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Motivated by the bijection between Schnyder labelings of a plane triangulation and partitions of its inner edges into

three trees, we look for binary labelings for quadrangulations (whose edges can be partitioned into two trees). Our

labeling resembles many of the properties of Schnyder’s one for triangulations: Apart from being in bijection with

tree decompositions, paths in these trees allow to define the regions of a vertex such that counting faces in them yields

an algorithm for embedding the quadrangulation, in this case on a 2-book. Furthermore, as Schnyder labelings have

been extended to 3-connected plane graphs, we are able to extend our labeling from quadrangulations to a larger class

of 2-connected bipartite graphs.
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1 Introduction

Schnyder labelings are by now a classical tool to deal with planar graphs. A Schnyder labeling is a special

labeling of the angles of a plane graph with three colors. Schnyder [21] introduced this concept for

triangulations, i.e., maximal (in the number of edges) planar graphs. He showed that these angle labelings

are in bijection with Schnyder woods, i.e., special partitions of the inner edges of the triangulation into

three trees. A main application of Schnyder woods are straight-line embeddings of triangulations on small

grids. Felsner [5] generalized the concepts of Schnyder labelings and Schnyder woods to the larger class

of 3-connected plane graphs. Again, there are applications in graph drawing [3].

Plane quadrangulations are plane graphs all whose faces have degree four. They are also called max-

imal bipartite planar graphs. The present work is motivated by the fact that quadrangulations admit a

decomposition of the edge set into two trees. Our aim is to look for a closer resemblance of Schnyder

structures in these cases. In particular we study angle labelings with two colors.
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In Section 2 we define strong labelings. A graph admitting a strong labeling has to be a plane quadran-

gulation. We show that strong labelings indeed resemble many properties of Schnyder labelings:

• Strong labelings induce a partition of the quadrangulation into two oriented trees with Schnyder-like

properties, see Subsection 2.1. For the existence of a 2-tree decomposition of a plane quadrangu-

lation there are many references, e.g. [1, 8, 9, 10, 13, 15, 17, 18]. The tree decomposition induced

by the strong labeling has the nice property that at each vertex the two trees are “separated”, i.e.,

around a vertex the edges of each tree appear consecutively. Such separating tree decompositions

have been previously studied in [8]. In fact, strong labelings and separating decompositions are in

bijection. Further combinatorial objects related to strong labelings and separating decompositions

have recently been studied in [7].

• Strong labelings also allow to obtain an embedding of a quadrangulation on a 2-book, i.e., a mapping

of the nodes to a line and a non-crossing embedding of the edges in the half-planes separated by

that line. In our case each halfplane contains the edges of one of the two trees. Let v1, . . . , vn be

the nodes ordered along the line. Then the trees on each page are alternating, i.e., there are no

two edges vivj and vjvk with i < j < k. Book embeddings of graphs are well studied and have

several applications; see e.g. [4]. For the particular case of quadrangulations, the existence of a

2-book embedding with a tree on each page was shown in [9]. Our Schnyder-like technique allows

to obtain the alternating property. Non-crossing alternating trees were studied and counted in [11].

They have also appeared as one-dimensional analogs of pseudo-triangulations [19].

In Section 3 we define weak labelings for plane graphs. Weak labelings contain strong labelings as a

subclass. Every weak labeling induces a 2-coloring and a 2-orientation of the 2n − 4 edges (n being the

number of vertices). We show that weak labelings are indeed in bijection with a pair of 2-orientations, one

for the graph and another for an appropriately defined dual. This allows the characterization and efficient

recognition of graphs admitting a weak labeling. We remark that a slight variant of weak labelings also

exists for the class of Laman graphs [12].

In Section 4, we generalize the notion of strong labeling from quadrangulations to a larger class of

bipartite graphs. The generalized strong labelings still yield a pair of trees. This is similar to the general-

ization of Schnyder structures in [5]. The class of bipartite graphs admitting a generalized strong labeling

is characterized in Subsection 4.2.

2 Strong labelings

Definition 2.1 Let G be a quadrangulation with color classes of black and white vertices and two distin-

guished black vertices s0 and s1 on the outer face. A strong labeling of G is a mapping of the angles of

G to {0, 1} which satisfies:

(G0) Special vertices: All angles incident to si are labeled i.

(G1) Vertex rule: For each vertex v /∈ {s0, s1}, the incident labels form a non-empty interval of 1s and

a non-empty interval of 0s.

(G2) Edge rule: For each edge, the incident labels coincide at one endpoint and differ at the other.

(G3) Face rule: The labels in each face are 0011 cyclically. Reading the labels of the outer face in

clockwise order starting at s0, they are also 0011.
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Observation 2.2 A strong labeling induces both a 2-coloring and a 2-orientation of the edges: Every edge

is colored according to its endpoint with the two coincident labels and oriented towards that endpoint.

Moreover, the vertex rule implies that every vertex except s0, s1 has outdegree two; such an orientation

will be called a 2-orientation. See Figure 1.

In the figures, and sometimes in the text we will identify color 0 with gray and color 1 with black.
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Fig. 1: A strong labeling for a quadrangulation (left) and the induced 2-coloring and orientation of the edges (right).

Lemma 2.3 (Walking rule) In a strong labeling of a quadrangulation the following is true: Walking

along an interior face in clockwise order, the labels change precisely when moving from a black to a white

vertex.

Proof. Let F and F ′ be two faces sharing an edge e. Suppose that F obeys the walking rule. If the

clockwise walk in F sees a change of labels along e, then this walk traverses e from the black to the white

vertex, which determines the partition into black and white for all vertices on F and F ′. The edge rule

implies that the two labels on the other side of e are the same. This observation together with the face

rule for F ′ yields the validity of the walking rule for F ′. The other possibility, when the clockwise walk

in F sees the same label on both endpoints of e, is similar: The walking rule determines the black/white

partition, the edge rule implies two different labels in F ′ and the face rule enforces the walking rule for F ′.

