00 (1 &) =1+ £+ 262 + 515 + 14¢* + (28 + 142)#°

+ (90 + 28z + 142?) t° + (283 + 104z + 2827 + 142°) 7

+ (931 + 339z + 11827 + 282° + 142”) *

+ (3132 + 1161 + 3952% + 1322° 4 282" + 142°) ¢ + - -- (106)
@200 (4 2) =1+t + 22 + 513 + 14¢* 4 4265 + (90 + 42z)¢5

+ (297 + 90z + 422°) t7 + (959 + 339z + 902> + 422°) ¢°

+ (3216 + 1133z + 3812> 4 902° + 42z*) ¢ + . .. (107)

It is known that the sequence {ng)lo?,g ’0)(3:) | o }n>1 is the Fine numbers which is sequence A000957

in the On-line Encyclopedia of Integer Sequences (OEIS) of |Sloane. Similarly, {Qg])l%g 0 (z) |x1 Fn>1is

sequence A065601 in the OEIS. However the sequence {le%g 0) (z)|2?}n>2 which starts out
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1,0,3,6,21,66,220,744, ... does not appear in the OEIS. This counts the number of Dyck paths with

exactly 2 hills. Nevertheless, it is easy to compute the generating function for the sequence by taking the

second derivative of Q(lg’;’w’o) (t, z) with respect to x, dividing it by 2, and setting 2z = 0. In this case, the

16t
2(14++/1—4t+2t)3 "

The sequence {Qg’ll?;g’o) (x)’xo}nzl which starts 1,1, 3,8, 24, 75,243,808, . .. is sequence A000958

in the OEIS and counts the number of ordered rooted trees with n edges having the root of odd degree.

generating function is

None of sequences {Qﬁf’l’gf ’O)(x)|:c0}n21 where 2 < k < 5 appear in the OEIS. None of sequences
{Qg,ll;,g),o) (z)|2'}n>1 where 1 < k < 5 appear in the OEIS. In both cases, we can easily compute the

generating functions of these sequences.

We list the first 10 terms of function Q(l(g’;’@’e) (t,z)forl <k <{<3.

Ol Dt 2) =1+t + 262 + 4+ 2)t> + (11 + 22 + 22) t* + (32 + Ta + 202 + 2°) £°

+ (99 + 222 + 82% 4 22% + 1) 1% + (318 + 73z + 2627 + 92° + 22 + 2®) ¢7

+ (1051 + 246z + 902> + 302° + 102" + 22° + 2°) ¢°

+ (3550 + 844z + 3122% + 108z° + 342 + 112° +22° +27) ¢ + - - (108)
O 02 (t,2) =1+t + 262 + 565 + (12 + 22)t* + (35 + 52 + 22%) 1

+ (107 + 18z + 52® + 22%) t° + (342 + 60z + 202° + 52° + 22*) ¢7

+ (1126 + 2062 + 692° + 222° + 5a* 4 22°) *

+ (3793 + 714z + 2462” + 782" + 242 + 52° + 22%) 7 + - - (109)
O 03 (t,2) =1+t + 262 + 5% + 14¢* + (37 + 52)t° + (113 + 14z + 522) ¢

+ (358 + 52z + 142” + 5a®) t” + (1174 + 180z + 572% + 14a® + 52) 5

+ (3943 + 634z + 2042® + 622° + 142 4+ 52°) 7 + -+ (110)
202 (t,2) =1+t + 262 + 5% + 14¢* + (38 + 4a)t® + (116 + 122 + 42?) ¢

+ (368 + 452 + 1227 + 42%) " 4 (1207 + 158z + 4922 + 122° + 42*) ¢3

+ (4054 4 561z + 1782% + 53z° + 122" 4+ 42°) t? + - - - (111)
QUZPD (1, ) =1 4t + 262 + 53 + 14¢* + 427 + (122 + 102)t° + (386 + 33z + 1022) 7
+ (1259 + 128z + 332> + 102°) t° (112)

+ (4216 + 465z + 1382° + 332% + 102*) t? + - --
@505 (4 2y =1+ ¢ + 2> + 5t5 + 14¢* + 426° + 1325 + (404 + 252)¢7
+ (1315 + 90z + 2527) t* + (4386 + 361z + 9022 + 252%) t? + - -- (113)

From the functions list above, we see the coefficient of the biggest power of z satisfies that

g’l’;’g’z)(x) |mn—k—ﬂ = C},Cy as predicated by Corollary
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7 The functions Q&foo (t,z) and Qlokoe (t,z) forl > 1

In this section, we will discuss how to compute the generating functions Q(O k,0,0) (t,z) and

gf 0:8) (t,x) for £ > 1. These generating functions cannot be reduced to Q%Qb o) (t,x) so that we will

use the ¥ map to develop recursions for such functions. Since we are considering quadrant marked mesh
patterns where neither the first nor third quadrants need to be empty, this means both peaks and non-peaks
can match such patterns.

We start by considering generating functions of the form Q&%}f’o’o) (t,z). In this case, it will be useful
to separately track peaks and non-peaks. Thus if 0 = o1 ...0, € S,(123), then we will say that o;
matches the pattern MMP (0, (Z;) ,0,0) if o; is a peak of o and it matches the pattern MMP (0, k1, 0,0)
or 0; is a non-peak of ¢ and it matches the pattern MMP (0, k2, 0, 0). We write MMP (a, b, ¢, d)-mch for
short of MMP(a, b, ¢, d) pattern match, then we define

0.(:2).00

MMP(0,k1,0,0)-mch of peaks MMP(0,k2,0,0)-mch of non-peaks
Q123 t.ﬁo,xl 2 :tn 2 : l‘# (0,k1,0,0) p xfﬁ (0,k2,0,0) p

0
n=0 0€S8,(123) (114

and

0.(:2)00)

o # MMP(0,k1,0,0)-mch of peaks # MMP(0,k2,0,0)-mch of non-peaks
Qn,123 (z0, 1) = E x Ty . (115)

0
€8, (123)
(0,k,0,0) (0,(§),0,0)
Clearly, Q153 (t, ) = Qa3 (t,z,z).
First we will compute Q123( 0)0:0) (t,zo,2z1). When k; = ko = 0, in the generating function
123( 0):0:0) (t, 0, 1), the variable x( is used to keep track of the number of peaks in ¢ and the variable
x1 is used to keep track of the number of non-peaks of o. Since the number of peaks and non-peaks in
any o € S,,(123) add up to n, we can write les( o) O)(t, Zo, 1) in terms of Qgg}g,w,o) (t,x) which tracks
the number of peaks. That is,
0,0) 0,0,0,0 Lo
123( o) (t, o, 1) Q523 )(mlvi)

