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Abstract. We give a new expression for the expected number of inversions in the product of
n random adjacent transpositions in the symmetric group Sm+1. We then derive from this
expression the asymptotic behaviour of this number when n ≡ nm scales with m in various

ways. Our starting point is an equivalence, due to Eriksson et al., with a problem of weighted
walks confined to a triangular area of the plane.

1. Introduction

Let Sm+1 denote the group of permutations on the set {0, 1, 2, . . . , m}. Define the adjacent
transposition si to be the two-cycle (i, i + 1). We consider the adjacent transposition Markov
chain π(0), π(1), π(2), . . . on Sm+1. That is, π(0) is the identity, and π(n+1) = π(n)si, where
i ∈ {0, . . . , m − 1} is chosen uniformly at random. For instance, denoting π = π0π1 · · ·πm if
π(i) = πi for all i, we may have, when m = 4,

π(0) = 0123 = id,
π(1) = 0213 = π(0)s1,

π(2) = 2013 = π(1)s0,
π(3) = 2103 = π(2)s1.

Markov chains on finite groups have attracted a lot of interest in, at least, the past 30 years, at
the interface of algebra and probability theory [1, 11, 13, 14, 21, 22]. Such chains are also studied
in computational biology, in connection with models of gene mutations [3, 15, 17, 23]. A central
question is to estimate the mixing time of the chain, for large values of m. (The mixing time is
the number of steps the chain takes to approach its equilibrium distribution.) The above chain
is periodic of period 2, since π(2n) is always in the alternating group. Thus it has no equilibrium
distribution. However, an elementary modification (which consists in choosing π̃(n+1) = π̃(n)

with probability 1/(m + 1) and otherwise multiplying by a transposition si chosen uniformly)
makes it aperiodic, and the equilibrium distribution is then uniform over Sm+1. It has been
proved by Diaconis and Saloff-Coste that O(m3 log m) steps suffice, asymptotically, to mix this
chain [13].

More recently, Berestycki and Durrett [4] studied a continuous time version of this chain,
denoted (Xm

t )t≥0, where multiplications by adjacent transpositions occur according to a Poisson

process of rate 1. The connection with the chain π(n) described above is straightforward. The
authors focussed on the inversion number Dm

t of Xm
t , as a function of m and t. They established

the convergence in probability of this random variable, suitably normalized, when t ≡ tm scales
with m in various ways. The limit is usually described in probabilistic terms, except in one
simple regime, m ≪ t ≪ m3, where Xm

t /
√

mt is shown to converge to
√

2/π. Of course, the
interesting regimes are those occurring before stationarity.

This paper actually stems from a remark made in [4]. The authors quote a paper by Erik-
sen [16], which gives a rather formidable expression for Im,n, the expected number of inversions
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in π(n):

Im,n =

n
∑

r=1

1

mr

(

n

r

) r
∑

s=1

(

r − 1

s − 1

)

(−4)r−sgs,m hs,m, (1)

with

gs,m =

m
∑

ℓ=0

∑

k≥0

(−1)k(m − 2ℓ)

(

2⌈s/2⌉ − 1

⌈s/2⌉+ ℓ + k(m + 1)

)

and

hs,m =
∑

j∈Z

(−1)j

(

2⌊s/2⌋
⌊s/2⌋+ j(m + 1)

)

.

The authors underline that “it is far from obvious how to extract useful asymptotic from this
formula”. This observation motivated our interest in the expectation Im,n. As the problem is of
an algebraic nature, it should have much structure: would it be possible to find an alternative
expression of Im,n, with a neater structure than (1), and to derive asymptotic results from this
expression?

This is precisely what we do in this paper. Our alternative formula for Im,n reads as follows.

Theorem 1. Let m ≥ 1. For k ∈ Z, denote

αk =
(2k + 1)π

2m + 2
, ck = cosαk, sk = sin αk and xjk = 1 − 4

m
(1 − cjck). (2)

Then the expected number of inversions after n adjacent transpositions in Sm+1 is

Im,n =
m(m + 1)

4
− 1

8(m + 1)2

m
∑

k,j=0

(cj + ck)2

s2
js

2
k

xjk
n.

Equivalently, the generating function Im(t) =
∑

n≥0 Im,ntn is

Im(t) =
m(m + 1)

4(1 − t)
− 1

8(m + 1)2

m
∑

k,j=0

(cj + ck)2

s2
js

2
k

1

1 − txjk
. (3)

This result is proved in Section 2, and asymptotic results are derived in Sections 3 to 5 for three
main regimes: linear (nm = Θ(m)), cubic (nm = Θ(m3)) and intermediate (m ≪ nm ≪ m3).
For the moment, let us give a few comments and variants on Theorem 1.

Limit behaviour. The chain π(n) has period 2, as π(n) is an even (resp. odd) permutation if
n is even (resp. odd). But the sub-chains π(2n) and π(2n+1) are aperiodic on their respective
state spaces, the alternating group Am+1 (the group of even permutations) for π(2n) and its
complement Sm+1 \ Am+1 for π(2n+1). Moreover, each of these chains is irreducible and sym-
metric, and thus admits the uniform distribution as its equilibrium distribution. For m ≥ 3,
the average number of inversions of an element of Am+1 is m(m + 1)/4, and the same is true of
elements of Sm+1 \ Am+1. Thus when m ≥ 3 is fixed and n → ∞, we expect Im,n to tend to
m(m + 1)/4. This can be seen on the above expression of Im,n, upon observing that, for m ≥ 3
and 0 ≤ j, k ≤ m with j + k 6= m, there holds xjk ∈ (−1, 1). (The condition j + k 6= m is
equivalent to cj + ck 6= 0.) If m ≥ 8, the stronger property xjk ∈ (0, 1) holds, which shows that
Im,n is an increasing function of n.

Eigenvalues of the transition matrix. Another consequence of the above theorem is that
we have identified some of the eigenvalues of the transition matrix of the chain (see [16] for a
detailed account of the connection between these eigenvalues and Im,n).