From the definition of labels at the outer face we obtain the validity of the walking rule for the bounded

face F0 which is incident to the edge containing s0 and having two labels 0 on the outer face. Any face F
can be connected to F0 with a dual path avoiding the outer face. The above reasoning allows to transfer

the validity of the walking rule along this path to F . ✷

The following strong edge rule is an immediate consequence of the edge rule together with the walking

rule. Actually, the walking rule also follows from the strong edge rule, i.e., the two rules are equivalent.

Lemma 2.4 (Strong edge rule) In a strong labeling of a quadrangulation the following is true: For each

edge, the incident labels coincide at one endpoint and differ at the other. Moreover if the latter is a white

(respectively black) vertex, the right (respectively left) side of the edge, oriented as in Observation 2.2,

has coincident labels. See Figure 2.
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Fig. 2: Edge types complying with the strong edge rule.

Yet another useful property of strong labelings is given with the next lemma, whose proof is immediate

from the strong edge rule. Observe that, as in the previous lemma, the rule is “white–right”, “black–left”.

Lemma 2.5 (Turning rule) In a strong labeling of a quadrangulation the following is true: If v is a white

(respectively black) vertex and uv an incoming edge, then the outgoing edge at v with the same color as

uv is the next outgoing edge to the right (respectively left) of uv. See Figure 3.
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Fig. 3: Illustrating the turning rule.

Before further studying strong labelings of quadrangulations we prove that every quadrangulation has

such a labeling.

Theorem 2.6 Every quadrangulation admits a strong labeling.

Proof. We use induction on the number of vertices n of a quadrangulation Q. If n = 4 then a strong

labeling exists, as shown in Figure 4 (left). For the induction step we distinguish two cases.

For the first case, assume that Q contains an interior vertex v of degree two. Removal of v and its two

incident edges yields a quadrangulation Q′ which, by induction, admits a strong labeling. Reinsertion of

v and its incident edges into Q′ can be done in a unique way such that the rules of strong labelings are

maintained. One of the possible cases is shown in Figure 4 (right).

For the second case, assume that Q contains no interior vertex of degree two. We say that a face q
incident to s0 is contractible if it does not contain the other special vertex s1. The contraction of q =
{e′, e, f, f ′}, where {e′, e, f, f ′} are the edges of q in clockwise order starting at s0 and p is the vertex

opposite to s0, identifies e with e′, f with f ′ and p with s0. This can be interpreted as a continuous

movement of p and its incident edges to s0, see Figure 5.

A contraction makes a problem when it creates a double edge. This happens when p and s0 have three

common neighbors, in this case the contraction is illegal. To find a legally contractible face q we proceed

as follows: let p0 = p and let q0 be any face incident to the black vertices s0 and p0. Let R0 be the
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Fig. 4: The basis of the induction and inserting a vertex of degree two.

region obtained as union of all four-cycles through s0 and p0 together with their interiors. If R0 = q0,

then contracting q0 is legal. Otherwise there is a white vertex in the strict interior of R0. Since this white

vertex has degree ≥ 3 there is a black vertex p1 such that p1 is on a common face q1 with s0 and R1 ( R0,

where R1 is the region defined by the four-cycles through p1 and s0. Iterate this until a region Rk consists

of a single face qk, this has to happen by finiteness.
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Fig. 5: Contracting a quadrangle to the special vertex s0.

The contraction of a face q yields a quadrangulation which by induction admits a strong labeling. Now,

reversing the contraction maintains the strong labeling outside of the face q and it only remains to label

the angles inside q. First, the rule for the special vertex s0 requires that the angle at this vertex is labeled

0. The other labels have to be chosen according to the walking rule. Figure 5 shows an example. The

vertex and edge rules at the boundary of the new face are easily verified. ✷

2.1 Schnyder-like properties for strong labelings

Consider the coloring and orientation of the edges induced by a strong labeling (c.f. Observation 2.2).

For this coloring and orientation we obtain results which are in nice correspondence to those obtained

by Schnyder [21] for triangulations and Felsner [5] for 3-connected plane graphs. The orientation and

coloring of the edges of a graph induced by a strong labeling have another interesting property: Let G
be a quadrangulation with a strong labeling and let T0 and T1 be the edges of colors 0 and 1. Since the

edges are oriented according to a 2-orientation, we can define T−1

i as the set of edges colored i with their

orientation reversed.

Lemma 2.7 Every vertex except s0, s1 has outdegree 1 in each of T0 and T1.

Proof. This follows from the turning rule (Lemma 2.5). ✷
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Lemma 2.8 There is no directed cycle in T0 ∪ T−1

1 , nor in T1 ∪ T−1

0 .

Proof. Suppose that there is a cycle in T0 ∪ T−1

1 . Choose C to be such a cycle with the least number of

faces in its interior. Claim 1: There is no vertex in the interior of C. Otherwise the black and the gray

path leaving the vertex can be used to identify a cycle with less interior faces. Claim 2: C has no chord.

Again this follows from the minimality assumption. To complete the proof it can be checked that there is

no directed facial cycle in T0 ∪ T−1

1 . ✷

Corollary 2.9 Ti, i ∈ {0, 1}, is a directed tree with sink si that spans all vertices but s1−i.

Proof: From Lemma 2.8 we know that Ti has no directed cycle. This and Lemma 2.7 implies that Ti is

cycle-free. Since Ti spans all vertices except s1−i the claim follows. ✷

For each non-special vertex v /∈ {s0, s1}, we define the i-path Pi(v), i ∈ {0, 1}, as the directed path

in Ti from v to the sink si. We say that two paths cross if they share a vertex v such that the two edges

incident to v of one path lie on different sides of the other path.

Observation 2.10 Two paths of the same color cannot cross, because every vertex has outdegree 1 in this

color. Two paths of different colors cannot cross, because this would violate the vertex rule.

Lemma 2.11 The paths Pi(v), v /∈ {s0, s1}, are chord-free.