_ 1 —txg+try — \/(1 —txo —‘rtl‘l)z —47531‘1. (116)
2tCE1

When k; and ky are not both nonzero, we need to analyze the difference between W ~!(P) where P a
Dyck path in D,, and ¥ ~! on the lift of the path P, lift(P), which is the Dyck path DPR € D,, ;1. The
lifting operation is pictured in Figure It is easy to see that the peaks of P and lift(P) are labeled with
the same numbers under ¥ ~!. Since we label the rows and columns that do not contain peaks from left to
right with the numbers of non-peaks in decreasing order under the map W1, it is easy to see that n + 1
will be in the column of the first non-peak and that all the remaining shifts over one to the next column
that does not contain a peak. This is illustrated in Figure

The change in the labeling of the non-peaks is as follows. It is easy to see from Figure|l1|in the red
cells in the case where ¥~1(P) = o = (8,6,9,7,4,3,2,5,1) € Sg(123) and ¥~1(lift(P)) = o’ =
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(8,6,10,9,4,3,2,7,1,5). It is easy to see that the action of lift does not change the number of elements
in the second quadrant of the peak numbers; but increases the number of elements in the second quadrant
of the non-peak numbers by 1 since the number n + 1 is in the second quadrant of the non-peaks. In
addition, the action of lift creates a new non-peak, namely, n + 1. For our convenience, we write lift(o)
for the permutation ¥~ (lift(P)).

10
9 919

Fig. 11: 0 = (8,6,9,7,4, 3,2,5, 1) and lift (o)

With the lift action, we can apply the Dyck path recursion for permutations in S,,(123). For any
permutation o € S;23, we suppose that the first return of the Dyck path ¥ (o) of o is located after the i
column. Then we can partition ¢ according to the structure A; (o) before the return on a height 1 trapezoid
and a Dyck path structure B; (o) after the return as illustrated in Figure Note that if o; is in B(o;),
then o is a peak of ¢ if and only if it is peak of B; (o).

n n
Lft(A (o)
1o \1 2 \U }}
e
B;(0)
B;
1 1
1 1 n 1 i n
(@ (b)
Fig. 12: Dyck path recursion of S,,(123)
. (0,(%+),0,0) . .
We first calculate the function Q44 (t,x0,21) for k1 > 0. We can develop simple recursions for

k
Qi(f’lgg)’o’o) (20, 1). Note that when n < ky, thenno peakina o € S,,(123) can match MMP(0, k1,0, 0)
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0,0) (0,(3),0,0)
so that Q418 (wo, 1) = QU (1)
Next assume that n > k1 + 1. We are tracking the number of peaks matching MMP(0, k1, 0, 0) by xq

0,(%4),0,0)

and tracking the number of non-peaks by z; in the polynomial Qn 193 (20, x1). We will classify the
permutations o € S,,(123) according to the column ¢ of the first return of ¥ (o). If the first return of ¥ (o)
occurs in 7™ column of o, then we shall partition o into lift(A4;(c)) and B;(c) as pictured in Figure
We then have three cases.

Casel. i =1.
In this case, 01 = n is a peak and the path ¥(o) starts out DR.... Thus oy does not match
MMP(0, k1,0,0) in o in this case. For any o, in By(c), n is always an element which is to
the left of o; which is larger than o so that o; matches MMP(0, k1, 0,0) in o if and only if o
matches MMP(0, k; — 1,0,0) in By (o). Thus such permutations contribute

Q" (g, P AL T

Case2. 1 <i<k.
In this case, the only thing that has changed with respect to matches of MMP(0, k1,0, 0) for
peaks and the matches of MMP(0, 0, 0,0) for non-peaks in moving to lift(A;(c)) from A;(o)
is that we have one more non-peak. Clearly, no peak of o that is in lift(A4;(c)) can match
MMP(0, k1, 0,0) because it will automatically have less than k; elements to the left which is
larger than it. Moreover, for any o; in B, (o), the elements in the lift(A;(c)) are elements to
the left of o; which are larger than o so that a peak o; of ¢ matches MMP(0, k1,0,0) in o
if and only if o; matches MMP(0, k1 — 4,0, O) in B;(c). Thus such permutations contribute

,0,0) (0,(*1-%,0,0) ,0,0)
x1Q7 £ 1)23 (175”1)627;,—(1 123) (z0,21) to Qn 1(23) (zo, T1).

Case 3. i > k.
Again, the only thing that has changed with respect to matches of MMP(0, k1,0, 0) for peaks
and the matches of MMP(0,0,0,0) for non-peaks in moving to lift(A;(c)) from A;(c) is
that we have one more non-peak. A peak o; of o that is in B;(o) automatically matches
MMP(0, k1,0, 0) since all the elements in lift(A (0)) are to the left of o; and greater than

0,("#).0, 0)(»”60, xl)Q(o,(g),o,o)

;. Thus such permutations contribute Q1 1,193 ni123 (%o,71) to

Qq(mo1(23 $)0 O)(zoa 7).

It follows that for n > k1 + 1,

k1
(0,("3),0,0) (0,(*151),0,0) (0,(2),0,0) (, ,0,0)
Qn 1(23) (xo,21) = Q, <1 123> (w0, 71) + 71 Qi7$?1)23 (1,21)Q,,_ (“23) (w0, 21)
i=2
00) (0,(2),0,0)
Z Qz 1 123 xl)an(i?LS (z0, 1) (117)

i=k1+1
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Multiplying both sides of the equation by ¢" and summing for n > k; + 1 gives that

o,("3
123( 40 t ; T, 1) ZtJQg 123 1)

(0,(“51),0,0) g iQ 00)
= 1(Q123 (t,0,21) — Zt ]123 1, 21))

k’ll

k1% 0,0)
+try th 1Q1 £1)23 (1, xl)(le?)( ) (t, o, 1) th 1123 1 ;1))
=2
k-1
0,(9),0,0 0,(*1),0,0 ,0,0
+ 121 Q 0 (o, ) (@ (o, an) — 3 PQUE (Lan)). a18)
7=0

Simplifying the equation gives

(0,("%4),0,0)

Ay, (xg,x1,1)

123 (ta$07l‘1) 0.0 s (119)
1—tx1Q123() )(t,:vo,ajl)
where
k'l 1 00
Auy(@o,a1,t) = Kk1<x1)+tc2§2§ 1994, g, 21)
i ,0,0) 0,(*1,7%),0,0)
s 30010 (1)@ I 4, a)
=2
0,(%).0,0) (i 0.(5).0,0)
—tr1Q193 (t, o, z1)( Z tJQj,123 (L,21)) (120)
§=0
and
o i (0,(8),0,0) p 00)
K (z1) = Zt Qj7123 Lixy) —t Z t Q; 123 1)
3=0
i ),0,0 ).0,0)
—ta Zt 16100 (g Zt]@j 0000 (1 20)). (121)