Corollary 2. Let ck = cos (2k+1)π
2m+2 . The transition matrix of the adjacent transposition Markov

chain on Sm+1 admits —among others— the following eigenvalues:

xjk = 1 − 4

m
(1 − cjck),

for 0 ≤ j, k ≤ m and j + k 6= m.
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This matrix has more eigenvalues, for instance the trivial eigenvalue 1, with eigenvector
(1, . . . , 1), but also −1, with eigenvector (ε(σ))σ∈Sm+1 where ε denotes the signature. Experi-
mentally, there are much more eigenvalues, including ±1/m. It may be that the complete list of
eigenvalues is explicitly known. What we have found in the literature is a description in terms
of the characters of Sm+1 (see [14, Thm. 3]). This description is valid in a much more general
framework, and we have not tried to instantiate it to our particular case.

Rationality of Im(t). That the series Im(t) is always rational should not be a surprise: this
property is clear when considering the transition matrix of the chain. Here are the first few
values:

I1(t) =
t

(1 − t)(1 + t)
,

I2(t) =
t(2 + t)

(1 − t)(2 − t)(1 + t)
,

I3(t) =
3t(27 + 9 t − 7 t2 − t3)

(1 − t)(9 + 6 t − t2)(9 − 6 t − t2)
,

I4(t) =
t(256 − 192 t− 48 t2 + 44 t3 − 5 t4)

(1 − t)(16 − 5 t2)(16 − 20 t + 5 t2)
.

A related aperiodic chain. If we consider instead the aperiodic variant of the chain (obtained
by choosing π̃(n+1) = π̃(n) with probability 1/(m + 1) and otherwise multiplying by a transpo-
sition si chosen uniformly), it is easy to see that the expected number of inversion after n steps
is now

Ĩm,n =

n
∑

k=0

(

n

k

)

mk

(m + 1)n
Im,k,

so that the associated generating function is also rational:

Ĩm(t) :=
∑

n≥0

Ĩm,ntn =
1

1 − t/(m + 1)
Im

(

tm

m + 1 − t

)

.

Alternative expressions. The above theorem gives a partial fraction expansion of Im(t).
One of the advantages of (3) is that the coefficients involved in the sum over j and k are
negative, which makes the list of poles of Im(t) is clear (we have actually already used this to
state Corollary 2). A number of variations are possible, and we will use some of them in the
asymptotic study of the numbers Im,n. For instance:

Im(t) =
m(m + 1)

4(1 − t)
− 1

8(m + 1)2

m
∑

k,j=0

cj + ck

(1 − cj)(1 − ck)

1

1 − txjk
(4)

=
1

8(m + 1)2

m
∑

k,j=0

cj + ck

(1 − cj)(1 − ck)

(

1

1 − t
− 1

1 − txjk

)

. (5)

Both formulas are proved in Section 2.

2. The expected number of inversions

We prove in this section Theorem 1 and its variants (4-5). Our starting point is a functional
equation satisfied by a series related to Im(t). We then solve this equation using the bivariate
kernel method, which has proved successful in the past few years in various enumerative problems
related to lattice paths, permutations, and other combinatorial objects [7, 8, 9, 10, 19, 20, 24].
The equation under consideration here can be interpreted in terms of weighted lattice paths
confined to a triangular portion of the square lattice.
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2.1. A functional equation

For π ∈ Sm+1, let us write π = π0π1 · · ·πm if π(i) = πi for all i. For n ≥ 0 and 0 ≤ i ≤ j < m,
let

p
(n)
i,j = P(π

(n)
i > π

(n)
j+1).

Then the expected number of inversions in π(n) is

Im,n =
∑

0≤i≤j<m

p
(n)
i,j . (6)

Examining how the numbers p
(·)
i,j may change at the nth step gives a recurrence relation for

these numbers, first obtained by Eriksson et al. [17]. As shown by the lemma below, it converts
our problem into the study of weighted walks confined to a triangular region of the square
lattice. Consider the subgraph Gm of the square lattice Z×Z induced by the points (i, j), with
0 ≤ i ≤ j < m (Figure 1). We use the notation (i, j) ↔ (k, ℓ) to mean that the points (i, j) and
(k, ℓ) are adjacent in this graph.

(m − 1)1

(m − 1)

0

1

Figure 1. The graph Gm.

Lemma 3 ([17]). The inversion probabilities p
(n)
i,j are characterized by the following recursion:

p
(0)
i,j = 0 for 0 ≤ i ≤ j < m,

and for n ≥ 0,

p
(n+1)
i,j = p

(n)
i,j +

1

m

∑

(k,ℓ)↔(i,j)

(

p
(n)
k,ℓ − p

(n)
i,j

)

+
δi,j

m

(

1 − 2p
(n)
i,j

)

,

where δi,j = 1 if i = j and 0 otherwise.

As often, it is convenient to handle the numbers p
(n)
i,j via their generating function:

P (t; u, v) ≡ P (u, v) :=
∑

n≥0

tn
∑

0≤i≤j<m

p
(n)
i,j uivj .

Multiplying the above recursion by tn+1, and then summing over n, gives the following functional
equation for P (u, v).

Corollary 4. The series P (u, v) satisfies

(

1 − t +
t

m
(4 − u − ū − v − v̄)

)

P (u, v) =

t

m

(

1 − umvm

(1 − uv)(1 − t)
− (ū − 1)Pℓ(v) − (v − 1)vm−1Pt(u) − (u + v̄)Pd(uv)

)

, (7)
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where ū = 1/u, v̄ = 1/v, and the series Pℓ, Pt and Pd describe the numbers p
(n)
i,j on the three

borders (left, top, and diagonal) of the graph Gm:

Pℓ(v) =
∑

n≥0

tn
∑

0≤j<m

p
(n)
0,j vj ,

Pt(u) =
∑

n≥0

tn
∑

0≤i<m

p
(n)
i,m−1u

i,

Pd(u) =
∑

n≥0

tn
∑

0≤i<m

p
(n)
i,i ui. (8)

In view of (6), the generating function we are interested in is

Im(t) =
∑

n≥0

Im,ntn = P (1, 1),

which, according to the functional equation (7), may be rewritten

Im(t) =
t

(1 − t)2
− 2tPd(1)

m(1 − t)
. (9)

In the next subsection, we solve (7), at least to the point where we obtain a closed form expression
of Pd(1), and hence a closed form expression of Im(t), as announced in Theorem 1.