Proof. Let v = v0, v1, v2, . . . , vk, si be the sequence of vertices of Pi(v). Suppose that vivj with i+1 < j
is an edge of the quadrangulation. The edge is not in the tree Ti, hence, it is of color 1 − i. Lemma 2.8

implies that the orientation is not from vi to vj . If vjvi lies to the right of Pi(v) we know that vj is black

because of the turning rule (Lemma 2.5). The same rule at the white vertex vi implies that the outgoing

edge at vi points into the interior of the cycle vi, vi+1, . . . , vj , vi. This implies a crossing between the

paths Pi(vi) and P1−i(vi) which contradicts Observation 2.10. The other case where vjvi lies to the left

of Pi(v) is essentially symmetric. ✷

Because of Observation 2.10, the paths P0(v) and P1(v) have v as only common vertex. Therefore they

split the quadrangulation into two regions which we denote by R0(v) and R1(v), where Ri is the region

to the right of Pi(v) and including both paths.

Lemma 2.12 Let u, v be distinct interior vertices. For i ∈ {0, 1}, the following implications hold:

(i) u ∈ int(Ri(v)) ⇒ Ri(u) ⊂ Ri(v).

(ii) u ∈ Pi(v), u 6= v ⇒





Ri(u) ⊂ Ri(v) and R1−i(v) ⊂ R1−i(u)
or

Ri(v) ⊂ Ri(u) and R1−i(u) ⊂ R1−i(v)
.

Proof: If u ∈ int(Ri(v)), Observation 2.10 implies that both paths P0(u), P1(u) and the region they

enclose are contained in Ri(v). If u ∈ P0(v), u 6= v, then P0(u) ⊂ P0(v) while the first edge of P1(u)
points to the interior of either R0(v) (if u is black) or to the interior of R1(v) (if u is white), because of

the turning rule. In the first case we obtain R0(u) ⊂ R0(v) and R1(u) ⊃ R1(v), in the second case we

obtain the reversed inclusions. Similar arguments work if u ∈ P1(v), u 6= v. ✷
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2.2 Alternating embedding of quadrangulations in a 2-book

Mimicking the obtention of straight-line embeddings of triangulations on small grids via Schnyder label-

ings, Lemma 2.12 allows us to obtain 2-book embeddings of quadrangulations such that each of the two

pages contains an alternating tree.

For each non-special vertex v, let us define fi(v) as the number of faces contained in Ri(v). For the

two special vertices s0, s1, we set f0(s0) = f1(s1) = −1 and f1(s0) = f0(s1) = n − 2, where n is

the number of vertices. As shown in Lemma 2.12 there is an inclusion between the i-regions of any two

vertices, therefore, the following holds:

Proposition 2.13 For any two vertices u 6= v, we have fi(u) 6= fi(v). Equivalently, all possible values

of fi from 0 to n− 3 occur.

All the points (f0(v), f1(v)) lie equally spaced on the line f0 + f1 = f , where f is the total number

of bounded faces (which equals n − 3 by Euler’s formula). For the sake of convenience, we can choose

a reference system in which this line is the horizontal axis and the f1-values increase from left to right.

Given this as spine of the book, we draw the edges of each tree Ti on one side. As a convention, we

will draw T0 gray and above the line, and T1 black and below. In Theorem 2.14 we prove that the trees

are non-crossing, and hence we get a 2-book embedding for the quadrangulation Q such that each page

contains a tree.

In Theorem 2.14 we additionally prove that both trees are alternating, meaning that the tree contains

no two edges vivj and vjvk for i < j < k (where v1, . . . , vn denotes the vertices in the order they are

encountered along the line). This is equivalent to saying that either all neighbors of vj have indices bigger

than j or they all have indices smaller than j. Figure 6 shows an example for the book embedding.

Non-crossing alternating trees are counted by the Catalan numbers. They came up in research about

pseudo-triangulations, where they have been identified as one-dimensional analogs to pseudo-triangula-

tions [19]. In that paper it has been shown that the “flip graph” on alternating trees is the 1-skeleton of the

associahedron.

a b c d e f g h x y s0 s1
f0 1 2 8 3 7 6 5 4 9 0 −1 10
f1 8 7 1 6 2 3 4 5 0 9 10 −1

x c e f g h d b as1 s0y

Fig. 6: Embedding on a 2-book the quadrangulation in Figure 1.
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Theorem 2.14 Let the vertices of a quadrangulation be placed on a line by the face-counting process,

with the trees T0 and T1 placed on each side of the line. Then T0 and T1 are non-crossing and alternating.

Proof. We will prove that the gray tree T0 cannot have crossings. Let us suppose that there is a crossing

in T0, i.e., four points a, b, c, d with

f0(a) > f0(b) > f0(c) > f0(d) (1)

and edges ac, bd. We focus on the edge ac. The two possible configurations are shown in Figure 7. Any

other situation would violate either the relations in (1) or the vertex rule (G1).

a

c

c

a

b-zone

d-zone b-zone
d-zone

s0 s0

s1s1

Fig. 7: Possible configurations according to the relations in (1).

Furthermore, from f0(c) > f0(d) and Lemma 2.12, we know that d 6∈ int(R1(c)) and analogously

that b 6∈ int(R0(c)). This gives us the feasible zones for points b and d, denoted as b- and d-zones in

Figure 7. Note that in both cases shown in the figure the path P1(c) separates the two zones, hence, the

existence of a gray edge bd implies that b or d is on this path. From Lemma 2.11 we know that at most

one of them is on the path.

• If b ∈ P1(c), d 6∈ P1(c): In this case the edge bd is to the left of P1(c) and hence the same holds

for all the gray edges incident to b. Therefore, R0(b) ⊂ R0(c) which implies f0(b) < f0(c), a

contradiction.

• If b 6∈ P1(c), d ∈ P1(c): In this case the edge bd is to the right of P1(c) and hence the same holds

for all the gray edges incident to d. This leads to the contradiction f0(d) > f0(c).

A similar analysis shows that the black tree T1 has no crossings.

We now show that for our choice of coordinates, T0 and T1 are alternating. We focus on the black

tree T1, and the case for the gray tree T0 is analogous. Vertices s0 and s1 have all their neighbors on one

side, hence they are alternating. For the other two vertices x and y of the external face, all the interior

angles are labeled 0, respectively 1 for y, and x is incident to only one edge of T1 to s1, and y to only one

edge of T0 to s0. This implies that also x and y are alternating. Let us consider an interior black vertex vj .