0,0)
However, it is easy to see using our recursions for Qn 1(23 7) (xo, 1) that

k1 © ( ) ky1—1
0 = > Q" e _tZtJQJ 123 (1)
j=1
k?l [

i 00)
—try Zt le 1123 (L Z thJ 123 1 ) (122)
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so that
(0,(%1),0,0) 1 (0,(*1,71),0,0)
123( 4 (t,xo, 1) = 0,(3),0,0) <1 + tQ123( +) (t,z0,21)
1—t$1Q1230 (t iE(),SIJl)
i ),0,0) (0,(*1,7%),0,0)
+try Zt le 1,123 (1»151)@123( ) (t, o, 1)
ki—1
0,0 ,0,0
QO( o) (¢, 20, 21)( dHQ; 123) )(1,3:1))). (123)
§=0
0,(15,),0,0) . ,
Next we will calculate the function Q123 (t,x0,21) for ky > 0. In this case, we are tracking the

number of non-peaks matching MMP (0, k2, 0, 0) by 2 and tracking the number of peaks by xo. We will
classify the permutations o € S,,(123) according to the column ¢ of the first return of ¥ (o). If the first
return of (o) occurs in i column of &, then we shall partition o into lift(A;(c)) and B; (o) as pictured
in Figure[I2] We then have three cases.

Case 1.

Case 2.

Case 3.

i =1.

In this case oy = n is a peak and the path U(o) starts out DR ---. For any o; in B(0),
n is always an element which is to the left of o; which is larger than o; so that o; matches
MMP(0, k2,0,0) in o if and only if o; matches MMP(0,k, — 1,0,0) in By(c). Thus such

0,0 0,(,2),0,0
permutations contribute onn (1k212§) )(aro, x1) to Q” 1(23) )(1;0, x1).

1 <i<ks.

In this case, the only thing that has changed with respect to matches of MMP(0, 0, 0, 0) for peaks
and the matches of MMP (0, k3, 0, 0) for non-peaks in moving to lift(A4;(c)) from A;(c) is that
we have one more non-peak which is in the first row. This new non-peak will be to the left of and
larger than any non-peak in o. None of the non-peaks in lift(A;(o)) match MMP(0, k2, 0, 0)
in o since no element in lift(A;(c)) has ko elements to its left. For any o; in B;(o), all the
elements in lift(A; (o)) are elements to the left of and larger than o; so that a non-peak o; of o
matches MMP (0, k2, 0, £) in o if and only if o; matches MMP(0, ko — ¢, O ,0) in B;(o). Thus

0, 0,0 0,0
such permutations contribute QZ $ 222 0)( X0, 1)Q£L (Zkf%) )(330, 1) to Qn 1(23) )(xo, x1).

i > ko.

Again, the only thing that has changed with respect to matches of MMP(0, 0, 0,0) for peaks
and the matches of MMP(0, k2, 0, 0) for non-peaks in moving to lift(A;(c)) from A;(o) is that
we have one more non-peak which is in the first row. This new non-peak will be to the left of
and larger than any non-peak in o. For any remaining non-peak o in lift(A4;(o)), it will match
MMP(0, k2,0, 0) in o if and only if its corresponding non-peak matches MMP (0, k2 — 1,0, 0)
in A;(c). A non-peak o; of ¢ that is in B;(0) automatically matches MMP (0, k2,0,0) since
all the elements in lift(A;(o)) are to the left of o; and greater than o;. Thus such permutations

© .),0,0) (0,(°),0,0) ,0,0)
contribute Qz §k12231) (o, xl)Qn—(i(:323 (w0, 1) to Qn 1(23) (w0, z1).
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It follows that for n > ko + 1,

ko—1
0,(,2),0,0) ° 1),0,0) (0,(5),0,0) (0:(xy—1),0,0)
@, 1(23) (zo, 1) = wOQn (1k2i2§) (zo, 1) + Qi—l(?1)23 (20, 1)Q,, (zkf23) (z0, 1)
=2
(kyo1) (0,(5)0,0)
+ Z Qe o, )@ (w0, 2). (124)

’Lk‘g

From this recursion, one can compute in essentially the same way that we computed

k1
5(;3( 3):0.0 (t, o, 1) that
(0, 0,0) (0,(1,21),0,0)
123( ) (t,wo, 1) = 1‘Ft900621z3(k2 ) (t, 20, 21)
SFE 01,2000
+t Z t Qz 1123 (xo, )Q123 (t,z0,21)
+(6):0,0) (0,(ry21),0,0)
+tQu§°> <t,xo,x1><c212§"2 P 1 g, )
2 00)
- Z tQ 1123 T, 1)). (125)
0.(3:1).0.0) . . .
Next we will show that the polynomlals Qn 193 (zo, xl) satisfy a simple recursion for any k1, ko >

0 that involve the polynomials Qn 1(23) 00 (20, 21) and Qn 1(2?? . O)( Zo,x1). We first consider the case

when k1 > ky > 1. We will clas31fy the permutations o € S,,(123) according to the column ¢ of the
first return of W(o). If the first return of ¥(o) occurs in i column of o, then we shall partition o into
lift(A; (o)) and B; (o) as pictured in Figure[12] We then have two cases.

Case 1. 7 < k;.
In this case no peak in lift(A4;(c)) can match MMP(0, k1, 0,0). Thus in lift(A4;(c)), we need
only track the number of non-peaks which match MMP(0, k3,0, 0). The new non-peak that is
created in going from A;(o) to lift(A;(o)) has no elements to its left which are greater than
it so it cannot match MMP(0, k2,0, 0) since k2 > 1. However the new non-peak is larger
than and to the left of any other non-peak in lift(A;(c)). Thus for all the remaining non-
peaks in lift(A;(o)), they match MMP(0, k2, 0,0) in o if and only if they match MMP (0, ko —
1,0,0) in A;(o). Since all the elements of lift(A;(o)) are larger than and to the left of all
the elements in B;(0), a peak in B;(0) matches MMP(0, k1,0, 0) in o if and only it matches
MMP(0, k; — 4,0,0) in B;(c) and a non-peak in B;(o) matches MMP(0, k2, 0,0) in o if and
only it matches MMP (0, max (ks — ¢,0),0,0) in B;(0). It follows that such permutations con-

0 ky—i k1

tribute Qz £k12231) 0,0)(1’ xl)QEzoigrjllaQX?Ekri’O)),o’O)( 9, 21) tO Qn01(23 )’0’0)@07 z1).