2.2. Solution of the functional equation

We first establish a symmetry property of the series P (u, v).

Lemma 5. The series P (u, v) satisfies

P (u, v) = um−1vm−1P (v̄, ū)

with ū = 1/u, v̄ = 1/v. In particular, the “diagonal” generating function Pd(u) satisfies

Pd(u) = um−1Pd(ū). (10)

Proof. This can be derived from the functional equation satisfied by P (u, v), but we prefer to
give a combinatorial (or probabilistic) argument.

Let τ be the permutation of Sm+1 that sends k to m − k for all k. Note that τ is an
involution. Let Φ denote the conjugacy by τ : that is, Φ(σ) = τστ . Of course, Φ(id) = id and
Φ(σσ′) = Φ(σ)Φ(σ′). Also, Φ has a simple description in terms of the diagram of σ, in which σ(i)
is plotted against i: the diagram of Φ(σ) is obtained by applying a rotation of 180 degrees to the
diagram of σ. In particular, with si = (i, i + 1), one has Φ(si) = sm−1−i for 0 ≤ i < m. These
properties imply that the sequence of random permutations (Φ(π(0)), Φ(π(1)), Φ(π(2)), . . .) follows
the same law as the original Markov chain (π(0), π(1), π(2), . . .). In particular, for 0 ≤ i ≤ j < m,

p
(n)
i,j = P(Φ(π(n))i > Φ(π(n))j+1) = P(π

(n)
m−j−1 > π

(n)
m−i) = p

(n)
m−j−1,m−i−1.

This is equivalent to the first statement of the lemma. The second follows by specialization.

The next ingredient in our solution is the “obstinate” kernel method of [7, 8, 9, 10, 19, 20, 24].
The kernel of the functional equation (7) is the coefficient of P (u, v), namely

K(u, v) = 1 − t +
t

m
(4 − u − ū − v − v̄).

Let (U, V ) be a pair of Laurent series in t that cancel the kernel: K(U, V ) = 0. The series
P (U, V ) is well-defined (because P (u, v) is a polynomial in u and v). Setting u = U and v = V
in (7) cancels the left-hand side, and thus the right-hand side. That is, denoting as usually
Ū = 1/U and V̄ = 1/V ,

V̄ m−1(1 − UmV m)

(1 − UV )(Ū − 1)(V − 1)(1 − t)
− V̄ m−1Pℓ(V )

V − 1
− Pt(U)

Ū − 1
− V̄ m−1(U + V̄ )

(Ū − 1)(V − 1)
Pd(UV ) = 0
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provided U 6= 1 and V 6= 1. Let us now exploit the symmetries of the kernel: obviously, K(u, v)
is invariant by the transformations u 7→ ū and v 7→ v̄. Hence the pairs (Ū , V ), (Ū , V̄ ) and (U, V̄ )
also cancel K, and it follows that

V̄ m−1(1 − ŪmV m)

(1 − ŪV )(U − 1)(V − 1)(1 − t)
− V̄ m−1Pℓ(V )

V − 1
− Pt(Ū)

U − 1
− V̄ m−1(Ū + V̄ )

(U − 1)(V − 1)
Pd(ŪV ) = 0,

V m−1(1 − ŪmV̄ m)

(1 − Ū V̄ )(U − 1)(V̄ − 1)(1 − t)
− V m−1Pℓ(V̄ )

V̄ − 1
− Pt(Ū)

U − 1
− V m−1(Ū + V )

(U − 1)(V̄ − 1)
Pd(Ū V̄ ) = 0,

V m−1(1 − UmV̄ m)

(1 − UV̄ )(Ū − 1)(V̄ − 1)(1 − t)
− V m−1Pℓ(V̄ )

V̄ − 1
− Pt(U)

Ū − 1
− V m−1(U + V )

(Ū − 1)(V̄ − 1)
Pd(UV̄ ) = 0.

Let us form the alternating sum of the four previous equations: all occurrences of Pℓ and Pt

vanish, and, using (10), one obtains, after multiplying by UmV m(1 − U)(1 − V ):

(UV + 1)
(

Um+1 + V m+1
)

Pd (UV ) + V m−1 (U + V )
(

1 + Um+1V m+1
)

Pd

(

UV̄
)

=
UV

1 − t

(

(1 − UmV m) (Um + V m)

1 − UV
− (Um − V m) (1 + UmV m)

V − U

)

(11)

as soon as K(U, V ) = 0, U 6= 1 and V 6= 1.
This equation involves only one unknown series, namely Pd. The series U and V are coupled

by one condition, K(U, V ) = 0. Let q be a complex root of qm+1 = −1, and let us add a second
constraint on the pair (U, V ) by requiring that U = qV . That is, V must be a root of

K(qV, V ) = 1 − t +
t

m

(

4 − (1 + q)(V + q̄V̄ )
)

= 0 (12)

where q̄ = 1/q and V̄ = 1/V . We further assume q 6= −1 (otherwise K(qv, v) is independent of
v). Then V 6= 1, U = qV 6= 1, and the first term of (11) vanishes. We thus obtain an explicit
expression of Pd(q), which we write below in terms of V and its conjugate root V ′ = q̄V̄ .

Lemma 6. Let q 6= −1 satisfy qm+1 = −1, and let V ≡ V (t) and V ′ ≡ V ′(t) be the two roots
of (12). Then V V ′ = q̄ = 1/q and

Pd(q) =
q̄

(1 − t)(V m+1 + V ′m+1)

(

V m + V ′m

1 − q
+

1 − q̄

1 + q

V m − V ′m

V − V ′

)

.

The series V and V ′ are algebraic (of degree 2) over C(t). But their symmetric functions
are rational, and thus Pd(q) is rational too, as expected. The following lemma gives an explicit
rational expression of Pd(q).