The successor vs of vj on the black path P1(vj) is a white vertex. From the turning rule (Lemma 2.5) it

follows that the gray outgoing edge of vs is to the left of P1(vj), i.e., it points into R0(vj) which implies

f0(vs) < f0(vj), equivalently f1(vs) > f1(vj) and hence s > j.
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Now consider a black edge vpvj which is incoming at vj . This edge belongs to the black path P1(vp).
The fact that vj is black and the turning rule implies that the gray outgoing edge of vj points into R1(vp)
which implies f1(vp) > f1(vj) and hence p > j.

The case where vj is a white vertex is similar, in that case all neighbors in the black tree have indices

smaller than j. ✷

2.3 Strong labelings, separating decompositions and 2-orientations

The following definition was essentially (with reversed orientations) proposed by de Fraysseix and Os-

sona de Mendez [8].

Definition 2.15 Let Q be a quadrangulation, with vertices of the bipartition properly bicolored as black

and white. Let s0 and s1 be nonadjacent vertices at the outer face. A separating decomposition of Q is a

partition of the edges into two directed trees T0, T1 with sinks s0, s1, such that the incident edges at each

vertex but s0 and s1 are gathered as follows, in clockwise order for black vertices and counterclockwise

order for white vertices:

• The incoming edges (if any) from T0,

• The outgoing edge from T0,

• The incoming edges (if any) from T1,

• The outgoing edge from T1.

Note that the above condition about the orientations of edges at a vertex is exactly the turning rule (see

Figure 3).

Theorem 2.16 Separating decompositions and strong labelings of a quadrangulation are in bijection.

Proof. Let Q be a quadrangulation with a distinguished vertex s0 on the outer face. A strong labeling

of Q induces a coloring and orientation of the edges. By Corollary 2.9 this yields a partition into trees

T0 and T1 rooted at s0 and the opposite vertex of the outer face s1. The coloring and orientation of the

edges obeys the turning rule (Lemma 2.5). This rule is precisely the condition required for a separating

decomposition.

Conversely, let a separating decomposition be given. Given a directed edge uv color both angles inci-

dent to uv at v with the color of the edge. The property of a separating decomposition implies that angles

with two incident incoming edges get the same label from both edges. Furthermore, the angles at the tail

endpoint of an edge being labeled according to the turning rule implies the strong edge rule to be fulfilled.

See Figures 2 and 3. It is obvious that the vertex conditions (G0) and (G1) hold for this labeling. All edges

conform to the strong edge rule and hence to the edge rule (G2). The strong edge rule also implies the

walking rule (Lemma 2.3) which in turn implies the face rule (G3). Together this shows that the implied

labeling of angles is a strong labeling. ✷

To enhance the picture we quote the following theorem from [8]. In the statement ‘quadrangulation’ is

again to be understood as a quadrangulation together with a distinguished vertex s0 on the outer face.

Theorem 2.17 (De Fraysseix and Ossona de Mendez) Separating decompositions and 2-orientations of

a quadrangulation are in bijection.

Corollary 2.18 There is a bijection between 2-orientations and strong labelings of a quadrangulation.
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2.4 Flips on strong labelings of quadrangulations

Given a graph G with a 2-orientation, one can reverse any directed cycle and obtain another 2-orientation.

Such a local modification of an object in more general terms is often called flip. In Lemma 2.19 below we

show that for a strong labeling of a quadrangulation, such a flip means that we invert all labels inside the

cycle to obtain another strong labeling of the same quadrangulation, see Figure 8.
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Fig. 8: A flip for a strong labeling of a quadrangulation.

Lemma 2.19 Given a quadrangulation, the reversal of a directed cycle C in a 2-orientation conforms

with the complementation of all the labels inside C in the corresponding strong labeling.

Proof: It is obvious that the walking rule and face rule (G3) are maintained for all faces. For the vertices

and edges inside or outside the cycle, it is also clear that the vertex rule (G1) and edge rule (G2) are

maintained.

Let us consider a vertex v on the boundary of the directed cycle, and let uv, vw be the incident directed

edges of the cycle. Before the flip, one of the change of label around v happens at the tail angles of vw
and the other change happens either inside or outside the cycle. After the flip, that change happens at the

head of uv, while the other change keeps its position. This proves the vertex rule (G1).

For an edge on the boundary of the cycle, the two labels that are reversed are either different, in which

case they remain different, or the same, in which case they remain the same after the flip. Therefore, the

edge rule (G2) is satisfied. ✷
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Schnyder woods of triangulations are in bijection to 3-orientations. In this context Brehm [2] has

investigated the reversal of directed cycles (flip) for 3-orientations. He proved that the set of 3-orientations

forms a distributive lattice. A more general result was obtained by Ossona de Mendez [16] and Felsner [6],

they obtained lattice structures on the set of α-orientations of a planar graph. A particular instance of the

general theorem is that the set of all 2-orientations of a quadrangulation can be enhanced with an ordering

which is a distributive lattice. The order relation is the transitive closure generated by X < XC whenever

X is a 2-orientation which has a simple directed cycle C which runs clockwise around its interior and

XC is obtained by reverting C in X . The flip structure on 2-orientations of quadrangulations was also

investigated by Nakamoto and Watanabe [15]. A simple consequence of the distributive lattice structure

on 2-orientations and the bijection with strong labelings is:

Corollary 2.20 The flip graph of strong labelings is connected.

3 Weak labelings

Definition 3.1 Let G be a plane graph with two special vertices s0 and s1 on the outer face. A weak

labeling for G is a mapping from the angles of G to {0, 1} which satisfies the following conditions:

(G0) Special vertices: All angles incident to si are labeled i.

(G1) Vertex rule: For each vertex v /∈ {s0, s1}, the incident labels form a non-empty interval of 1s and

a non-empty interval of 0s.

(G2) Edge rule: For each edge, the incident labels coincide at one endpoint and differ at the other.

(G3w) Weak face rule: For each face (including the outer face), its labels form a non-empty interval of

1s and a non-empty interval of 0s.

Observation 3.2 A weak labeling induces both a 2-coloring and a 2-orientation of the edges: Every edge

is colored according to its endpoint with the two coincident labels and oriented towards that endpoint. As

in the case of strong labelings, such an orientation is a 2-orientation. See Figure 9.