Case 2. 7 > k;.
By our analysis in Case 1, each non-peak in lift(A;(c)), except the new non-peak created in
going from A; (o) to lift(A; (o)), matches MMP(0, k2, 0, 0) in o if and only if it matches
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MMP(0, k2 —1,0,0) in lift(A;(o)). Each peak in lift(A4;(c)) matches MMP(0, k1, 0,0) in o if
and only if it matches MMP(0, k1,0, 0) in A; (o). Every peak in B; (o) matches MMP(0, k1, 0, 0)
in o and every non-peak matches MMP(0, k5,0, 0) in o. It follows that such permutations con-

,0,0) 0,(2),0,0 ,0,0)
tribute Qz fkfzsl) (2o, xl)Qi—(i?gw )( 1) to Qn 1(23) (20, 21)-

It follows that

ki1—1 ky—i
(0,(51),0,0) 21):0,0) (0, (st 1.0)):0:0)
in(;s) (o, x1) Z Qz 1161231 1 7m1)Qn—i,12?§k . (z0, 1)
(0,(,51,),0,0) (0,(2),0,0)
+ Z Qi 1k1223 (‘TO’xl)Qn—(i?ZQ?) (0, 21). (126)
1= kl

Multiplying both sides of the equation by ¢™ and summing for n > 1 gives that

(0.(41).0.0 0,000 i1 O (et 00000
123 (t,xo, 1) = ]‘+tZQz 1,123 (L)t ™' Q 05 (t, 0, 21)
,(2),0,0) 2(3211),0,0)
+t@12§0> (t,20,20)(@ ™ (1, 0, 1)
k2 ),0,0)
(2™ 00 vy, (127)
1123

Similarly, for k5 > k1 > 1, we can do similar analysis and obtain that

,0,0) 0 0) 1 0, max(k:i,o) 0,0)
Q123<k2) (t,zo,21) = 1+t Z Qz 1 123 o, 1)t 1Q123( . ) (t, zo, 1)
1(0)0,0) ( 0,0)
+tQ123(0) (tax07m1)(Q123(k2 1) (t,mo,xl)
ko—2
Z QL 123 (29, 21)t1). (128)
Theorem 18. For all kq, ko > 0, we have
(0,(%1),0,0) 1 (0,(*151),0,0)
123( #) (t,zo, 1) = 0,(3).0,0) (1 - tQm’( ' (8,20, 1)
].—t.’ElQlQSO v (t,xo,xl)
kl 1 k} 774
i ).0.0) ( 0,0)
+tr Z t lQl 1, 123 (1,21) 123( ) (t, 0, 21)

kl 2
0,0) OO
—t.%‘ng??)( ) t l’(),.’L'l E tz 2 1 123 ) 1,3?1)) 5 (129)
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(0’(1“02)’0’0) (0,(,620_1),0,0)

123 (t7x07m1) = 1+tx0Q123 (t7$0,$1)
ko—1

00) i1 0,(,.2).00)
+tz Qz 1123 2, Q103 - (t, 0, 21)

1(0)+0,0) ( 0,0)
+tQ123(0) (t7$07$1)(Q123(k2 ) (t, w0, 1)
ko—2
Z QU (wo, 1)1, (130)
When k1 > ko > 1,
(0.(52).0.0 S 00000 i 0.ttt 0) 00)
123 (t,xo, 1) = 1+t Z Qz 1,123 (1, z1)t Q123 (t, 20, 21)
1(0)-0,0) 0,0)
+tQ12§°) 0 o,x1><Q12§’°2 D0 1)
Z Q) OO0 e, (131)
for kg > ]Cl > 1,
0,(31):0,0) el ),0,0) i1 A 0,(TEELT ) 0,0)
Q123 (t,zo,21) = 1+t Z Qz 1123 (2o, D)t Qa3 (t,zo, 1)
=1
0,(2),0,0 ( 0,0)
QI )<t,xo,x1><czu§"2 DO, 21)
ko—2
),0,0)
=Y QO o, (132)
=0
Finally, we have
0,0)
0509 (1, 2) = QAP (1,2, 2). (133)
We list the first few terms of function Qlo k,0,0) (t,x)fork=1,...,5.

OO (t,2) =1+t + (1 + 2)% + (32 + 222) £ + (922 + 52%) t* + (282° + 14a?) 5

+ (902 + 422°) 0 + (2972° + 13229) 7

+ (10012° + 42927) t* + (343227 + 14302%) t° + - - (134)
G200 (4, ) =1+t + 2% + (34 22)t° + (1 + 92 + 42%) t* + (52 + 272% 4+ 102°) £

+ (2022 4 842® + 282) t° + (752° + 2702 + 842°) ¢*

+ (2752* + 8912 + 2642°) t* + (10012° + 30032° + 858z7) 7 + .- (135)
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0300 (4, 2) =1+t + 262 + 56% + (9 + 52)t* + (5+ 272 + 102%) £

+ (1+ 252 + 812® + 252°) t° + (7 + 1002% + 2522° + 702*) ¢
+ (352* 4 3752° + 810z* 4 210°) t°
+ (1542® + 13752" + 26732° + 6602°) ¢ + - -- (136)

000 (t,2) =1+t + 262 + 563 + 14¢* + (28 + 142)t7 + (20 + 84z + 2822) 10

+ (74 100z + 2522° + 702°) t” + (1 + 49z + 4002” + 7842° + 1962") t°

+ (92 + 2452 + 15002° + 25202* 4 5882°) ¢

+ (542® + 10782 + 5500z* + 83162 + 18482°) ¢'°

+ (2732° + 44592* 4 200202° + 280282° + 6006z ") t'' + - - - (137)
0000 () =1+t + 262 4 56% + 14¢* + 42 + (90 + 422)t° + (75 + 270z + 842°) ¢7

+ (354 3752 + 8102” + 2102°) t* + (9 + 2452 + 15002> + 25202° + 588z") t°
+ (14 81z + 12252° + 56252 + 8100z" + 17642°) '

(11z 4 4862 + 53902° + 206252 + 267302° + 55442°) ¢'*

(772% + 24572° + 222952* + 750752 + 90090z° + 18018z ) ¢2

(

4402° + 113402* + 891802° + 2730002° + 308880z + 600602°) t1* + - - -
(138)

+
_|_
+

7.1 The function Q{559 (¢, z)

In this section, we will show how to compute Qlo .0, Z)(

t,x) for small values of k and ¢. In this case, we

have not been able to obtain simple recursions for the polynomials Qn 123? 4 (x) because the process of