Lemma 7. Let q 6= −1 satisfy qm+1 = −1. Assume q = qk := ei 2k+1
m+1 π. Then

Pd(qk) =
2it

qk(1 − t)m(m + 1)sk

m
∑

j=0

(ck + cj)(1 − ckcj)

1 − txjk

with

cj = cos
(2j + 1)π

2m + 2
, sj = sin

(2j + 1)π

2m + 2
and xjk = 1 − 4

m
(1 − cjck).

Equivalently,

Pd(qk) =
ick

2qk(1 − t)sk
− i

2qk(m + 1)sk

m
∑

j=0

ck + cj

1 − txjk
.

Proof. We will establish a closed form expression for the coefficient of tn in (1 − t)Pd(q), which
is clearly equivalent to the first expression of Pd(q) given above: for n ≥ 1,

an := [tn](1 − t)Pd(q)

=
2i

qm(m + 1)sk

m
∑

j=0

(ck + cj)(1 − ckcj) xjk
n−1. (13)
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In order to obtain this expression, we begin with applying Cauchy’s formula to the expression
of (1 − t)Pd(q) given in Lemma 6. Let V be the root of (12) that vanishes at t = 0. (The other
root V ′ = q̄V̄ has a term in O(1/t) in its expansion.) Then

an =
1

2iπ

∫

	

R(V )
dt

tn+1

where the integral is taken along a small circle around the origin, in counterclockwise direction,

R(v) =
q̄

vm+1 + (q̄v̄)m+1

(

vm + (q̄v̄)m

1 − q
+

1 − q̄

1 + q

vm − (q̄v̄)m

v − q̄v̄

)

,

and v̄ = 1/v. Obviously, R(v) = R(q̄v̄). By (12),

1

t
= 1 − 4

m
+

1 + q

m
(V + q̄V̄ )

so that

dt

t2
= −1 + q

m
(V − q̄V̄ )

dV

V
.

Thus the integral expression of an reads

an =
1

2iπ

∫

	

S(v)
dv

v

where the integral is taken along a small circle around the origin, in counterclockwise direction,
and

S(v) = −1 + q

m
(v − q̄v̄)

(

1 − 4

m
+

1 + q

m
(v + q̄v̄)

)n−1

R(v)

satisfies S(q̄v̄) = −S(v). Note that the only possible poles of S(v)/v are 0 and the (2m + 2)th
roots of unity (because qm+1 = −1). Thus an is simply the residue of S(v)/v at v = 0.
Performing the change of variables v = q̄w̄, with w̄ = 1/w, gives

an =
1

2iπ

∫

�

S(w)
dw

w

where the integral is now taken along a large circle around the origin, in clockwise direction.
This integral thus collects (up to a sign) all residues of S(v)/v. The residue formula thus gives:

2an =
1

2iπ

∫

�

S(w)
dw

w
+

1

2iπ

∫

	

S(v)
dv

v

= −
∑

v2m+2=1

1

v
Resv(S)

=
1

2m + 2

∑

v2m+2=1

P (v) (14)

where

P (w) = (1 − w2m+2)S(w) =

1 + q̄

m
wm+1(w − q̄w̄)

(

wm + (q̄w̄)m

1 − q
+

1 − q̄

1 + q

wm − (q̄w̄)m

w − q̄w̄

)(

1 − 4

m
+

1 + q

m
(w + q̄w̄)

)n−1

.
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Take v = eiα with α = ℓπ/(m + 1) and 0 ≤ ℓ < 2m + 2 and recall that q = eiθ with θ = (2k+1)π
m+1 .

Then

1 + q̄ = 2e−iθ/2 cos(θ/2),

1 − q = −2ieiθ/2 sin(θ/2),

1 − q̄ = 2ie−iθ/2 sin(θ/2),

1 + q = 2eiθ/2 cos(θ/2),

vm+1 = (−1)ℓ,

v − q̄v̄ = 2ie−iθ/2 sin(α + θ/2),

v + q̄v̄ = 2e−iθ/2 cos(α + θ/2),

vm + (q̄v̄)m = 2i(−1)ℓ+1eiθ/2 sin(α + θ/2),

vm − (q̄v̄)m = 2(−1)ℓeiθ/2 cos(α + θ/2).

Putting these identities together, one obtains

P (v) =
4i

qm sin(θ/2)

(

cos(θ/2) sin2(α + θ/2) + sin2(θ/2) cos(α + θ/2)
)

×
(

1 − 4

m
+

4

m
cos(θ/2) cos(α + θ/2)

)n−1

,

or, with the notation of the lemma,

P (v) =
4i

qmsk
(cj + ck)(1 − cjck) xjk

n−1

with j = k + ℓ. Returning to (14) now gives

an =
i

qm(m + 1)sk

m
∑

j=−m−1

(ck + cj)(1 − ckcj) xjk
n−1,

which is equivalent to (13), upon noting that cj = c−j−1. The first expression of Pd(q) given in
the lemma follows.

For the second expression, we simply perform a partial fraction expansion in the variable t,
based on

t

(1 − t)(1 − xt)
=

1

1 − x

(

1

1 − t
− 1

1 − xt

)

, (15)

and use
m
∑

j=0

cj = 0

(this identity follows for instance from cm−j = −cj).

Recall that Pd(u) is a polynomial in u of degree m − 1. The above lemma gives its values at
m, or even m + 1, distinct points. Thus Pd(u) is completely determined by these values, and we
can recover it by interpolation. We use a version of Lagrange’s interpolation that is well-suited
to symmetric polynomials.

Lemma 8. Let P (u) be a polynomial of degree m − 1 with coefficients in some field containing
C. Assume P (u) is symmetric. That is, P (u) = um−1P (ū), with ū = 1/u. Let ℓ = ⌊m−1

2 ⌋, and
let q0, . . . , qℓ be distinct elements of C such that qjqk 6= 1 for all k and j. Then

P (u) = (1 + u)χm,0

ℓ
∑

k=0

P (qk)

(1 + qk)χm,0

∏

j 6=k

(u − qj)(u − 1/qj)

(qk − qj)(qk − 1/qj)
, (16)

where χm,0 = 1 if m is even, and 0 otherwise.
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When qk = eiθk with θk = (2k+1)π
m+1 , this can be rewritten as

P (u) = − 2i

m + 1
(um+1 + 1)

ℓ
∑

k=0

P (qk)
qk sin θk

u2 − 2u cos θk + 1
.