0 0
00

1
11

1

0

1

1

1

0

1

0

0

Fig. 9: The orientation induced by a weak labeling, the dashed edges may have either color.

Note that if a graph admits a labeling satisfying (G0), (G1) and (G2), then its edge cardinality is equal

to 2n − 4. A quadrangulation on n vertices has 2n − 4 edges and indeed quadrangulations admit weak

labelings (they even admit a stronger labeling, see Section 2). But weak labelings also exist for some

graphs which are not quadrangulations; consider e.g. the graph obtained by inserting into the cycle C6 the

edges 15 and 24. A more complex example is part of Figure 10.
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3.1 Graphs admitting a weak labeling

Observation 3.3 Since the angles of a plane graph G and of the dual G∗ are in bijection we can interpret

a weak labeling φ of G as a labeling φ∗ of the angles of G∗. The edge rule for φ is the edge rule for

φ∗ and the weak face rule for φ implies the vertex rule for (all!) vertices in the labeling φ∗. As in the

previous observation, we can argue that φ∗ induces an orientation of the edges of G∗ such that every

vertex has outdegree two. One additional property of the orientation induced by φ can be noted: The

special vertices s0, s1 divide the edge set on the outer face of G into two arcs A0 and A1. Each of

these arcs contains a change of label. Split the dual vertex corresponding to the outer face of G into

two vertices o∗0 and o∗1 such that o∗i keeps the incidences with the dual edges of Ai and let G∗

s denote

the resulting split-dual of G. The orientation induced by φ on G∗

s has outdegree one at o∗0 and o∗1 and

outdegree two at every other vertex; let us call such an orientation a 2∗-orientation.

Proposition 3.4 Let G be a plane graph with special vertices s0 and s1 on the outer face. Weak labelings

of G are in bijection to pairs (X,X∗) where X is a 2-orientation of G and X∗ is a 2∗-orientation of G∗

s .

Proof. The mapping from a weak labeling φ to a pair (Xφ, X
∗

φ) of orientations was given in Observa-

tions 3.2 and 3.3. For the converse construction, we introduce an auxiliary graph: The completion G̃ of

G is obtained by superimposing G and G∗

s such that exactly the primal-dual pairs of edges cross, and

this crossing is made a new edge-vertex. For v, e, f the numbers of vertices, edges and faces of G, the

completion G̃ of G has v + e + f + 1 vertices and 4e edges. The faces of G̃ are (almost) in bijection to

the angles of G, only the outer face of G̃ corresponds to two angles, the outer ones of s0 and s1. In order

to remedy this, an exceptional edge eo connecting o∗0 and o∗1 can be added.

Given a 2-orientation X of G and a 2∗-orientation X∗ of G∗

s , we induce an orientation on G̃ by taking

the orientation of an edge e for both of its halfedges, see Figure 10. We seek for a 0-1 coloring of the inner

faces of G̃ such that, if ve is an edge-vertex and a an outgoing edge at ve, then the color of the two faces

incident to a are the same. We model this by calling a an irrelevant edge. Edges that are not irrelevant are

relevant. Observe that, from the properties of X and X∗ and the construction, we obtain:

• There are no relevant edges incident to s0 and s1.

• There is exactly one relevant edge incident to o∗0 and o∗1.

• Apart from these exceptions, every vertex of G̃ is incident to exactly two relevant edges.

It follows that the relevant edges form a union of disjoint simple cycles and a path from o∗0 to o∗1 which, by

adding eo as relevant edge is also closed into a cycle. Starting with color 0 in the face containing s0, there

is a unique extension to a 0-1 coloring of the faces in the graph of relevant edges and hence to a coloring

of the faces of G̃. It is routine to check that this indeed yields a weak labeling and that the two mappings

are inverse to each other. ✷

A nice consequence of the above proposition is that it yields a characterization of plane graphs admitting

a weak labeling: Given a graph G = (V,E) and a function α : V → IN, an α-orientation is an orientation

X of G such that the outdegree of each v is as prescribed by α, i.e., it is α(v). It is known that G admits

an α-orientation if
∑

v∈V α(v) = |E| and for all W ⊂ V the number of edges incident to vertices in W is

at least as large as α(W ) =
∑

v∈W α(v). Moreover, the question whether G admits an α-orientation can

be translated into a flow-problem [6]. The flow problem can be solved in O(n3/2) with the algorithm of

Miller and Naor [14], see also [22]. A polynomial time recognition algorithm for plane graphs admitting
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Fig. 10: Orientations X and X
∗, the relevant edges of G̃ and the resulting weak labeling of G.

a weak labeling would first decide whether G and G∗

s admit a 2- resp. a 2∗-orientation. In the positive

case such orientations X and X∗ could be transformed into a weak labeling of G in linear time. We

summarize:

Theorem 3.5 Plane graphs on n vertices admitting a weak labeling can be recognized in O(n3/2).

From the theory of α-orientations developed in [6] it also follows that the sets of 2-orientations of G and

of 2∗-orientations of G∗

s carry a natural distributive lattice structure. The product of these two distributive

lattices is a distributive lattice on the set of all weak labelings of a plane graph. The ideas on how to define

the lattice structure on 2-orientations of a plane graph are explained in Subsection 2.4.

3.2 Schnyder-like properties for weak labelings

Let G be a plane graph with a weak labeling. As before, we denote by Ti the set of oriented edges colored i
and by T−1

i the set of edges colored i with reversed orientation.

The following proposition is very much like Schnyder’s main lemma in [20]. However, in a weak

labeling a vertex can have out-degree two in Ti wherefore Ti need not be a tree, see e.g. Figure 10.

Proposition 3.6 If G is a plane graph with a weak labeling, then there is no directed cycle in T0 ∪ T−1

1 ,

nor in T1 ∪ T−1

0 .
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Proof. Suppose that there is a directed cycle C in T0 ∪ T−1

1 . Clearly we may assume that C is simple,

hence, has a well defined interior. Consider G with the original 2-orientation T0 ∪ T1 and define the

following counters:

k = #vertices on C.

t = #vertices in the interior of C.

s = #faces in the interior of C.

p = #edges pointing in T0 ∪ T1 from C into the interior.

q = #edges on C with two different labels on the inner side.