going from A;(o) to lift(A4;(0)) is not nicely behaved with respect to elements in the fourth quadrant of
the graph of o centered at an element (j, o) when j < 7. However, in this case, we establish formulas for
the coefficients of Qg’?}’o’l) (t,x), §%§’°’” (t,x) and Qgg’;’w) (t, z) by direct counting arguments.
Suppose that o € S,,(123). It is easy to see that no number in the top & rows or the left-most k columns
in the graph of o can match MMP(0, k,0,0) in o. Similarly, it is easy to see that no number in the
bottom ¢ rows or right-most ¢ columns in the graph of ¢ can match MMP(0, 0,0, ¢) in o. Given o; in
o, consider the graph of G (o) of o relative to the coordinate system centered at the point (j, ;). Since
o is 123-avoiding, o; cannot have elements in both its first and third quadrant. o is a peak if and only
if it has no elements in its third quadrant and o is non-peak if and only if it has at least one element in
its third quadrant and no element in its first quadrant. Now suppose that o; is a peak that is not in the
top k-rows or the left-most £ columns and is not in bottom ¢ rows or right-most ¢ columns. The elements
in its first quadrant are the elements to the north-east of (j,0;). Since o; has no elements in its third
quadrant, it follows that the elements of o in the first £ columns must all be in the second quadrant for
o; and the elements in bottom ¢ rows of o must all be in the fourth quadrant for ;. Thus o; matches
MMP(0, k,0, ). Next suppose that o; is a non-peak that is not in the top k-rows or the left-most k
columns and is not in bottom ¢ rows or right-most £ columns. Then ¢ has no elements in its first quadrant
and the elements in its third quadrant are the elements south-west of (j, o). Again it follows that the
elements of o in the top k rows must all be in the second quadrant for ; and the elements in right-most £
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columns of ¢ must all be in the fourth quadrant for ¢;. Thus ¢; matches MMP(0, k, 0, ¢). For example,
in Figure we have pictured this situation in the case where k¥ = 2 and ¢ = 1 where the red cells
represent the cells that are not in the top k-rows or the left-most & columns and are not in bottom ¢ rows
or right-most ¢ columns. Thus we have the following theorem.

Theorem 19. For any 123-avoiding permutation ¢ = o1 ... 0y, 0; matches MMP (0, k,0, () in o if and
only if, in the graph G (o) of o, (j, 0;) does not lie in the top k rows or the bottom { rows and it does not
lie in the left-most k columns or the right-most £ columns. Thus

mmp®F00 (o) = |{jlk <j<n—Landk < g; <n —L}]. (139)

Fig. 13: MMP(0, 2, 0, 1) matches of the permutation o = 869743251

Thus, for any permutation o € S,,(123), Theorem tells that we need to count the numbers in the
rectangle that are obtained by deleting the top k& rows and bottom ¢ rows and deleting the left-most k
columns and the right-most £ columns. We have pictured this region in red and its complement in blue in
Figure[14] We shall call the blue area the k, (-frame area and the corners A U B U C' U D the k, {-corner
area. Now suppose that o € S,,(123) and in the graph of o, there are r elements in the k, /-corner area and
a total of s numbers in the k, /-frame area. In Figure |14} we have labeled the rectangles in the k, /-frame
area that are not part of the k, {-corner area as E, F, G, H starting at the top and proceeding clockwise.
Suppose that in o there are a elements in region A, b elements in region B, ¢ elements in region C, d
elements in region D, e elements in region F, f elements in region F’, g elements in region G, and h
elements region . Then a + e + b = k and ¢ + g + d = ¢ since there are k elements of ¢ in the top k
rows and ¢ elements of ¢ in the bottom ¢ rows. Similarly, a + h + ¢ = k and b+ f + d = £ since there are
k elements in the left-most k& columns and ¢ elements in the right-most £ columns. Adding these equation
together we see that

2k+0) =2a+2b+2c+2d+e+ f+g+h=r+s. (140)

Thus we have the following theorem.

Theorem 20. For any k,{ > 0, n > k+ £ and 0 € S,,(123), suppose there are v numbers in the
k, {-corner area and s numbers in the k, {-frame area the graph of o. Then

0<r<k+44t, s=2k+¢) —r, and mmp®**)(g)=n—s=n—20k+0)+r (141)



40 Dun Qiu, Jeffrey Remmel

When n < k + ¢, mmp(0-+-0:0) (0)=0.

l C G D

Fig. 14: The division of permutations in S, (123) to count pattern MMP (0, k, 0, £) matches
Theoremmtells us that for each n > k + £, the coefficients Qgg}f’o’a | 4 have atmost k + £+ 1
terms since the numbers in the &, /-corner area can only range from 0 to k + £. In particular, the coefficient
ggf’o’a(t, x) ’tnzn_g(kﬂ)w equals the number of permutations in o € S,,(123) with  numbers in the
k, (-corner area in the graph of o. Figure shows the squares in the k, {-corner regions that we must

1,0,0) (0,2,0,0) (0,1,0,1) (0,2,0,1)
consider for the generating functions Q123 (t,x), Qg3 (t,x), Q1o (¢, ), Qias (¢, x), and
(0.2,0.2) (t, ), respectively. In the next few subsections, we shall present and analyze the coefficients in

123
such generating functions based on these observations.

columns

1 2 3 4

11A]lB ClD

AlB g 2\E\F G|H

A AlB A B DIE F
clp Trows
3L J K|L
C D G|H 1 4 IM|N O|P
@ ® © @ ©
Fig. 15: Q53" (t,2), Q1% (1.0), Qg ™ (1,2), QU (¢ @) and Q57" (8, )
(0,1,0,0) (0,1,0,0)
71 1 Q123 ( $)|tn$n—2 andQ123 ( ':Ij)‘tnxn—l

A formula for the generating function Qgggl 0.0) (t,x) was calculated in Section 5.1. It follows from

Theorem ﬁ that there are exactly two terms in the polynomial Qnomg O)(SC) for any n > 2. Our next

theorem shows that we can explicitly calculate these two terms.

(0,1,0,0)

1,0,0 1,0,
)(t7x)|tn$n—2 = Oy — Ch—1 and Q53 (t7$){tnwn—l = Un-1.

Theorem 21. Forn > 2, Q
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Hence,
(0,1,0,0) 2t 1 1

2z () =(1+t————=)+(

P x2+ +1)C( x). (142)

Proof: By Theorem , to calculate the coefficients of function Qﬂ’;’o’o) (t, z), we only need to enumerate

the 123-avoiding permutations based on how many elements in the graph of o lie in 1, O-corner area. In
other words, referring to Figure[l15(a)} the permutations in S,,(123) whose graphs have a number in square

A contribute to the coefficient of "z~ ! in Qgg’;’o 0) (t, z) and the permutations in S,,(123) whose graphs

have no element in square A contribute to the coefficient of t"2"~2 in Q(O’l’o 0 (t,x). Let Na(n) be the
number of permutations in S, (123) whose graph has a number in square A. Then N4 (n) = C,,_; since
N 4(n) counts those o such that oy = n which means that the corresponding Dyck path ¥ (o) has a peak
at position A. All such paths start out with DR. Thus, Qggg’o’o)(t,x)’t%n_l = C,—1. This means
that the number of permutations in S,,(123) which do not have an element in square A in its graphs is

C,, — C,_1. Thus Qgg; ,0,0) (t, x) =(C,, — C,,_1. It follows that

tngpn—2
Q§0273}1070) (tv QZ) = 1+t+ Z tn 71 - 71 1)517“72 + Cn—lxnil)
C tr) —1—at tC(tx) —t
= 1+t+ (x) 5 L (t) + C(tx)
T xT
2t 1 1 t
- (1 _zZ = — 4+ —+1 . 14
(L+t== =)+ (5 + - +1)C(t) (143)
O
(0,2,0,0) (0,2,0,0) (0,2,0,0)
7' 1'2 123 (t .',U) {tnxnfélf 123 (t’ ) |tnxn 3 and Q123 ( ) |tnxn72