In particular, with the notation (2),

P (1) = − 2i

m + 1

ℓ
∑

k=0

P (qk)
qkck

sk
.

Proof. For the first part, it suffices to observe that the expression given on the right-hand side
of (16) has degree m − 1, and takes the same values as P (u) at the 2ℓ + 2 distinct points
q0, . . . , qℓ, 1/q0, . . . , 1/qℓ, and also at −1 if m is even. This gives a total of m + 1 correct values,
which is more than enough to determine a polynomial of degree m − 1.

For the second part, we observe that q0, . . . , qℓ, 1/q0, . . . , 1/qℓ, together with −1 if m is even,
are the m + 1 roots of um+1 + 1. Hence

(1 + u)χm,0

∏

j 6=k

(u − qj)(u − 1/qj) =
um+1 + 1

(u − qk)(u − 1/qk)
,

which, in the limit u → qk, gives

(1 + qk)χm,0

∏

j 6=k

(qk − qj)(qk − 1/qj) = − m + 1

qk(qk − 1/qk)
.

The second result follows. The third one is obtained by setting u = 1, and noticing that
sin θk = 2cksk, while 1 − cos θk = 2s2

k.

We can finally combine this interpolation formula with Lemma 7 to obtain an explicit expres-
sion of Pd(u). As we are mostly interested in Pd(1) (see (9)), we give only this value.

Proposition 9. Let ℓ = ⌊m−1
2 ⌋, and adopt the notation (2). Then the series Pd(u) defined

by (8) satisfies:

Pd(1) =
m

2(1 − t)
− 1

(m + 1)2

ℓ
∑

k=0

m
∑

j=0

ck

s2
k

cj + ck

1 − txjk

=
m

2(1 − t)
− 1

4(m + 1)2

m
∑

k=0

m
∑

j=0

(cj + ck)2(1 − cjck)

s2
js

2
k

1

1 − txjk
.

Proof. We apply Lemma 8 to the second expression of Pd(qk) obtained in Lemma 7. This gives
the first expression of Pd(1) above, provided

ℓ
∑

k=0

c2
k

s2
k

=
m(m + 1)

2
. (17)

The latter identity is obtained by applying Lemma 8 to P (u) = 1 + u + · · · + um−1 = (1 −
um)/(1 − u).



10 MIREILLE BOUSQUET-MÉLOU

We now seek a symmetric formula in j and k. Using cm−j = −cj, cm−k = −ck, sm−k = sk

and xj,k = xm−j,m−k, we write

ℓ
∑

k=0

m
∑

j=0

ck

s2
k

cj + ck

1 − txjk
=

ℓ
∑

k=0

m
∑

j=0

cm−k

s2
m−k

cm−j + cm−k

1 − txm−j,m−k

=

m
∑

k=m−ℓ

m
∑

j=0

ck

s2
k

cj + ck

1 − txjk

=
1

2

m
∑

k=0

m
∑

j=0

ck

s2
k

cj + ck

1 − txjk

=
1

4

m
∑

k=0

m
∑

j=0

(

ck

s2
k

+
cj

s2
j

)

cj + ck

1 − txjk

and this gives the second expression of Pd(1).

Proof of Theorem 1. Let us now return to the generating function Im(t) whose coefficients
give the expected number of inversions. It is related to Pd(1) by (9). Theorem 1 is obtained
by combining the second expression of Proposition 9, a partial fraction expansion in t (based
on (15)), and finally the identity

m
∑

j,k=0

(cj + ck)2

s2
js

2
k

= 2m(m + 1)3. (18)

To prove this identity, we write

m
∑

j,k=0

(cj + ck)2

s2
js

2
k

=

m
∑

j,k=0

c2
j + c2

k

s2
js

2
k

(as cm−j = −cj and sm−j = sj)

= 2





m
∑

j=0

c2
j

s2
j





(

m
∑

k=0

1

s2
k

)

= 2





m
∑

j=0

c2
j

s2
j





m
∑

k=0

(

1 +
c2
k

s2
k

)

and complete the proof thanks to (17).
To obtain the expression (4) of Im(t), we write

m
∑

j,k=0

(cj + ck)2

s2
js

2
k

1

1 − txjk
=

1

2

m
∑

j,k=0

(

cj + ck

(1 − cj)(1 − ck)
− cj + ck

(1 + cj)(1 + ck)

)

1

1 − txjk

=

m
∑

j,k=0

cj + ck

(1 − cj)(1 − ck)

1

1 − txjk
.

The latter identity follows from replacing j by m − j and k by m − k.
Let us now extract the coefficient of t0 in (4). This gives

0 =
m(m + 1)

4
− 1

8(m + 1)2

m
∑

j,k=0

cj + ck

(1 − cj)(1 − ck)
, (19)

and the expression (5) of Im(t) follows.
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3. Small times: linear and before

When m is fixed and n → ∞, the asymptotic behaviour of the numbers Im,n is easily derived
from Theorem 1, as sketched just after the statement of this theorem. For m ≥ 3,

Im,n =
m(m + 1)

4
+ O(x00

n)

where x00 = 1 − 4
m sin2 π

2m+2 .
In this section and the next two ones, we consider the case where n ≡ nm depends on m, and

m → ∞. As in [4], three main regimes appear: linear (nm = Θ(m))), cubic (nm = Θ(m3)) and
intermediate (m ≪ nm ≪ m3). This can be partly explained using the following simple bounds.

Lemma 10. For m ≥ 3 and n ≥ 0, there holds

m(m + 1)

4
(1 − x00

n) ≤ Im,n ≤ m(m + 1)

4
− c2

0

2(m + 1)2s4
0

x00
n.

In particular, if n ≡ nm and m → ∞,

Im,n =
m(m + 1)

4
− Θ(m2x00

n).