0 0
1

c

1 1

i

0 0

d

0 11

e

0

1

1
1

f

00
1

0 0

b

0 01

0 0

a

1

11 1

Fig. 11: Vertex types on C, where the vertical edges are those on C and the interior of C is assumed to be to the left

of them. The schematic drawings show only the edges that are relevant for the counting argument.

Claim A. p = q.

Figure 11 shows all types of vertices which can occur on C; for type d the label i can be 0 or 1. Associate

each edge that has two different labels on the inner side with its tail-vertex. We find that q equals the

number of vertices of types a, d and e. The value of p is the number of vertices of types a, c and e. Since

vertices of type d correspond to a transition from 0-colored edges to 1-colored edges while vertices of

type c correspond to a transition from 1-colored to 0-colored edges, it follows that they are equinumerous.

This proves the claim. △

We now observe that the number g of edges which are on C or in the interior of C can be expressed in

several ways:

g = (k + t) + (s+ 1)− 2 (2)

g = 2t+ k + p (3)

g = 2s+ k − q (4)

Formula (1) is nothing but Euler’s formula for the graph restricted to C and its interior. Formula (2) is

obtained by counting the out-degrees: Every vertex in the interior of C has out-degree 2 and the sum of all

out-degrees of vertices on C is k + p. Formula (3) follows from counting changes of labels along edges:

By the edge rule (G2) the number of these changes equals the number of edges. By the weak face rule
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(G3w) each of the s faces interior to C contributes two such changes. In addition there are k− q edges on

C which have the label change in the outside.

Subtracting (2) and (3) from the double of (1) yields 0 = −2 − p + q, which is a contradiction to

Claim A. ✷

4 Generalized strong labelings

In Section 3 we introduced weak labelings, which can only exist for plane graphs with n vertices and 2n−4
edges. In Section 2 we studied strong labelings, i.e., conditions (G0), (G1), (G2) and (G3), and saw that the

existence of strong labelings characterizes quadrangulations. In this section we modify the edge rule (G2)

in order to have similar labelings for a larger class of bipartite plane graphs. The following is inspired by

the generalization [5] of Schnyder woods for 3-connected plane graphs. We will always assume that one

color class of a bipartite graph has been selected to be the white class, the other one is the black class.

Definition 4.1 A generalized strong labeling for a bipartite plane graph with special vertices s0 and s1
(of any color) on the outer face is a mapping from its angles to the set {0, 1} which satisfies:

(G0) Special vertices: All angles incident to si are labeled i.

(G1) Vertex rule: For each vertex v /∈ {s0, s1}, the incident labels form a non-empty interval of 1s and

a non-empty interval of 0s.

(G2g) Generalized edge rule: For each edge, the incident labels form one of the six patterns shown in

Figure 12.

(G3g) Generalized face rule: Each face has exactly one pair of adjacent 0-labels and one pair of adjacent

1-labels.

0

1 1
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1

1 1

0
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0 0

0

0
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1

0 1

0

0

1 0

1

Fig. 12: Generalized edge rule.

Observe that the generalized face rule (G3g) coincides with the face rule (G3) for the case of quadrangula-

tions. Figure 17 shows several examples of generalized strong labelings. It should be noted that the degree

of the special vertices s0 and s1 in a graph with such a labeling can be one, e.g., the 2-path s0—v—s1
admits a generalized strong labeling.

Another useful fact that can be seen from (G0) together with (G2g) is that the edge on the outer face

Fout which contains s0 and which has Fout to its right when traversed from its white vertex to the black

vertex has two adjacent labels 0 in Fout.

Lemma 4.2 A generalized strong labeling of a quadrangulation has only edges of the four types of the

edge rule (G2), which verify Lemma 2.4, i.e., it has no bidirected edge.
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Proof. A quadrangulation on n vertices has n − 2 faces and 2n − 4 edges. Rules (G3g) and (G0) imply

that there are at most two color changes in the face walk of each face. In total this yields 2n − 4 color

changes. Since each edge contributes at least one color change there can be no edge contributing two

color changes. ✷

Lemma 4.3 A face in a graph equipped with a generalized strong labeling is labeled as shown in Fig-

ure 13.

Proof. Rule (G3g) implies that in F there is a pair of adjacent 0-labels. Let u0 and u1 be the vertices of

this edge numbered such that in clockwise order u0 precedes u1. Inspecting Figure 12, i.e., rule (G2g), we

find that u0 is white and u1 is black. Similarly, if v0 and v1 are the two vertices with adjacent 1-labels in

clockwise order then v0 is white and v1 is black. Between the two special edges there are alternations of

labels and colors of some even length on both sides. Note that rule (G2g) allows to identify the complete

labeling of edges (u2k, u2k+1) and (v2k, v2k+1) for all k ≥ 1. They are bidirected.

The generic picture of labels in a face also holds for Fout if the appropriate ‘clockwise’ order for this

face is used, i.e., relative to some point in Fout if G is embedded on the sphere. ✷

1
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1 1

0

1

00

u0u1

u2

u3

u4

u5

v0
v1

v2

v3

Fig. 13: A generic face in a generalized strong labeling.

Bonichon et al. [3] have introduced operations on Schnyder woods which they call merge and split. A

split takes a bidirected edge and makes it unidirected, to account for the reduced out-degree at one of the

vertices of the edge a new edge is introduced. A merge is the inverse operation; it takes an angle with

two unidirected edges, one of them incoming the other outgoing. The outgoing edge is removed and the

incoming edge is made bidirected. We define similar operations for generalized strong labelings. The four

possible instances for split and merge are defined by Figure 14: a split is done by replacing a situation

from the upper row by the situation below; a merge, conversely, replaces a situation in the lower row by

the one above it. Note that a bidirected edge can be split in two ways but the new edge of both splits is

introduced in the same face.

Lemma 4.4 If G is a bipartite graph with a generalized strong labeling B and a labeling B′ of G′ is

obtained from (G,B) by a split or merge, then B′ is a generalized strong labeling of G′.