It follows from Theorem [20] that there are exactly three terms in the polynomial Qn 123(‘) 0)(x) for any
n > 2. Our next theorem shows that we can explicitly calculate these three terms.
Theorem 22. Forn > 4,

(0,2,0,0)

123 (t’ x)|tnmn74 = Cp—3Ch1+ On—2a (144)
(1%’327070) (t,2)| s = 3(Cno1—Cnz), and (145)
ggg’O’O) <t7 m) tngn—2 = 2077,72 (146)

Proof: To find the coefficients of function ngz’g’o’o)(t, x), we need to enumerate the 123-avoiding per-

mutations that have 0, 1 or 2 numbers in the 2, 0-corner area as pictured in Figure Let ¢;(n) be the
number of permutations in S,,(123) whose graphs have ¢ numbers in 2, 0-corner area, colored blue in the
picture, then in Qg’;"o’o)( ), ¢o(n) is the coefficient of t"2"~4, ¢1 (n) is the coefficient of t"2"~3 and
$2(n) is the coefficient of t"z" 2.

In this case, we can use inclusion-exclusion to count the number of permutations o € S,,(123) whose
graph has exactly r elements in the 2, 0-corner area. We will labels the cells in 2, O-corner area as pictured

in Figure[15(b)} For S C {A, B, C, D}, we let Ng(n) be the number of permutations ¢ in S,,(123) such
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that there is an element in each square of S in the graph of o. Then it is easy to see by inclusion-exclusion
that

¢2(n) = Nap(n)+ Npc(n), (147)
¢1(n) = Na(n)+ Np(n)+ No(n)+ Np(n) —2(Na,p(n) + Np.c(n)), (148)
po(n) = Cp—¢1(n) — g2(n). (149)

The problem is reduced to computing N4 (n), Ng(n), Nc(n), Np(n), Na,p(n) and Ng ¢(n). From the
proof of Theorem 21} we have N 4 (n) = C,,_1. For N¢(n), we are counting the number of permutations
o =01...0n € 8,(123) such that 037 = n — 1 which means that P = ¥(o) has a peak at position
C. Any such path P must start with DD R and then we can remove the DR at steps 2 and 3 and obtain
a Dyck path of length 2n — 2. Thus Ng(n) = C,—1. For Ng(n), we are counting the number of
o =01...0, € 8,(123) such that o5 = n. It is easy to see for for such o, o is 123-avoiding if and only
if o103 ...0, is 123-avoiding so that Ng(n) = C, 1. For Np(n), we are counting the permutations
such that 0 = o1 ...0, € §,(123) such that 0o = n — 1. It follows that o3 = n since otherwise 123
would occur in o. Thus Np(n) = N4 p(n) = Cp—2. For Ng p(n), we are counting the permutations
such that 0 = 07 ...0, € §,(123) such that oy = n — 1 and 02 = n. Hence Np c(n) = C,—o. It
follows that

00 (t,2) ] 0e = d2(n) = 2Cu_s, (150)
QG V(1) a = $1(n) = 3(Cpey — Cua),s (151)
5%327070) (t7 x)|tn$n—4 = ¢O(n) = Cn - 3077,71 + Cn72~ (152)

[ It is technically possible to write the generating function Qg’g’o’o) (t, ) in terms of
the generating function of the Catalan numbers, C(x), like we did in Theorem However the formula
is messy so that we will not write it down here.

0,1,0,1 0,1,0,1 0,1,0,1
7' 1'3 g23 )<t7 x)|tnxn747 Q§23 )(t’ x)|tn$n73 anngQ?; )(t’ x)|tn$n72

To find the coefficients of function Qﬁ%’?}’o*“ (t,x), we need to enumerate the 123-avoiding permutations

that have 0, 1 or 2 numbers in the 1, 1-corner area as pictured in Figure [I5(c)l Let ¢;(n) be the number

of permutations in S,,(123) whose graphs have ¢ numbers in 1, 1-corner area, colored blue in the picture,

then in Qg’gl’o’l) (t,x), ¢o(n) is the coefficient of t"z" %, ¢ (n) is the coefficient of t"2" 3 and ¢o(n)

is the coefficient of t™z" 2.

Theorem 23. Forn > 4,

O30Vt a)| s = Cp =201+ Cpn —2, (153)
G0, )| nns = 20n_1—2C,_2+2, and (154)
O (t,2)] e = Cuco. (155)

Proof:
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The four cells in the blue area are still denoted by A, B, C and D, though the positions these cells are
different from Figure [15(b)l For S C {A, B,C, D}, we let Ng(n) be the number of permutations o in
S, (123) such that there is an element in each square of S in the graph of o. Then

p2(n) = Nanp(n)+ Npc(n), (156)
¢1(n) = Na(n)+ Np(n)+ Nc(n) + Np(n) —2(Na,p(n) + Np,c(n)), (157)
$o(n) = Cp—¢1(n) — ¢g2(n). (158)

Thus we must compute N4(n), Ng(n), Ne(n), Np(n), Na,p(n) and Ng c(n), which are different
from Theorem Assume that n > 4. By our previous results, Na(n) = C,_1. For No(n), we are
counting the numberof 0 = 0 ...0, € §,(123) suchthato; = 1. The only suchoiso = In(n—1)---2
so that N¢(n) = 1. For Ng(n), we are counting the number of 0 = 01 ... 0, € S§,,(123) such that o,, =
n. The only suchois o = (n—1)---21n so that Ng(n) = 1. For Np(n), we are counting the number of
o =01...0, € 8,(123) such that o, = 1. Clearly if we remove 1 from such a permutation and reduce
the remaining numbers of 1, we obtain a 123-avoiding permutation in S,,—1(123). Thus Np(n) = Cy,_1.
For N ¢, we are counting the number of 0 = 07 ... 0, € S,(123) such that oy = 1 and o,, = n which
is impossible for n > 3. For N4 p, we are counting the number of 0 = 01...0, € S,(123) such that
01 = n and o, = n. For such o, we can remove 1 and n to and reduce the remaining numbers by 1 to
obtain a 123-avoiding permutation in S,,(123). Thus N4 p = Cj,_o.