Proof. These inequalities follow from the expression of Im,n given in Theorem 1. The upper
bound is obtained by retaining only, in the sum over j and k, the term obtained for j = k = 0.
The lower bound follows from |xjk| ≤ x00 and (18).

Observe that x00 = 1 − O(1/m3). The lower bound on Im,n already shows that if n ≫ m3,

then x00
n = o(1) and Im,n ∼ m(m+1)

4 . Also, if n ∼ κm3 for some κ > 0, then x00
n ∼ α for some

α ∈ (0, 1): then Im,n is still quadratic in m, but the upper bound shows that the ratio Im,n/m2

will be less than 1/4. The other regimes correspond to cases where n ≪ m3.

This section is devoted to the linear (and sub-linear) regime. We first state our results, and
then comment on their meaning.

Proposition 11. Assume n ≡ nm = o(m). Then

Im,n

n
= 1 + O(n/m).

Assume n ≡ nm = Θ(m). That is, κ1m ≤ nm ≤ κ2m for two positive constants κ1 and κ2.
Then

Im,n

n
= f(n/m) + O(1/m)

where

f(κ) =
1

2πκ

∫ ∞

0

1 − exp(−8κt2/(1 + t2))

t2(1 + t2)
dt

=
∑

j≥0

(−1)j (2j)!

j!(j + 1)!2
(2κ)j .

Comment. When nm is sub-linear, the inversion number equals its largest possible value, n,
with high probability. For instance, I1000,10 ≃ 9.9. When nm grows linearly with m, the expected
inversion number is still linear in n, but with a ratio f(κ), where κ = n/m. This ratio decreases
from f(0) = 1 to f(∞) = 0 as κ increases from 0 to ∞. The fact that f(0) = 1 is consistent
with the sub-linear result.

Note that for a related continuous time chain, with inversion number Dt
m, it has been proved

that when t = κm, the random variable Dt
m/t converges in probability to a function of t described

in probabilistic terms [4].
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Proof. The starting point of both results is the following expression of Im,n, which corresponds
to (5):

Im,n =
1

8(m + 1)2

m
∑

k,j=0

cj + ck

(1 − cj)(1 − ck)

(

1 −
(

1 − 4

m
(1 − cjck)

)n)

. (20)

• Assume nm = o(m). Then
(

1 − 4

m
(1 − cjck)

)n

= 1 − 4n

m
(1 − cjck) + (1 − cjck)2 O

(

n2

m2

)

,

uniformly in j and k. Thus

Im,n =
n

2m(m + 1)2

m
∑

k,j=0

(cj + ck)(1 − cjck)

(1 − cj)(1 − ck)
+

1

4(m + 1)2

m
∑

k,j=0

(1 − cjck)2

(1 − cj)(1 − ck)
O

(

n2

m2

)

(we have bounded |cj + ck| by 2) and the result follows using

m
∑

k,j=0

(cj + ck)(1 − cjck)

(1 − cj)(1 − ck)
= 2m(m + 1)2

and
m
∑

k,j=0

(1 − cjck)2

(1 − cj)(1 − ck)
= (2m + 1)(m + 1)2. (21)

To prove these two identities, one may start from the following “basic” identity:
m
∑

j=0

1

1 − cj
= (m + 1)2, (22)

which follows for instance from (19).

• Assume now nm = Θ(m) and denote κ = n/m. Then
(

1 − 4

m
(1 − cjck)

)n

= exp (−4κ(1 − cjck))
(

1 + (1 − cjck)2O(n/m2)
)

.

Thus

Im,n =
1

8(m + 1)2

m
∑

k,j=0

cj + ck

(1 − cj)(1 − ck)
(1 − exp (−4κ(1 − cjck)))

+
1

8(m + 1)2

m
∑

k,j=0

(cj + ck)(1 − cjck)2

(1 − cj)(1 − ck)
exp (−4κ(1 − cjck)) O(n/m2).

By (21), the absolute value of the second term above is bounded by

1

4(m + 1)2

m
∑

k,j=0

(1 − cjck)2

(1 − cj)(1 − ck)
O(n/m2) = O(n/m) = O(1).

Recall that cj = cos (2j+1)π
2m+2 . Hence the first term in the expression of Im,n looks very much like

a (double) Riemann sum, but one must be careful, as the integral
∫ π

0

∫ π

0

cosx + cos y

(1 − cosx)(1 − cos y)
(1 − exp (−4κ(1 − cosx cos y))) dx dy

diverges (the integrand behaves like 1/x around x = 0, and like 1/y around y = 0). Let us thus
write

1 − exp (−4κ(1 − cjck)) = [1 − exp (−4κ(1 − cj))] + [1 − exp (−4κ(1 − ck))]

− [1 − exp (−4κ(1 − cj)) − exp (−4κ(1 − ck)) + exp (−4κ(1 − cjck))] ,
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so that

Im,n = 2S1 − S2 + O(1)

with

S1 =
1

8(m + 1)2

m
∑

k,j=0

cj + ck

(1 − cj)(1 − ck)
(1 − exp (−4κ(1 − cj)))

and

S2 =
1

8(m + 1)2

m
∑

k,j=0

cj + ck

(1 − cj)(1 − ck)

× [1 − exp (−4κ(1 − cj)) − exp (−4κ(1 − ck)) + exp (−4κ(1 − cjck))] .

The first sum reads

S1 =
1

8(m + 1)2

m
∑

j=0

1 − exp (−4κ(1 − cj))

1 − cj

m
∑

k=0

cj + ck

1 − ck

=
1

8

m
∑

j=0

1 − exp (−4κ(1 − cj))

1 − cj
(1 + cj) −

1

8(m + 1)

m
∑

j=0

1 − exp (−4κ(1 − cj))

1 − cj
,

as
m
∑

k=0

1

1 − ck
= (m + 1)2 and

m
∑

k=0

ck

1 − ck
= m(m + 1)

(see (22)). Both terms in S1 are now bona fide Riemann sums. More precisely,

π

m + 1

m
∑

j=0

1 − exp (−4κ(1 − cj))

1 − cj
(1 + cj) =

∫ π

0

1 − exp(−4κ(1 − cosx))

1 − cosx
(1 + cosx)dx + O(1/m)

uniformly in κ ∈ [κ1, κ2], and similarly

1

m + 1

m
∑

j=0

1 − exp (−4κ(1 − cj))

1 − cj
= O(1).