Proof. The labeling B′ inherits (G0) and (G1) from B. All edges in the figure are legal in the sense of

(G2g). The least trivial thing is to verify (G3g) for the split. Let us concentrate on the split of the first

column where we have given names to the objects. From the generic labeling of a face (Figure 13) it
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Fig. 14: Split and merge for generalized strong labelings.

follows that v = u2k and u = u2k+1 for some k ≥ 1. Since the two black vertices u and x have different

labels in F we can conclude that x = v2l+1 for some l ≥ 0. It is now readily seen that the labels used at

the split-edge complete a legal face labeling on either side. ✷

Lemma 4.5 Let G be a bipartite graph with a generalized strong labeling. If G has an inner face which

is not a quadrangle, then there is a bidirected edge which can be used in a split.

Proof. If G is not a quadrangulation then there is a face F with at least six edges. The generic labeling of a

face (Lemma 4.3) implies that there is a bidirected edge (u2k, u2k+1) or (v2k, v2k+1). From the previous

lemma we conclude that such an edge can be split (in two ways) and the resulting labeling is a generalized

strong labeling. ✷

If the outer face has more than four edges and the special vertices are of the same color, then again there

is a bidirected edge that can be split. If the special vertices are of distinct color, however, it may happen

that every split closes a cycle that separates the special vertices, thus violating (G0).

Corollary 4.6 If G is a bipartite graph with a generalized strong labeling and the special vertices of G
are of the same color, then there is a sequence of edge splittings which lead to a quadrangulation with a

strong labeling.

If e = uv is a bidirected edge, then we regard e as outgoing at both vertices u and v. With this in mind

we conclude from the strong edge rule (G2g):

Lemma 4.7 The turning rule (Lemma 2.5 and Figure 3) holds for generalized strong labelings.

Given a graph G with a generalized strong labeling, let T0 be the set of oriented gray edges and let T1

be the set of oriented black edges. Again T−1

i is the set of edges of Ti with reversed orientation.

Lemma 4.8 T0 ∪ T−1

1 and T1 ∪ T−1

0 are acyclic. Moreover, Ti, i ∈ {0, 1}, is a directed tree with sink si
that spans all vertices but s1−i.

Proof. If the special vertices are of different color add a new special vertex s∗0 connected to s0 with a new

edge. The labeling is easily extended as to make s∗0 and s1 the special vertices.

Use edge splits to get to a quadrangulation Q. The acyclicity of T0 ∪ T−1

1 where Ti are the edge sets

defined by the orientation of Q was shown in Lemma 2.8. Note that since a merge has precisely the effect

of deleting an edge from T0 ∪ T−1

1 , this cannot introduce cycles.
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The statement about the trees follows from the acyclicity of Ti and the fact that every non-special vertex

has outdegree one in Ti. ✷

The lemma implies that, again, we can define the i-path Pi(v), of a vertex v as the directed path in Ti

from v to the sink si. These paths allow, in turn, the definition of the regions Ri(v) of a vertex. Consider

the numbers f0(v) counting the number of faces in R0(v), i.e., the region to the right of P0(v). These

numbers again obey a nice alternation property, namely, if xy is an edge of color 0 with black vertex x and

white vertex y, then f0(x) ≤ f0(y). If the color of x, y is 1 and x is black and y white, then f0(x) ≥ f0(y).
However, we lose the property that the numbering f0 yields a 2-book embedding; this is due to the fact

that a 0-path P0(u) and a 1-path P1(v) can cross by using the two directions of a bidirected edge.

4.1 Distributive lattice and flips for generalized strong labelings

In Section 2 we showed that strong labelings for quadrangulations are in bijection to 2-orientations. This

allowed us to identify a flip operation on strong labelings which generates a distributive lattice on the

set of all strong labelings. The following construction allows to prove equivalent results in the case of

generalized strong labelings.

The orientation induced by a generalized strong labeling on G has the somewhat strange property that it

may contain bidirected edges. We encode this orientation by a “regular” orientation of a larger graph: Let

G be a connected bipartite plane graph with distinguished color classes black and white. Define a graph

SG as follows: As vertices of SG take the union of the vertices, edges and faces of G. Every edge-vertex

has degree three and is connected to the two endpoints and to the face on its right when traversed from

white to black. Figure 15 shows an example. The construction is inspired by the completion of a plane

graph as used in the proof of Proposition 3.4. Similar constructions have been considered in the context

of Schnyder woods, see e.g. [6].

Fig. 15: A graph G (left) and the corresponding SG (right).
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Proposition 4.9 Generalized strong labelings of G with s0 and s1 on the outer face are in bijection with

orientations of SG which have the following outdegrees

outdeg(x) =





0 if x ∈ {s0, s1},

1 if x is an edge-vertex,

2 otherwise.

Proof. Figure 16 shows how to translate from a generalized strong labeling of G to an orientation of SG.

There is a clear correspondence between the rules (G0) and (G1) and the prescribed outdegrees of original

i

ī i

ī

i

ī i

i i

i ī

i

Fig. 16: Translating orientations from G to SG and back. ī denotes the label 1− i.

vertices. The generalized edge rule and outdegree 1 for edge-vertices are both assumed for the translation.

From the face rule (G3g) together with the restriction of the labeling at edges (G2g) we conclude that

face-vertices have outdegree 2. Note that this also holds for the outer face, the two edges on the outer face

which should have repeated labels to satisfy (G3g) connect to the vertices s0 and s1 which have prescribed

outdegree 0. Therefore, these two edge-vertices receive the two outgoing edges of the vertex of the outer

face.

Conversely, if an orientation of SG with the prescribed outdegrees is given we can recover the label-

ing: start at s0 where the labels are known and extend the labeling along edges via the scheme given in

Figure 16. ✷

The orientations of SG described in the proposition are α-orientations in the sense of [6]. Hence,

the set of all generalized strong labelings of G can be ordered as a distributive lattice. In particular the

generalized strong labelings are again flip-connected, where a flip is defined as the complementation of

all labels inside a cycle C which is directed in the corresponding orientation of SG.

Recall from the discussion preceeding Theorem 3.5 that for given G and a fixed function α, the exis-

tence of an α-orientation can be decided in polynomial time. Together with the proposition, this yields:

Theorem 4.10 Plane graphs admitting a generalized strong labeling can be recognized in polynomial

time.