It follows that for n > 4,

(0,1,0,1)

1257 (62| pnee = P2(n) = Choa, (159)
03 0V, 2)]1pes = G1(n) = 20,1 —2Cn_s +2, (160)
a0 (@) s = d0(n) = Cp—2Cu_1 +Crz —2. (161)

O Theorem gives the coefficient of t" in Qgg};’o’l) (t,x) for n > 4. One can easily compute the

required coefficients at n = 1, 2, 3 to obtain that

OLOD(4 2y = 14t+22 + (4 +2)3 +
S (G = 2Cp 1 + oy — 2)a"
n>4

+(2C,—1 — 2C,_5 + 2)2" 73 + Cn_Q.Tn_Q)
= 1+t+22+ 4+ )t + (4 + 8z + 22%) t* + (172 + 2022 + 52°) ¢°
+ (6022 4 582% + 14x*) t° + (2052° + 1822 + 422°) 7
+ (7022* + 5962° + 1322°) ¢3
+ (24292° + 20042° + 42927) ¢° + - - . (162)

0,2,0,1 0,2,0,1 0,2,0,1
7' 14 g23 )(t7x)|tnxn767 §23 )(t’ x)|tnxn757 §23 )(t’ ‘/L‘)ltnxnfél
and Qgg’;’OJ) (t’ x) |tnxn73

In this section, we shall sketch the proof of the following theorem.
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Theorem 24. Forn > 5,

(0,2,0,1)

125 (62)|wne = Cn—4C, 1 +4C, 3 —Cp 3 —2n+6, (163)
OOV () s = ACu—1 = 9Cn_g +4C,_5 +2n — 12, (164)
030V (t2) nes = 5Cn_z —5Cyu_3+6, and (165)
Ot 2) s = 2003 (166)

Proof: To count the coefficients of function Qg’;’o’l)(t, x), we need to enumerate the 123-avoiding

permutations that have 0, 1, 2 or 3 numbers in the 2, 1-corner area. Referring to Figure let ¢;(n) be
the number of permutations in S,,(123) whose graphs have ¢ numbers in 2, 1-corner area, colored blue in
the picture, then in Q(102’32’0’1) (t,x), ¢o(n) is the coefficient of "z =%, ¢ (n) is the coefficient of "z >,
$2(n) is the coefficient of "z ~* and ¢3(n) is the coefficient of ¢"2"~3,

There are 9 cells in the blue area denoted by A, B, C, D, E, F, G, H, I in Figure @ For any
S C{A,B,C,D,E,F,G,H,I}, welet Ng(n) denote the number of o € S,,(123) such that there is an
element in each cell of S in the graph of 0. Let Ni(n) = 3 _gc (4 5.c.p,5,F.c.m,1}, 5= Vs (). Then it
follows from inclusion-exclusion that

¢3(n) = Nsz(n), (167)
$2(n) = Na(n)—3N3(n), (168)
¢1(n) = Ni(n)—2Na(n)+3N3(n), (169)
do(n) = Cn—di(n) — d2(n) — ¢3(n). (170)

To compute N7 (n), we must compute Ng(n) for 9 sets of size 1. To compute Na(n), we must compute
N for 18 allowable sets of size 2. To compute N3(n), we must compute Ng for 6 allowable sets of size
3. It is tedious, but not difficult to carry out required calculations. For space reasons, we will not provide
explanations for each Ng(n), but we will simply list the results of our calculations.

Forn > 5,

Ny(n) = Np(n)= Np(n)= Ni(n)=Ch_1, Ng(n)=Cyh_a, (171)

Nc¢(n) = Ng(n)=1, Np(n)=Ng(n)=n—1, so (172)

Ni(n) = A4Cu_1+ Ch_s+ 2n. (173)

Nag(n) = Nar(n)=Npp(n)=Npi(n)=Npi(n)=_Cno, Ngin)=Ch_s, (174)
NA_,F(n) = NAyH(n) = NB,F(n) = NB’G(TL) = NC’D(n) = ND)H(TL) = ]., (175)
NC7E(’H,) = Nc7g(n) = Nc_’H(’n) = NEvg(’rl) = NF7(;(n) = NRH(TL) = 0, SO (176)
Ny(n) 5Cn—2 + Cp_3 + 6. (177)
Napi(n) = Nppi1(n)=Ch_s, (178)

Naru(n) = Npra(n) = Ncpu(n) =Ncga(n) =0, so (179)

Ny(n) = 2C,_3, and (180)
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O30V (8, 2)],0s = 03(0) = 2C,_a, (181)

020D (4, )], s = d2(n) = 5Crg —5Ch 5 +6, (182)

621%32 o 1)(t»$) s = 01(n) = 4C,_1 —9C, 2 +4C, 3 +2n — 12, (183)

QO OV ()| 0ne = b0(n) = Cp—4Cn_1 +4Cu_2 — Crz —2n+6.  (184)

O

Theorem gives the coefficient of ¢" in Q§02,32,0,1) (t,z) for n > 5. One can easily compute
Qggfég ) (z) for n < 4 to obtain the following:
O200(t,2) = 1+41t+262+ 53+ (12 + 22)t*
+3 4" ((Cp = 4C,—1 +4Cy 5 — Cs — 20+ 6)a"

n>5
+(4Cp—1 — 9Cy 2 +4Cy,_3 + 2n — 12)2" P
+(5Cn—2 — 5Cr—3 + 6)z" " + 2C, _32™?)
= 14+t+202 +5¢° + (124 22)t" + (17 + 21a + 427) £°
+ (9 + 62z + 5127 + 102°) t° + (47z + 20827 + 1462° + 282%) 7
+ (1902 + 7002® + 456" + 842°) t°
+ (7142% 4 23932* + 14912° + 2642°) 7 + - - . (185)

(0,2,0,2) (0,2,0,2) (0,2,0,2)

7 1 5 Q123 ( )|tnxn—87 123 |tnxn 79 Ql ( )|tnxn—6)
(0,2,0,2) 0,2,0 2
123 (t7 x)|tnxn—5 andQ ( |tnxn—4

In this section, we will sketch the proof of the following theorem.

Theorem 25. Forn > 7,

2024 2)| e = Cn—6Cp 1+ 11Cn 5 —6Crg+ Co_y — 20% + 16n — 34, (186)
202 (t,)] 00 n = 6Cpy — 24Ch_g +24Cy_5 — 6Cp_s +20% — 280 +80,  (187)
O, 7)), = 13Ch_2 —30C,_3 + 13C,_4 + 121 — 64, (188)
0302 (@) |y = 12043 — 12054 + 18, (189)
§%§ O @)y = 4Ch_a. (190)

Proof: To count the coefficients of function Qgg’?,l’o’l)(t, x), we need to enumerate the 123-avoiding

permutations that have 0, 1, 2, 3 or 4 numbers in the 2, 2-corner area. Referring to Figure|15(e)} let ¢;(n)
be the number of permutations in S,,(123) whose graphs have ¢ numbers in 2, 2-corner area, colored

blue in the picture, then in ng:? -0:2) ( ), ¢o(n) is the coefficient of "™ 8, ¢1(n) is the coefficient of
t"x"=7, ¢o(n) is the coefficient of t" "6, ¢3(n) is the coefficient of "z ~5 and ¢4(n) is the coefficient

of tngn—*
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There are 16 cells in the blue area denoted by letters A ~ P in Figure[15(e)l Forany S C {A4,..., P},
we let Ng(n) denote the number of o € S,,(123) such that in the graph of o, there is an element in each
square of S. We let Nj(n) =3 gc(a. . py,s/=i Vs(n), then by inclusion-exclusion,