Thus

S1 =
m

8π

∫ π

0

1 − exp(−4κ(1 − cosx))

1 − cosx
(1 + cosx)dx + O(1).

Similarly, S2 is a (double) Riemann sum associated with a converging integral, and is O(1).
Thus

Im,n = 2S1 + O(1) =
n

4πκ

∫ π

0

1 − exp(−4κ(1 − cosx))

1 − cosx
(1 + cosx) dx + O(1).

The integral can be rewritten by setting t = tan(x/2), and this gives the second result of the
proposition, with the integral expression of f(κ). The expansion of f(κ) in κ is then routine.

4. Large times: cubic and beyond

Proposition 12. If n ≡ nm ≫ m3, then

m(m + 1)

4
(1 − x00

n) ≤ Im,n ≤ m(m + 1)

4

with x00 = 1 − 4
m sin2 π

2m+2 , so that

Im,n

m2
→ 1

4
.

Assume n ≡ nm = Θ(m3). That is, κ1m
3 ≤ nm ≤ κ2m

3 for two positive constants κ1 and κ2.
Then

Im,n

m2
∼ g(n/m3)
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where

g(κ) =
1

4
− 16

π4





∑

j≥0

e−κπ2(2j+1)2/2

(2j + 1)2





2

.

Comment. When n ≫ m3, the inversion number equals, at least at first order, its limit value
m(m+1)

4 , which is the average number of inversions in a permutation of Sm+1 taken uniformly

at random. When n = Θ(m3), the inversion number is still quadratic in m, but with a ratio
g(κ), where κ = n/m3. This ratio increases from 0 to 1/4 as κ goes from 0 to ∞, which makes
this result consistent with the super-cubic regime.

Note that for a related continuous time chain, with inversion number Dt
m, it has been proved

that when t = κm3, the random variable Dt
m/m2 converges in probability to a function of t

described in probabilistic terms [4].

Proof. The first result is a direct consequence of Lemma 10, given that x00 = 1 − O(1/m3).
Assume now that nm = Θ(m3). We start from the following expression of Im,n, which corre-

sponds to (4):

Im,n =
m(m + 1)

4
− 1

8(m + 1)2

m
∑

k,j=0

cj + ck

(1 − cj)(1 − ck)

(

1 − 4

m
(1 − cjck)

)n

.

Let M ≡ Mm be an integer sequence that tends to infinity in such a way Mm = o(
√

m). We
split the sum over j and k into two parts: j ≤ M , k ≤ M in the first part, j > M or k > M in
the second part. Let us prove that the second part can be neglected. We have:

|SUM2| :=

∣

∣

∣

∣

∣

∣

∑

j or k>M

cj + ck

(1 − cj)(1 − ck)
xjk

n

∣

∣

∣

∣

∣

∣

≤
∑

j or k>M

2

(1 − cj)(1 − ck)
≤ 4

m
∑

k=0

1

1 − ck

m
∑

j=M+1

1

1 − cj
.

By (22), the sum over k is O(m2). Moreover, the sum over j is a Riemann sum, and the function
x 7→ 1/(1 − cosx) is decreasing between 0 and π, so that

m
∑

j=M+1

1

1 − cj
≤ m + 1

π

∫ π

(2M+1)π
2m+2

dx

1 − cosx
=

m + 1

π tan (2M+1)π
4m+4

= O

(

m2

M

)

.

This gives

SUM2 = O

(

m4

M

)

= o (m4).

Let us now focus on small values of j and k. The following estimates hold uniformly in j and
k, when 0 ≤ j, k ≤ M :

cj + ck

(1 − cj)(1 − ck)
=

128(m + 1)4

(2j + 1)2(2k + 1)2π4

(

1 + O

(

M2

m2

))

, (23)

=
128m4

(2j + 1)2(2k + 1)2π4
(1 + o(1)) ,

(

1 − 4

m
(1 − cjck)

)n

= exp

(

−nπ2((2j + 1)2 + (2k + 1)2)

2m(m + 1)2

)(

1 + O

(

n
M4

m5

))

(24)

= exp

(

−nπ2((2j + 1)2 + (2k + 1)2)

2m3

)

(1 + o(1)) .
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We have used the fact that n = O(m3) and M = o(
√

m). Hence,

SUM1 :=
M
∑

k,j=0

cj + ck

(1 − cj)(1 − ck)
xjk

n

=
128m4

π4





M
∑

j=0

e−
nπ2(2j+1)2

2m3

(2j + 1)2





2

(1 + o(1)) .

Finally, observe that

M
∑

j=0

e−
nπ2(2j+1)2

2m3

(2j + 1)2
= h

( n

m3

)

+ O(e−
n M2

m3 ) = h
( n

m3

)

(1 + o(1))

where

h(κ) =
M
∑

j=0

e−κπ2(2j+1)2/2

(2j + 1)2
.

Writing

Im,n =
m(m + 1)

4
− 1

8(m + 1)2
(SUM1 + SUM2)

then yields the result.

5. The intermediate regime

Proposition 13. Assume m ≪ nm ≪ m3. Then, denoting n ≡ nm,

Im,n√
mn

→
√

2

π
.

Comment. By Propositions 11 and 12, one has

Im,n√
mn

→
√

κf(κ) if nm ∼ κm,

while
Im,n√
mn

→ g(κ)√
κ

if nm ∼ κm3.

It can be proved that

lim
κ→∞

√
κf(κ) =

√

2

π
= lim

κ→0

g(κ)√
κ

,

which makes all three regimes consistent.
Note that for a related continuous time chain, with inversion number Dt

m, it has been proved

that when m ≪ t ≪ m3, the random variable Dt
m/

√
mt converges in probability to

√

2/π [4].