4.2 Graphs admitting a generalized strong labeling

So far we have shown that generalized strong labelings have a nice structure. The correspondence with

orientations of SG yields polynomial time recognition and an implicit characterization via the criterion

for α-orientations given on page 126. In this subsection we provide an explicit characterization.



134 Stefan Felsner, Clemens Huemer, Sarah Kappes, and David Orden

0

1

1

1 1

0

0

0
0

0

0

0

0

1
1

1

11

1

s1

s0 s0

s1

0
0

1

1

1

1

1
1

0

00

0

s0

s1

0

1

1

0 0

0

1

s1

s0

1

0

s0

s1

0

0 0

0

0

0

0

0

0
0

0

0

0
0

00

1 1 0
1

1 1

1

1

1

1 1

1

1

1

1

1

1

1
1

1

1

1 1

0

0 0

0

0

1

0

Fig. 17: Examples of generalized strong labelings.

To introduce into the topic we have two figures. Figure 17 shows some examples of graphs with

generalized strong labelings. The four examples on the left illustrate how the colors of the special vertices

influence the labeling along the outer face. The generalized strong labelings in these cases are unique.

The generalized strong labeling of the larger graph on the right is not unique, e.g., exchanging the two

underlined labels leads to another generalized strong labeling. Figure 18 shows some graphs which do

s1

s0
s0

s1

s0

s1

z

x

a

b

x
s1

s0

Fig. 18: Some graphs which do not admit a generalized strong labeling.

not admit generalized strong labelings. The first two examples fail to admit a generalized strong labeling

simply because their two special vertices are adjacent. Rule (G0) would force the connecting edge to have

two identical labels on both of its vertices, which is infeasible by the edge rule. In the middle example

there is a cut vertex between x and the two special vertices. The two paths P0(x) and P1(x) would both
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contain z which forces a cycle in T0 ∪ T−1

1 , which is impossible by Lemma 4.8.

An undirected graph with special vertices s0 and s1 is called weakly 2-connected if it is 2-connected or

adding an edge s0s1 makes it 2-connected. This is equivalent to saying that every vertex x has a pair of

vertex-disjoint paths one leading to s0 and the other to s1. From the above it follows that being weakly

2-connected is a necessary condition for admitting a generalized strong labeling.

Now consider the sketch on the right of Figure 18. It illustrates the following situation: There is an edge

ab, vertex a is black and vertex b white. Removing a and b we disconnect a component C with x ∈ C
from the special vertices s0 and s1. Moreover, component C is to the left of ab. If a graph contains such

an edge we say that it contains a block with a right chord. Suppose that a graph containing a block with

a right chord admits a generalized strong labeling. Disjointness forces the two paths P0(x) and P1(x)
to leave the component C through vertices a and b. Now consider the orientation of the edge ab, if it is

directed from b to a, then the turning rule for white vertices makes the path Pi(x) leaving at b continue

through a where the two paths meet, contradiction. If the direction of ab is from a to b, then it is the

turning rule for the black vertex a which leads to the same kind of contradiction.

With the three cases we have identified all the obstructions against admitting a generalized strong

labeling:

Theorem 4.11 Let G be a bipartite plane graph with color classes black and white and two special

vertices s0, s1 on the outer face. G admits a generalized strong labeling if and only if the following

conditions are satisfied.

(1) s0 and s1 are nonadjacent,

(2) G is weakly 2-connected,

(3) G contains no block with a right chord.

Proof. The “only if” part comes from the above discussion. The proof for the “if” part is by induction on

the number of edges. Let G be a graph satisfying the conditions. We concentrate on the case where s0 is

a black vertex.

Let e = s0v be the first edge in clockwise order which is incident to s0 and belongs to the boundary of

the outer face (in Figure 17 it is the leftmost edge at s0). Rule (G2g) implies that e has the duplicate label

0 on the outer face. Now, remove e from G and let G′ be the resulting graph. There are several cases. The

easy cases, discussed first, are considered in Figure 19.

The first case is that G′ satisfies the conditions. Induction implies a generalized strong labeling for G′.

Consider the edge uv on the boundary of the outer face of G′ which is interior in G. In the labeling of G′

on the outer face the black vertex u has label 1 and the white vertex v has label 0. The generalized edge

rule (G2g) implies that the labels on the opposite side of this edge are inverse, 0 at u and 1 at v. Therefore,

it is consistent with edge and vertex rules to label the angle between e and uv with 1 and the outer angle

of e at v with 0. This yields a generalized strong labeling of G.

Now suppose that G′ does not satisfy the conditions because condition (2) fails. If G′ is not connected

it has s0 as an isolated vertex. Choose v as the special vertex s′0 for the component of G′ which contains

s1. If this component admits a generalized strong labeling we can extend this to the full graph. Otherwise,

condition (1) is not satisfied. Hence either the component is just the single edge s′0s1 or this edge is a left

chord to a block which satisfies all three conditions. In both cases it is easy to get to a generalized strong

labeling of G.
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Fig. 19: Constructing the generalized strong labeling in the inductive proof. Underlined labels are inverted in the

labeling of G.

If G′ is connected but fails to satisfy (2), then it has a cut vertex. Let w be the cut vertex such that one

of the components is weakly 2-connected between v and w and the other is weakly 2-connected between

s0 and s1. The first of these components is either a single edge or it satisfies the conditions. The second

component also satisfies the conditions. By induction both components have generalized strong labelings.

Again it is straightforward to define a generalized strong labeling based on the generalized strong labelings

of the components. The right part of Figure 19 shows the case where w is a white vertex.

It remains to consider the case where condition (3) does not hold for G′, Figure 20 illustrates the

situation. Removing edge e = s0v generates a new block B with a right chord uw. Split the graph into

two parts. One part consists of block B together with the edge uw, let v = s′0 and w = s′1 be the special

vertices for this part. This part of the graph fulfills the condition so that by induction a generalized strong

labeling exists. The other part also has a generalized strong labeling. The left part of the figure shows

some of the labels that can be derived by applying Lemma 4.3 to the outer faces. The right part of the

figure shows how to recombine them to form a generalized strong labeling of the full graph. ✷
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