¢a(n) = Nu(n), (191)
#3(n) = Nz(n)—4Ny(n), (192)
$a(n) = Na(n) —3N3(n) + 6Ny (n), (193)
$1(n) = Ni(n) —2Ny(n) + 3N3(n) — ANy (n), (194)
do(n) = Cn—¢1(n) — ¢2(n) — ¢3(n) — da(n). (195)

There are huge number positions and combination of positions in the 2, 2 -corner area. Since the selected

letters should be in different rows and columns, we need to consider (l) ¢! combinations for calculation
each N;(n), i.e. 16 singletons to calculate Ny(n), 72 pairs to calculate No(n), 96 groups of size 3 to
calculate N3(n) and 24 groups of size 4 to calculate Ny(n), totally 208 separate calculations. Again we
shall simply list the results of the relevant calculations that we carried out. We use the results that we have
calculated for the cases that were covered in Theorem[24]and only calculate the new combinations in this
proof. We use “New” to represent the sum of the new computations.

Ne(n) = Ni(n)=n-—1, Ng(n)=Ch_o, (196)
No(n) = Ni(n)=Cy_1, Ns(n)=Ng(n)=(n-2)% so (197)
Ni(n) = 4Cn_1+ Cp_o+ 2n+ New

= 6Cn_1+2C,_o+2n> —4n+6. (198)

Ne,g(n), No,g(n), Np, I( ),NL,N( ) Na,a(n), Ng,p(n), Nja(n), Njp(n), Nag,g(n), Na,r(n),

Ne,u(n), Nin ﬂ),NC,L( )s N1r,o(n), Ne,p(n), Nr.p(n), No,p(n), N am(n) =1,
Ngk,p(n), No,a(n), Np,a(n), No,g(n), N g(n), No,g(n), Np,r.(n), No,r(n) = Cn—2;
Ng.,a(n), Nk B(n), Nk, g(n), Nro(n), NrL(n) = Ch_3, Nrr(n)=Ch_y,
Ne,p(n), Nk, g (n), Npr(n), Ng,n(n), Ne,r(n), No,s(n), Nu,s(n), Na,1(n), Ny,g(n),
Nem(n), Np,r(n), No,n(n), Nu,r(n), Na,p(n), Ny (n), Na,s(n), Naa(n), Nyp(n),
NK7D(TL),NK7M(TL) = 0,
S0

NQ(TL) = 5Cn,2 +Cn,3 + 6 + New

= 13C,_2+6C,_3+ C,—4 +12n — 10. (199)

To calculate N3(n), other than calculating the new combinations in the 96 enumerations, we calculate
the cases by symmetry. Notice that there are 4 columns and rows, namely, column 1,2, 3,4 and row
2, 3,4 in the 2, 2-corner area, marked in Figure[T5(e)] In any combination of three letters, we are taking
3 columns and 3 rows. We let N, ¢, ¢, r,rors) (1) be the contribution that we are taking 3 letters from the
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columns cjcacsg and rows cjcacs, then by symmetry of 123-avoiding permutations,

47

N(123,123)(n) Ni(234,234) (1), (200)
N(134,134) (1) N(124,124) (1), (201)
N(123,124)(n) N(134,234)(n) N(124,123)(n) = N(234,134)(n)7 (202)
N(123,134) (1) N(124,234) (1) = N(134,123)(n) = N(234,124)(0), (203)
N(123,234) (1) N234,123) (1), (204)
N(134,124)(n) N(124,134) (1) (205)
Then we calculate the 6 cases:

Na,rk(n) Ne.p x(n) = Ch_y, (206)
Naje(n) = Nggc(n)=Npgi1(n)=Nirc(n)=0, so (207)
N2s23)(n) = Nazasay(n) =20, _4; (208)

N(i24,124)(n) is  N3z(n) in Theorem 24] so
N(134,134) (n) N(124 124)( ) =2C,—3; (209)
Naro(n) = Ngpo(n)=Cns, (210)
Nana(n) = Npgnc(n)=Nupa(n)=Nyrc(n)=0,so (211)
N(123,124) (n) = N(134,234) (n) = N(124,123)(n) = N(234,134)(n) =2C,_3; (212)
Na,jo(n) = Nipo(n)=1, (213)
Nangk(n) = Ninc(n)=Nupr(n)=Nuysc(n)=0,so (214)
N23134)(n) = N(i24,234)(n) = Ni13a123)(n) = Nasa 124y (n) = 25 (215)
Ng.go(n) = 1, (216)
Niro(n) = Ngnk(n)=Ninagn)=Nurrn)=Nyiscn)=0,s0 (217)
N(i23.234)(n) = Naaa, 123)(” =1; (218)
Nagp(n) = Naomun) = .p(n) =Npo,p(n) =1, (219)
Nuycr(n) = Nuagp(n) = (220)
Naszajpzay(n) = Naoaisa) (n) 4 and (221)
Na(n) = 12Cy_5 + 4Cy_s + 18 (222)

To calculate N4(n), we need to use all the 4 columns and rows in the 2, 2-corner area. To make things
easier, we only consider the 14 collections of 4-letter groups that avoid 123. We have
Narxp(n)=Naror(n)=Ngpxprn) =Ngpo.rn) =Cha,and
Na,sco0(n), Nigc,p(n),Ng.crpm),Najomnn), Nanac,.rn), Nincun), NusacrLn),

Ng.5,0,0(n),N1.g,0o,u(n), Ng N.c,1(n) =0,so0

Ny(n) = 4C,_y. (223)
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With all Nq(n), Na(n), N3(n) and Ny(n) calculated, one can apply inclusion-exclusion and obtain that

forn > 7,

0,2,0,2
0502t 0) s = o(n)

= C, —6Cn_1+11C,_2 — 6Cy_3 + Cry — 2n* + 160 — 34, (224)
0,2,0,2
523 )(t?x)|tnxn—7 = ¢)1(n)

= 6C,_1 —24C,_o +24C,_3 —6Cp_4 +2n% — 280+ 80,  (225)
OOt 2) e = da(n) = 13Cp_g — 30C,_5 + 13Cy_q + 121 — 64, (226)
G502 (t,2) e s = B3(n) = 12C,_3 — 12C,_4 + 18, (227)
002, Ngnos = aln) =4C,_4. (228)

] Note that we have a lower bound, n > 7 for these formulas, which is because when n < 6,

N¢.; # 0 since permutation 321654 matches both the positions G and J.

Theorem gives the coefficient of ¢" in Q(lglf’O’Q) (t,z) for n > 7. We calculated the initial 7 coeffi-
cients by a computer program to obtain the following:

0,2,0,2
§23 )(t, )
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