Proof. The proof mixes arguments that we have already used for small and large times. As in
the small time case, we start from (20). As in the large time case, we split the sum over j and
k into two parts: j ≤ M , k ≤ M in the first part, j > M or k > M in the second part. Here,
M = Mm is an integer sequence that satisfies

√

m3

n
≪ M ≪ min

(

m3

n
, m
(m

n

)1/4
)

.

Such a sequence exists under the assumptions we have made on n.



16 MIREILLE BOUSQUET-MÉLOU

We begin by bounding the second part. As in the large time case, one easily obtains

|SUM2| :=

∣

∣

∣

∣

∣

∣

∑

j or k>M

cj + ck

(1 − cj)(1 − ck)
(1 − xjk

n)

∣

∣

∣

∣

∣

∣

≤
∑

j or k>M

2

(1 − cj)(1 − ck)
= O

(

m4

M

)

. (25)

We now focus on the case j, k ≤ M . The estimates (23) and (24) still hold uniformly in j and
k. This gives

SUM1 :=

M
∑

k,j=0

cj + ck

(1 − cj)(1 − ck)
(1 − xjk

n)

=
128m4

π4

M
∑

j,k=0

1 − exp
(

−nπ2((2j+1)2+(2k+1)2)
2m3

)

(2j + 1)2(2k + 1)2
(1 + o(1)) .

Using

1 − ea+b = (1 − ea) + (1 − eb) − (1 − ea)(1 − eb)

this may be rewritten as

SUM1 =
128m4

π4

(

2SM

M
∑

k=0

1

(2k + 1)2
− SM

2

)

(1 + o(1)) (26)

with

SM =
M
∑

j=0

1 − exp
(

−nπ2(2j+1)2

2m3

)

(2j + 1)2
.

The sum SM is close to a Riemann sum. More precisely,

SM =
π
√

n/m3

2
√

2

∫

√
2πM

√
n/m3

0

1 − e−x2

x2
dx (1 + o(1))

=
π3/2

√

n/m3

2
√

2
(1 + o(1))

as
∫

√
2πM

√
n/m3

0

1 − e−x2

x2
dx =

∫ ∞

0

1 − e−x2

x2
dx (1 + o(1)) =

√
π + o(1).

In particular, SM = o(1). Returning to (26), let us finally note that

M
∑

k=0

1

(2k + 1)2
=

π2

8
(1 + o(1)) .

This gives

SUM1 =
16√
2π

m2
√

mn (1 + o(1)) .

Now recall that

Im,n =
1

8(m + 1)2
(SUM1 + SUM2).

Combining the above estimate of SUM1 and the bound (25) on SUM2 gives the announced
estimate of Im,n.
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6. Perspectives

Many interesting Markov chains on groups have been studied, and it is natural to ask to which
similar problems the approach used in this note could be adapted. To make this question more
precise, let us underline that such problems may involve changing the dynamics of the chain,
changing the statistics under consideration, or changing the underlying group.

Changing the chain. Already in the symmetric group Sm+1, a number of different dy-
namics have been considered. One can for instance multiply at each step by any transpo-
sition [3, 14], or consider cyclic permutations by allowing multiplications by the transposi-
tions (0, 1), (1, 2), . . . , (m − 1, m) and (m, 0), or only allow transpositions with the largest el-
ement [18, 13], or perform block transpositions [6], or shuffle the elements in various ways [2],
etc. See for instance [12].

Changing the statistics. We have focused in this paper on the inversion number. It is an
interesting parameter from a probabilistic point of view, as it gives an indication of whether
the chain may be mixed at time n or not. However, in certain biological contexts, it may be
more sensible to estimate instead the natural “distance” between π(0) and π(n), defined as the
minimum number of chain steps that lead from one to the other [3, 4]. For the chain studied
here, this coincides with the inversion number, but for other dynamics it will be a different
parameter. For instance, if we multiply by any transposition, one step suffices to go from 012
to 210, whereas the inversion number of 210 is 3. Clearly, the approach we have used here relies
heavily on the possibility of describing in simple terms the evolution of the parameter under
consideration (as we did by the combination of (6) and Lemma 3).

Changing the group. Although many different chains in many different groups have been
considered, we are primarily thinking of classical families of (finite or affine) Coxeter groups,
because the inversion number admits in these groups a natural generalization (the length) which
has usually a simple description [5]. According to [16], an explicit formula, due to Troili, is

already known for the average length of the product of n generators in the affine group Ãm.
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[17] H. Eriksson, K. Eriksson, and J. Sjöstrand. Expected number of inversions after a sequence of random
adjacent transpositions. In Formal power series and algebraic combinatorics (Moscow, 2000), pages 677–
685. Springer, Berlin, 2000. ArXiv:math.co/0411197.

[18] L. Flatto, A. M. Odlyzko, and D. B. Wales. Random shuffles and group representations. Ann. Probab.,
13:154–178, 1985.

[19] E. J. Janse van Rensburg, T. Prellberg, and A. Rechnitzer. Partially directed paths in a wedge. J. Combin.
Theory Ser. A, 115(4):623–650, 2008.

[20] M. Mishna and A. Rechnitzer. Two non-holonomic lattice walks in the quarter plane. Theoret. Comput. Sci.,
410(38-40):3616–3630, 2009. Arxiv:math/0701800.

[21] L. Saloff-Coste. Probability on groups: Random walks and invariant diffusions. Notices Am. Math. Soc.,
48(9):968–977, 2001.

[22] L. Saloff-Coste. Random walks on finite groups. In Probability on discrete structures, volume 110 of Ency-
clopaedia Math. Sci., pages 263–346. Springer, Berlin, 2004.

[23] L. S. Wang and T. Warnow. Estimating true evolutionary distances between genomes. In Proceedings of
the 33rd Annual ACM Symposium on the Theory of Computing (STOC’01), pages 637–646, Crete, Greece,
2001.

[24] G. Xin and T. Y. J. Zhang. Enumeration of bilaterally symmetric 3-noncrossing partitions. Discrete Math.,
309(8):2497–2509, 2009. Arxiv:0810.1344.
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